Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9312
Full metadata record
DC FieldValueLanguage
dc.creatorCastro, Larissa Henriques Evangelista
dc.date.accessioned2023-11-19T20:12:58Z-
dc.date.available2023-11-19T20:12:58Z-
dc.date.issued2021-12-16
dc.identifier.citationCASTRO, Larissa Henriques Evangelista. Desenvolvimento de tyriazóis derivados da piperina inibidores da CYP51 de Trypanosoma cruzi: otimização de um modelo de previsão de atividade teórica, síntese e atividade in vitro. 2021. 175 p. Tese (Doutorado em Química, Química Orgânica) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro. Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9312-
dc.description.abstractChagas disease (CD) is a neglected tropical disease caused by the parasite Trypanosoma cruzi and presents millions of cases in several countries. Currently there are no vaccines for CD prevention and there are only two drugs for its treatment, but in Brazil, only benzonidazole is used and is ineffective on disease’s chronic phase. Thus, research for new drugs becomes essential. The enzyme sterol 14α-desmethylase (CYP51) belongs to the ergosterol biosynthesis pathway, which are fundamental for the integrity of the T. cruzi’s cell membrane. Its inhibition causes the parasite’s death and it can be promoted by the coordination of heterocyclic compounds with the iron atom of the enzyme’s heme group. On a previous work, a theoretical model of activity prediction for new inhibitors of CYP51 (T. cruzi), based on experimental and theoretical parameters calculated by molecular modeling, which was used for design new triazole piperine derivatives. On this current work, the original theoretical model was optimized using the semi-empirical PM7 method instead of PM6 and a selectivity study was done by molecular docking of heterocyclic compounds in T. cruzi’s CYP51 and H. sapiens’s CYP51. The most promising compounds, planned by the original model, were synthesized, evaluated in vitro against T. cruzi and they were tested for CYP51 inhibition. The new model presented a multiple correlation coefficient slightly higher than the original. The docking study indicates a likely selectivity of the compounds for the parasite’s enzyme. The compounds showed activities against trypomastigote forms, in agreement with the general predictions made by the model, and low cytotoxicity in primate cells. Preliminary enzyme inhibition assays indicated that the compounds designed with the model are in fact capable of inhibiting the parasite's CYP51.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDoença de Chagaspor
dc.subjecttriazóispor
dc.subjectesterol 14α-desmetilasepor
dc.subjectsemi-empíricopor
dc.subjectdocagem molecularpor
dc.subjectChagas diseaseeng
dc.subjecttriazoleseng
dc.subjectsterol 14α-demethylaseeng
dc.subjectsemiempirical methodeng
dc.subjectmolecular dockingeng
dc.titleDesenvolvimento de tyriazóis derivados da piperina inibidores da CYP51 de Trypanosoma cruzi: otimização de um modelo de previsão de atividade teórica, síntese e atividade in vitropor
dc.title.alternativeDevelopment of triazoles piperine derivatives inhibitors of Trypanosoma cruzi's CYP51: optimization of a prediction model of theoretical activity, synthesis and in vitro activityeng
dc.typeTesepor
dc.contributor.advisor1Sant’Anna, Carlos Mauricio Rabello de
dc.contributor.advisor1ID827.232.227-72por
dc.contributor.advisor-co1Lima, Marco Edilson Freire de
dc.contributor.advisor-co2Ifa, Demian Rocha
dc.contributor.referee1Sant' Anna, Carlos Maurício Rabello de
dc.contributor.referee2Lima, Aurea Echevarria Aznar Neves
dc.contributor.referee3Graebin, Cedric Stephan
dc.contributor.referee4Trossini, Gustavo Henrique Goulart
dc.contributor.referee5Rodrigues, Daniel Alencar
dc.creator.ID142.560.187-19por
dc.creator.Latteshttp://lattes.cnpq.br/2174763588443208por
dc.description.resumoA doença de Chagas (DC) é uma doença tropical negligenciada causada pelo parasito Trypanosoma cruzi e apresenta milhões de casos em vários países. Atualmente, não existem vacinas que previnam a DC e só dois fármacos são usados para o tratamento. No Brasil, apenas o benzonidazol é usado e é pouco eficaz na fase crônica da doença. Dessa forma, pesquisas por novos fármacos tornam-se fundamentais. A enzima esterol 14α-desmetilase (CYP51) faz parte da via de biossíntese de ergosteróis, que são fundamentais para a integridade da membrana celular do T. cruzi. A sua inibição causa a morte do parasito e pode ser promovida pela coordenação de compostos heterocíclicos com o átomo de ferro do grupo heme da enzima. Em trabalho anterior, foi construído um modelo de previsão de atividade teórica de compostos na CYP51 (T. cruzi), baseado em parâmetros experimentais e teóricos calculados por modelagem molecular, que foi usado no planejamento de compostos triazólicos derivados da piperina. No presente trabalho, o modelo teórico original foi otimizado usando o método semi-empírico PM7 no lugar do PM6 e um estudo de uma possível seletividade foi feito pela docagem dos compostos heterocíclicos na CYP51 de T. cruzi e de H. sapiens. Dos compostos planejados com o modelo original, os mais promissores foram sintetizados, tiveram suas atividades determinadas in vitro contra o T. cruzi e foram testados para a inibição da CYP51. O novo modelo apresentou um coeficiente de correlação múltipla levemente superior ao do original. O estudo de docagem indica uma provável seletividade dos compostos para a enzima do parasito. Os derivados apresentaram atividades contra as formas tripomastigotas, em acordo com as previsões feitas pelo modelo e baixa citotoxicidade em células de primatas. Ensaios preliminares de inibição enzimática indicaram que os compostos planejados pelo modelo são capazes de inibir, de fato, a CYP51 do parasito.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesALARCÓN DE NOYA, B. et al. Large Urban Outbreak of Orally Acquired Acute Chagas Disease at a School in Caracas, Venezuela. The Journal of Infectious Diseases, v. 201, n. 9, p. 1308–1315, maio 2010. ALCÁCER, L. Introdução à química quântica computacional. Rio de Janeiro: IST Press, Lisboa, 2007. AMINPOUR, M.; MONTEMAGNO, C.; TUSZYNSKI, J. A. An Overview of Molecular Modeling for Drug Discovery with Specific Illustrative Examples of Applications. Molecules, v. 24, n. 9, 2019. ANDRIANI, G. et al. Antitrypanosomal lead discovery: Identification of a ligandefficient inhibitor of Trypanosoma cruzi CYP51 and parasite growth. Journal of Medicinal Chemistry, v. 56, n. 6, p. 2556–2567, 2013. BARRY, M. A. et al. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Human vaccines & immunotherapeutics, v. 12, n. 4, p. 976–987, 2 abr. 2016. BASTOS, C. J. C. et al. Clinical outcomes of thirteen patients with acute chagas disease acquired through oral transmission from two urban outbreaks in Northeastern Brazil. PLoS Neglected Tropical Diseases, v. 4, n. 6, jun. 2010. BELL, L. et al. Evaluation of fluorescence- and mass spectrometry-based CYP inhibition assays for use in drug discovery. Journal of Biomolecular Screening, v. 13, n. 5, p. 343–353, 2008. BENÍTEZ, D. et al. Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids. PLoS Neglected Tropical Diseases, v. 10, n. 4, 12 abr. 2016. BERN, C. et al. Evaluation and treatment of chagas disease in the United States: A systematic reviewJournal of the American Medical AssociationJAMA, , 14 nov. 2007. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/18000201/>. Acesso em: 1 set. 2020 BOIANI, M. et al. Mode of action of Nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: Is oxidative stress involved? Biochemical Pharmacology, v. 79, n. 12, p. 1736–1745, 15 jun. 2010. BRONOWSKA, A. K. Thermodynamics of Ligand-Protein Interactions: Implications for Molecular Design. Thermodynamics - Interaction Studies - Solids, Liquids and Gases, 2 nov. 2011. BROOIJMANS, N.; KUNTZ, I. D. Molecular Recognition and Docking Algorithms. Annual Review of Biophysics and Biomolecular Structure, v. 32, n. 1, p. 335–373, 28 jun. 2003. Bruker, APEX2 and SAINT Programs for Data Reduction, APEX2, SAINT and SADABS. (2013) Bruker AXS Inc., Madison, Wisconsin, USA. , 2013. Bruker, APEX2, SAINT and SADABS, APEX II. (2009) Bruker AXS Inc., Madison, Wisconsin, USA. , 2009. CALDAS, I. S.; SANTOS, E. G.; NOVAES, R. D. An evaluation of benznidazole as a Chagas disease therapeutic. https://doi.org/10.1080/14656566.2019.1650915, v. 20, n. 15, p. 1797–1807, 13 out. 2019. CANSIZ, A. et al. 4-Allyl-5-pyridin-4-yl-2,4-dihydro-3H-1,2,4-triazole-3-thione: Synthesis, experimental and theoretical characterization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, v. 91, p. 136–145, jun. 2012. CASBARRA, L.; PROCACCI, P. Binding free energy predictions in host-guest systems using Autodock4. A retrospective analysis on SAMPL6, SAMPL7 and SAMPL8 challenges. Journal of Computer-Aided Molecular Design, v. 35, n. 6, p. 721–729, 1 jun. 2021. CASTRO, L. H. E. Construção de um Modelo de Previsão de Atividade para o Planejamento e Síntese de Triazóis Promissores para Inibição da CYP51 de Trypanosoma cruzi.Dissertação (Mestrado em Química) Seropédica, 2016. CERECETTO, H.; GONZÁLEZ, M. Antiparasitic prodrug nifurtimox: revisiting its activation mechanism. Future microbiology, v. 6, n. 8, p. 847–850, 23 ago. 2011. CHAGAS, C. J. R. Nova entidade mórbida do homem. Resumo geral de estudos etiolójicos e clínicos. Memórias do Instituto Oswaldo, p. 219–275, 1909. CHAMBERS, C. C. et al. Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. Journal of Physical Chemistry, v. 100, n. 40, p. 16385–16398, 3 out. 1996. CHATELAIN, E. Chagas disease drug discovery: Toward a new eraJournal of Biomolecular ScreeningSAGE Publications Inc., , 30 jan. 2015. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/25245987/>. Acesso em: 1 set. 2020 CHEN, C.-K. et al. Structural Characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei Bound to the Antifungal Drugs Posaconazole and Fluconazole. PLoS Neglected Tropical Diseases, v. 4, n. 4, p. e651, 6 abr. 2010. CHEN, H.-S.; MENG, H.-H.; CHENG, K.-C. A survey of methods used for the identification and characterization of inks. Forensic Science Journal, v. 1, n. 1, p. 1–14, 2002. CHRISTENSEN, A. S. et al. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chemical Reviews, v. 116, n. 9, p. 5301–5337, 11 maio 2016. CLAYDEN, J.; GREEVES, N.; WARREN, S. Organic Chemistry. 2nd. ed. [s.l.] Oxford University Press (OUP), 2012. COLODETTE, N. M. et al. Novel phosphatidylinositol 4-kinases III beta (PI4KIIIβ) inhibitors discovered by virtual screening using free energy models. Journal of Computer- Aided Molecular Design, v. 34, n. 10, p. 1091–1103, 1 out. 2020. CONTEH, L.; ENGELS, T.; MOLYNEUX, D. H. Socioeconomic aspects of neglected tropical diseases. Lancet (London, England), v. 375, n. 9710, p. 239–247, 2010. CORTÉS-RUIZ, E. M. et al. Computational Methods to Discover Compounds for the Treatment of Chagas Disease. In: Advances in Protein Chemistry and Structural Biology. [s.l.] Academic Press Inc., 2018. v. 113p. 119–142. COURA, J. R. Transmission of chagasic infection by oral route in the natural history of Chagas disease. Rev Soc Bras Med Trop, v. 39 (Supl., p. 113–117, 2006. COURA, J. R. Chagas disease: What is known and what is needed - A background article. Memorias do Instituto Oswaldo Cruz. Anais...Fundacao Oswaldo Cruz, 2007. . Acesso em: 5 maio. 2020 COURA, J. R. The main sceneries of chagas disease transmission. The vectors, blood and oral transmissions - A comprehensive review. Memorias do Instituto Oswaldo Cruz, v. 110, n. 3, p. 277–282, 2015. COURA, J. R.; BORGES-PEREIRA, J. Chronic phase of Chagas disease: Why should it be treated? A comprehensive reviewMemorias do Instituto Oswaldo CruzFundacao Oswaldo Cruz, , 2011. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074- 02762011000600001&lng=en&nrm=iso&tlng=en>. Acesso em: 1 set. 2020 COURA, J. R.; CASTRO, S. L. DE. A Critical Review on Chagas Disease Chemotherapy. Memórias do Instituto Oswaldo Cruz, v. 97, n. 1, p. 3–24, jan. 2002. COURA, J. R.; DIAS, J. C. P. Epidemiology, control and surveillance of Chagas disease - 100 years after its discovery. Memorias do Instituto Oswaldo Cruz, v. 104, n. SUPPL. 1, p. 31–40, 2009. COURA, J. R.; VĨAS, P. A. Chagas disease: A new worldwide challengeNature, 24 jun. 2010. Disponível em: <http://www.nature.com/articles/nature09221>. Acesso em: 5 maio. 2020 CRAMER, C. J.; TRUHLAR, D. G. PM3-SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model. Journal of Computational Chemistry, v. 13, n. 9, p. 1089–1097, 1 nov. 1992. DA COSTA FILHO, P. A.; POPPI, R. J. Algoritmo genético em química. Química Nova, v. 22, n. 3, p. 405–411, 1999. DAUCHY, F.-A. et al. Trypanosoma brucei CYP51: Essentiality and Targeting Therapy in an Experimental Model. PLOS Neglected Tropical Diseases, v. 10, n. 11, p. e0005125, 17 nov. 2016. DE NOYA, B. A. et al. Update on oral chagas disease outbreaks in Venezuela: Epidemiological, clinical and diagnostic approaches. Memorias do Instituto Oswaldo Cruz, v. 110, n. 3, p. 377–386, 2015. DE OLIVEIRA, C. S. et al. Synthetic Approaches and Pharmacological Activity of 1,3,4-Oxadiazoles: A Review of the Literature from 2000–2012. Molecules 2012, Vol. 17, Pages 10192-10231, v. 17, n. 9, p. 10192–10231, 27 ago. 2012. DE PAULA, V. F. et al. Synthesis and insecticidal activity of new amide derivatives of piperine. Pest Manag Sci, v. 56, p. 168–174, 2000. DE RYCKER, M. et al. Challenges and recent progress in drug discovery for tropical diseasesNatureNature Publishing Group, , 26 jul. 2018. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/30046073/>. Acesso em: 1 set. 2020 DE SOUZA, W.; RODRIGUES, J. C. F. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs. Interdisciplinary Perspectives on Infectious Diseases, v. 2009, p. 1–19, 2009. DEWAR, M. J. S. et al. AM1: A New General Purpose Quantum Mechanical Molecular Model1. Journal of the American Chemical Society, v. 107, n. 13, p. 3902– 3909, 1985. DEWAR, M. J. S.; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc., v. 99, p. 4899–4907, 1977. DIAS, J. P. et al. Acute Chagas disease outbreak associated with oral transmission. Revista da Sociedade Brasileira de Medicina Tropical, v. 41, n. 3, p. 296–300, 2008. DIMASI, J. A.; GRABOWSKI, H. G.; HANSEN, R. W. Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, v. 47, p. 20–33, 1 maio 2016. DNDi | Symptoms, transmission, and current treatments for Chagas disease. Disponível em: <https://dndi.org/diseases/chagas/facts/>. Acesso em: 5 dez. 2021. Doença de Chagas — Português (Brasil). Disponível em: <https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/doenca-de-chagas>. Acesso em: 5 dez. 2021. ELDRIDGE, M. D. et al. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, v. 11, n. 5, p. 425–445, 1997. FAUNDEZ, M. et al. Buthionine sulfoximine increases the toxicity of nifurtimox and benznidazole to Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, v. 49, n. 1, p. 126–130, jan. 2005. FEASEY, N. et al. Neglected tropical diseases. British medical bulletin, v. 93, n. 1, p. 179–200, mar. 2010. FERREIRA, W. S. Utilização da piperina como protótipo na síntese de novos antichagásicos da classe das 1,3,4- tiadiazólio-2- fenilaminidasSeropédica, Rio de Janeiro, 2006. FERREIRA, W. S. et al. Piperine, its Analogues and Derivatives: Potencial as Antiparasitic Drugs. Revista Virtual de Química, v. 4, n. 3, p. 208–224, 2012. FRADERA, X.; BABAOGLU, K. Overview of Methods and Strategies for Conducting Virtual Small Molecule ScreeningCurrent protocols in chemical biologyCurr Protoc Chem Biol, , 14 set. 2017. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/28910858/>. Acesso em: 28 jun. 2021 FRANÇA, R. R. F. et al. Inibidores potentes da enzima esterol 14α-desmetilase contra Trypanosoma cruzi. Revista Virtual de Quimica, v. 6, n. 5, p. 1483–1516, 2014. FRANKLIM, T. N. et al. Design, synthesis and trypanocidal evaluation of novel 1,2,4-triazoles-3- thiones derived from natural piperine. Molecules, v. 18, n. 6, p. 6366– 6382, 2013. FRANKLIM, T. N. et al. Design, Synthesis, Trypanocidal Activity, and Studies on Human Albumin Interaction of Novel S-Alkyl-1,2,4-triazoles. Article J. Braz. Chem. Soc, v. 30, n. 7, p. 1378–1394, 2019. FRAUCHES-SANTOS, C. SÍNTESE E AVALIAÇÃO DA ATIVIDADE ANTICORROSIVA DE CLORETOS DE 1, 3, 4-TIADIAZÓLIO-2-FENILAMINAS E 1, 3, 4- TRIAZÓLIO-2-TIOLATOS EM MEIO ÁCIDOSeropédica, Rio de Janeiro, 2017. FREIRE-DE-LIMA, L. et al. The toxic effects of piperine against Trypanosoma cruzi: ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms. Parasitology Research, v. 102 (5), 2008. FRIGGERI, L. et al. Validation of Human Sterol 14α-Demethylase (CYP51) Druggability: Structure-Guided Design, Synthesis, and Evaluation of Stoichiometric, Functionally Irreversible Inhibitors. Journal of Medicinal Chemistry, v. 62, n. 22, p. 10391–10401, 27 nov. 2019. GASCON, J.; BERN, C.; PINAZO, M.-J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Tropica, v. 115, n. 1–2, p. 22–27, jul. 2010. GIULIVI, C.; TURRENS, J. F.; BOVERIS, A. Chemiluminescence enhancement by trypanocidal drugs and by inhibitors of antioxidant enzymes in Trypanosoma cruzi. Molecular and Biochemical Parasitology, v. 30, n. 3, p. 243–251, 1 set. 1988. GONZÁLEZ-MEDINA, M. et al. Open chemoinformatic resources to explore the structure, properties and chemical space of moleculesRSC AdvancesRoyal Society of Chemistry, , 21 nov. 2017. Disponível em: <https://pubs.rsc.org/en/content/articlehtml/2017/ra/c7ra11831g>. Acesso em: 11 out. 2020 GROS, L. et al. New azasterols against Trypanosoma brucei: Role of 24-sterol methyltransferase in inhibitor action. Antimicrobial Agents and Chemotherapy, v. 50, n. 8, p. 2595–2601, ago. 2006. GUEDES-DA-SILVA, F. H. et al. Antitrypanosomal activity of sterol 14α- demethylase (CYP51) inhibitors VNI and VFV in the swiss mouse models of chagas disease induced by the Trypanosoma cruzi Y strain. Antimicrobial Agents and Chemotherapy, v. 61, n. 4, 1 abr. 2017. HARGROVE, T. Y. et al. A requirement for an active proton delivery network supports a compound I-mediated C–C bond cleavage in CYP51 catalysis. 2020a. HARGROVE, T. Y. et al. A requirement for an active proton delivery network supports a compound I-mediated C–C bond cleavage in CYP51 catalysis. Journal of Biological Chemistry, v. 295, n. 29, p. 9998–10007, 17 jul. 2020b. HAUBRICH, B. A. et al. Discovery of an ergosterol-signaling factor that regulates trypanosoma brucei growth. Journal of Lipid Research, v. 56, n. 2, p. 331–341, 1 fev. 2015. HERNANDEZ, L. M. et al. Brote de Chagas agudo en Lebrija, Santander 2008Revista Del Observatorio de Salud Pública de SantanderRevista Del Observatorio de Salud Pública de Santander, , 2009. . Acesso em: 25 maio. 2020 HOEKSTRA, W. J. et al. Clinical Candidate VT-1161’s Antiparasitic Effect In Vitro, Activity in a Murine Model of Chagas Disease, and Structural Characterization in Complex with the Target Enzyme CYP51 from Trypanosoma cruzi. 2016. HOLT, F.; GILLAM, S. J.; NGONDI, J. M. Improving Access to Medicines for Neglected Tropical Diseases in Developing Countries: Lessons from Three Emerging Economies. PLoS Neglected Tropical Diseases, v. 6, n. 2, p. e1390, 28 fev. 2012. HOTEZ, P. J.; PECOUL, B. “Manifesto” for Advancing the Control and Elimination of Neglected Tropical Diseases. PLoS Neglected Tropical Diseases, v. 4, n. 5, maio 2010. HOUWELING, T. A. J. et al. Socioeconomic Inequalities in Neglected Tropical Diseases: A Systematic ReviewPLoS Neglected Tropical DiseasesPublic Library of Science, , 2016. . Acesso em: 16 abr. 2020 HOWARD, E. J. et al. Frequency of the congenital transmission of Trypanosoma cruzi: A systematic review and meta-analysisBJOG: An International Journal of Obstetrics and GynaecologyNIH Public Access, , jan. 2014. . Acesso em: 6 maio. 2020 HU, Y. et al. A Review of Recent Advances and Research on Drug Target Identification Methods. Current Drug Metabolism, v. 20, n. 3, p. 209–216, 25 set. 2018. JACKSON, Y. et al. Tolerance and safety of nifurtimox in patients with chronic chagas disease. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, v. 51, n. 10, 15 nov. 2010. JONES, G. et al. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, v. 267, n. 3, p. 727–748, 4 abr. 1997. JUNQUEIRA, A. C. V. et al. Manual de Capacitação na Detecção de Trypanosoma cruzi para Microscopistas de Malária e Laboratoristas da Rede Pública (J. R. Coura, Ed.)Rio de Janeiro, 2011. KADISH, K. M.; SMITH, K. M.; GUILARD, R. The porphyrin handbook: Phthalocyanines: Spectroscopic and electrochemical characterization. The Porphyrin Handbook: Phthalocyanines: Spectroscopic and Electrochemical Characterization, v. 16, p. 1–288, 2 dez. 2012. KAWASAKI, Y.; FREIRE, E. Finding a better path to drug selectivityDrug Discovery TodayDrug Discov Today, , nov. 2011. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/21839183/>. Acesso em: 1 set. 2020 KHAMIS, M. A.; GOMAA, W.; AHMED, W. F. Machine learning in computational dockingArtificial Intelligence in MedicineElsevier, , 1 mar. 2015. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0933365715000032>. Acesso em: 4 abr. 2021 KHAN, I. et al. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. European journal of medicinal chemistry, v. 45, n. 11, p. 5200–5207, nov. 2010. KIRTON, S. B. et al. Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins. Proteins: Structure, Function, and Bioinformatics, v. 58, n. 4, p. 836–844, 1 mar. 2005. KITCHEN, D. B. et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, v. 3, n. 11, p. 935–949, nov. 2004. KORB, O.; STÜTZLE, T.; EXNER, T. E. Empirical scoring functions for advanced Protein-Ligand docking with PLANTS. Journal of Chemical Information and Modeling, v. 49, n. 1, p. 84–96, jan. 2009. KRAUTH-SIEGEL, R. L.; COMINI, M. A. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolismBiochimica et Biophysica Acta - General Subjects, nov. 2008. . Acesso em: 17 maio. 2021 KUPWADE, R. V. et al. Catalyst-free oxidation of sulfides to sulfoxides and diethylamine catalyzed oxidation of sulfides to sulfones using Oxone as an oxidant. Research on Chemical Intermediates 2017 43:12, v. 43, n. 12, p. 6875–6888, 7 jul. 2017. LARANJA, F. S. et al. Chagas’ Disease A Clinical, Epidemiologic, and Pathologic Study, 2009. Disponível em: <http://ahajournals.org>. Acesso em: 9 jun. 2020 LAZARDI, K.; URBINA, J. A.; DE SOUZA, W. Ultrastructural alterations induced by two ergosterol biosynthesis inhibitors, ketoconazole and terbinafine, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrobial Agents and Chemotherapy, v. 34, n. 11, p. 2097–2105, 1990. LEONARD, N. J.; JOHNSON, C. R. Periodate Oxidation of Sulfides to Sulfoxides. Scope of the Reaction. Journal of Organic Chemistry, v. 27, n. 1, p. 282–284, 1 jan. 2002. LEPESHEVA, G. I. et al. Crystal structures of Trypanosoma brucei sterol 14α- demethylase and implications for selective treatment of human infections. Journal of Biological Chemistry, v. 285, n. 3, p. 1773–1780, 15 jan. 2010. LEPESHEVA, G. I. et al. VFV as a new effective CYP51 structure-derived drug candidate for chagas disease and visceral leishmaniasis. Journal of Infectious Diseases, v. 212, n. 9, p. 1439–1448, 1 nov. 2015. LEPESHEVA, G. I.; FRIGGERI, L.; WATERMAN, M. R. CYP51 as drug targets for fungi and protozoan parasites: past, present and future. Parasitology, v. 145, n. 14, p. 1820–1836, 1 dez. 2018. LEPESHEVA, G. I.; VILLALTA, F.; WATERMAN, M. R. Targeting Trypanosoma cruzi Sterol 14α-Demethylase (CYP51). In: Advances in Parasitology. [s.l.] Academic Press, 2011. v. 75p. 65–87. LEVINE, N. D. ET AL. A newly revised classification of the Protozoa. J. Protozool., v. 27, p. 37–58, 1980. LI, J.; FU, A.; ZHANG, L. An Overview of Scoring Functions Used for Protein– Ligand Interactions in Molecular DockingInterdisciplinary Sciences: Computational Life SciencesSpringer Berlin Heidelberg, , 1 jun. 2019. Disponível em: <https://doi.org/10.1007/s12539-019-00327-w>. Acesso em: 22 abr. 2021 LI, L. et al. On the dielectric “constant” of proteins: Smooth dielectric function for macromolecular modeling and its implementation in DelPhi. Journal of Chemical Theory and Computation, v. 9, n. 4, p. 2126–2136, 9 abr. 2013. LINDEN, R. Algoritmos Genéticos: Uma importante ferramenta da inteligência computacional. Rio de Janeiro: Editora Brasport, 2006. LUQUETTI, A. O. et al. Congenital transmission of Trypanosoma cruzi in central Brazil. A study of 1,211 individuals born to infected mothers. Memórias do Instituto Oswaldo Cruz, v. 110, n. 3, p. 369–376, 14 mar. 2015. MACRAE, C. F. et al. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, v. 41, n. 2, p. 466– 470, 1 abr. 2008. MANJULA, P. S. et al. The crystal structures of three 3-methyl-1H-1,2,4-triazole-5- thiones, including a second polymorph of 4-[(E)-(5-bromo-2-hydroxybenzylidene)amino]- 3-methyl-1H-1,2,4-triazole-5(4H)-thione and a redetermination of 4-amino-3-methyl-1H- 1,2,4-triazole-5(4H)-thione. Acta Crystallographica Section E: Crystallographic Communications, v. 71, p. 1003–1009, 2015. MARCH, J. Advanced Organic Chemistry-Reactions: Mecanism and Structure. 3a ed. ed. [s.l.] John Willley& Sons, 1985. MARTIN, M. B. et al. Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A potential route to chemotherapy. Journal of Medicinal Chemistry, v. 44, n. 6, p. 909–916, 15 mar. 2001. MAVROVA, A. T. et al. Synthesis, cytotoxicity and effects of some 1,2,4-triazole and 1,3,4-thiadiazole derivatives on immunocompetent cells. European journal of medicinal chemistry, v. 44, n. 1, p. 63–69, jan. 2009. MAYA, J. D. et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, v. 146, n. 4, p. 601–620, abr. 2007. MOOIJ, W. T. M.; VERDONK, M. L. General and targeted statistical potentials for protein-ligand interactions. Proteins: Structure, Function and Genetics, v. 61, n. 2, p. 272–287, 1 nov. 2005. MORGON, N. H.; COUTINHO, K. Métodos de química teórica e modelagem molecular. 1. ed. São Paulo: Editora e Livraria da Física, 2007. MORILLO, C. A. et al. Benznidazole and Posaconazole in Eliminating Parasites in Asymptomatic T. Cruzi Carriers: The STOP-CHAGAS Trial. Journal of the American College of Cardiology, v. 69, n. 8, p. 939–947, 28 fev. 2017. MORRIS, G. M. et al. Automated docking using a Lamarckian Genetic Algorithm and an empirical binding free energy function. J. Comp. Chem, v. 19, p. 1639–1662, 1998. MURCIA, L. et al. Risk Factors and Primary Prevention of Congenital Chagas Disease in a Nonendemic Country. Clinical Infectious Diseases, v. 56, n. 4, p. 496–502, 15 fev. 2013. NAVEENA, C. S.; BOJA, P.; KUMARI, N. S. Synthesis, characterization and antimicrobial activity of some disubstituted 1,3,4-oxadiazoles carrying 2- (aryloxymethyl)phenyl moiety. European journal of medicinal chemistry, v. 45, n. 11, p. 4708–19, nov. 2010. NÓBREGA, A. A. et al. Oral transmission of chagas disease by consumption of Açaí palm fruit, Brazil. Emerging Infectious Diseases, v. 15, n. 4, p. 653–655, abr. 2009. NOTREDAME, C.; HIGGINS, D. G.; HERINGA, J. T-coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, v. 302, n. 1, p. 205–217, 8 set. 2000. NÚÑEZ-VERGARA, L. J. et al. Nitro radical anion formation from nifurtimox. Part 1: Biological evidences in Trypanosoma cruzi. Bioelectrochemistry and Bioenergetics, v. 43, n. 1, p. 151–155, 1 jun. 1997. OLIVEIRA, F. G. et al. Molecular docking study and development of an empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorganic & medicinal chemistry, v. 14, n. 17, p. 6001–11, 1 set. 2006. OPERA, T. I. Chemoinformatics in drug discovery. [s.l.] Weinheim: Wiley-VCH, 2005. OSORIO-MÉNDEZ, J. F.; CEVALLOS, A. M. Discovery and genetic validation of chemotherapeutic targets for Chagas’ diseaseFrontiers in Cellular and Infection MicrobiologyFrontiers Media S.A., , 7 jan. 2019. Disponível em: <https://www.rcsb.>. Acesso em: 7 set. 2020 PAHO/WHO - Chagas Disease. Disponível em: <https://www.paho.org/hq/index.php?option=com_content&view=category&layout=blog &id=3591&Itemid=3921&lang=en>. Acesso em: 1 abr. 2020. PAN AMERICAN HEALTH ORGANIZATION. Guidelines for the diagnosis and treatment of Chagas diseaseWashington, D.C, 2019. Disponível em: <https://iris.paho.org/handle/10665.2/49653> PATTERSON, S. et al. Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: Discovery, synthesis, and characterization of their binding mode by protein crystallography. Journal of Medicinal Chemistry, v. 54, n. 19, p. 6514–6530, 13 out. 2011. PEREIRA, I. R. et al. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLoS pathogens, v. 11, n. 1, p. 1–26, 2015. PÉREZ-AYALA, A. et al. Gastro-intestinal Chagas disease in migrants to Spain: Prevalence and methods for early diagnosis. Annals of Tropical Medicine and Parasitology, v. 105, n. 1, p. 25–29, jan. 2011. PÉREZ-MOLINA, J. A.; MOLINA, I. Chagas disease. The Lancet, v. 391, n. 10115, p. 82–94, 2018. PETRAGLIA KROPF, S.; MASSARANI, L. Carlos Chagas, A ciência para combater doenças tropicais. p. 16, 2009. PINTO, A. Y. D. N. et al. Fase aguda da doença de Chagas na Amazônia brasileira. Estudo de 233 casos do Pará, Amapá e Maranhão observados entre 1988 e 2005. Revista da Sociedade Brasileira de Medicina Tropical, v. 41, n. 6, p. 602–614, nov. 2008. PINTO DIAS, J. C. The indeterminate form of human chronic Chagas’ disease. A clinical epidemiological reviewRevista da Sociedade Brasileira de Medicina TropicalSBMT, , 1989. . Acesso em: 9 jun. 2020 PODUST, L. M. et al. Estriol Bound and Ligand-free Structures of Sterol 14α- Demethylase. Structure, v. 12, n. 11, p. 1937–1945, nov. 2004. PODUST, L. M.; POULOS, T. L.; WATERMAN, M. R. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. v. 98, n. 6, 13 mar. 2001a. PODUST, L. M.; POULOS, T. L.; WATERMAN, M. R. Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proceedings of the National Academy of Sciences of the United States of America, v. 98, n. 6, p. 3068–73, 13 mar. 2001b. POLLACK, L. Historical Series: National Lecture. [s.l: s.n.]. Disponível em: <https://www.ks.uiuc.edu/events/NationalLecture2015/reflection/>. Acesso em: 28 nov. 2021. POOLE, L. B. The basics of thiols and cysteines in redox biology and chemistryFree Radical Biology and MedicineElsevier Inc., , 2015. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/25433365/>. Acesso em: 12 set. 2020 PRATA, A. et al. Tratamento da Doença de Chagas pelo Nifurtimox (Bayer 2502). Revista da Sociedade Brasileira de Medicina Tropical, v. 9, n. 6, p. 297–307, dez. 1975. PREVIATO, L. Macromoléculas: Carboidratos de superfície do Trypanosoma cruzi. Disponível em: <http://chagas.fiocruz.br/bioquimica/>. Acesso em: 10 set. 2020. PRIETO-MARTÍNEZ, F. D. et al. Computational Drug Design Methods—Current and Future Perspectives. In: In Silico Drug Design. [s.l.] Elsevier, 2019. p. 19–44. RASSI, A.; RASSI, A.; MARIN-NETO, J. A. Chagas diseaseThe LancetElsevier, , 17 abr. 2010. . Acesso em: 7 jun. 2020 RIBEIRO, T. S. et al. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorganic & Medicinal Chemistry Letters, v. 14, n. 13, p. 3555–3558, 5 jul. 2004. RILEY, J. et al. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease. PLoS Neglected Tropical Diseases, v. 9, n. 9, p. 1–12, 2015. ROCHA JR., J. G. Desenvolvimento de um modelo empírico de predissão de atividade de inibidores da esterol 14alfa-desmetilase (CYP51) utilizando o método semi-empírico PM6. UFRRJ: [s.n.]. ROCHA, S. F. L. DA S. Desenvolvimento de um Modelo Empírico de Predição da Atividade de Inibidores da Urease utilizando o Método Semi-Empírico PM6. [s.l: s.n.]. ROCHA, S. F. L. DA S. Desenvolvimento de um modelo empírico de predição da seletividade e da atividade de inibidores da Shp2 utilizando o método semi-empírico PM7. Seropédica: Universidade Federal Rural do Rio de Janeiro, 29 jan. 2019. SALDÍVAR-GONZÁLEZ, F.; PRIETO-MARTÍNEZ, F. D.; MEDINA-FRANCO, J. L. Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educacion Quimica, v. 28, n. 1, p. 51–58, 1 jan. 2017. SANT’ANNA; C. M. R. Métodos de modelagem molecular para estudo e planejamento de compostos bioativos: Uma introdução. Rev. Virtual Quím, v. 1, p. 49–57, 2009. SANTANNA, C. M. R. Métodos de modelagem molecular para estudo e planejamento de compostos bioativos : Uma introdução Resumo Métodos de modelagem molecular para estudo e planejamento de compostos bioativos : Uma introdução. Rev. Virtual Quim., v. 1, n. 1, p. 49–57, 2009. SCHMUNIS, G. A. Epidemiology of Chagas disease in non-endemic countries: The role of international migration. Memorias do Instituto Oswaldo Cruz. Anais...Fundação Oswaldo Cruz, out. 2007. . Acesso em: 5 maio. 2020 SCOTTI, L. et al. Modelagem molecular aplicada ao desenvolvimento de moléculas com atividade antioxidante visando ao uso cosmético. Revista Brasileira de Ciências Farmacêuticas, v. 43, n. 2, p. 153–166, 2007. SHELDRICK, G. M. A short history of SHELXActa Crystallographica Section A: Foundations of CrystallographyInternational Union of Crystallography, , 1 jan. 2008. Acesso em: 31 mar. 2020 SHYADEHI, A. Z. et al. The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans (other names are: lanosterol 14 alpha-demethylase, P-45014DM, and CYP51). The Journal of biological chemistry, v. 271, n. 21, p. 12445–12450, 1996. SIES, H.; BERNDT, C.; JONES, D. P. Oxidative Stress. Annual Review of Biochemistry, v. 86, n. 1, p. 715–748, 20 jun. 2017. SOSA, E. J. et al. Target-Pathogen: A structural bioinformatic approach to prioritize drug targets in pathogens. Nucleic Acids Research, v. 46, n. D1, p. D413–D418, 1 jan. 2018. SPINKS, D. et al. Design, synthesis and biological evaluation of Trypanosoma brucei Trypanothione Synthetase inhibitors. ChemMedChem, v. 7, n. 1, p. 95–106, 2 jan. 2012. STEINDEL, M. et al. Characterization of Trypanosoma cruzi isolated from humans, vectors, and animal reservoirs following an outbreak of acute human Chagas disease in Santa Catarina State, Brazil. Diagnostic Microbiology and Infectious Disease, v. 60, n. 1, p. 25–32, jan. 2008. STEWART, J. J. P. Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, v. 10, n. 2, p. 209–220, 1 mar. 1989. STEWART, J. J. P. MOPAC 2000.00 Manual.Tokyo, JapanFujitsu Limited, , 1999. STEWART, J. J. P. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. Journal of molecular modeling, v. 13, n. 12, p. 1173–213, 2007. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n. 1, p. 1–32, 2013a. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n. 1, p. 1–32, jan. 2013b. THIEL, W. Semiempirical quantum–chemical methods. Wiley Interdisciplinary Reviews: Computational Molecular Science, v. 4, n. 2, p. 145–157, 1 mar. 2014. THIEL, W.VOITYUK, A. A. Extension of the MNDO formalism to d-orbitals - Integral approximations and preliminary numerical results. Theor. Chim. Acta, v. 81, p. 391–404, 1992. TROST, B. M.; CURRAN, D. P. Chemoselective oxidation of sulfides to sulfones with potassium hydrogen persulfate. Tetrahedron Letters, v. 22, n. 14, p. 1287–1290, 1 jan. 1981. TURNOCK, D. C.; FERGUSON, M. A. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryotic cell, v. 6, n. 8, p. 1450– 1463, ago. 2007. URBINA, J. A. et al. In vitro and in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, v. 48, n. 7, p. 2379–2387, 1 jul. 2004. VALENTE, S. A. DA S. et al. Analysis of an acute Chagas disease outbreak in the Brazilian Amazon: human cases, triatomines, reservoir mammals and parasites. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 103, n. 3, p. 291–297, mar. 2009. VERDONK, M. L. et al. Improved protein-ligand docking using GOLD. Proteins, v. 52, n. 4, p. 609–623, 1 set. 2003. VILLALTA, F.; RACHAKONDA, G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opinion on Drug Discovery, v. 14, n. 11, p. 1161–1174, 2 nov. 2019. WANG, S. et al. Protein kinase C. Modeling of the binding site and prediction of binding constants. Journal of medicinal chemistry, v. 37, n. 9, p. 1326–38, 29 abr. 1994. WHO. World Health Organization. Global plan to combat neglected tropical diseases 2008–2015. Disponível em: <http://apps.who.int/iris/bitstream/handle/10665/69708/%0AWHO_CDS_NTD_2007.3_en g.pdf?sequence=1>. Acesso em: 7 out. 2019. WOO, H.-M. et al. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes. Life sciences, v. 80, n. 10, p. 926–931, 13 fev. 2007. WORLD HEALTH ORGANISATION. WHO Technical Report Series 905. Control of Chagas disease: second report of the WHO expert Committee. Geneva: [s.n.]. Disponível em: <https://apps.who.int/iris/bitstream/handle/10665/42443/WHO_TRS_905.pdf?sequence=1 &isAllowed=y>. Acesso em: 15 abr. 2020. YOSHIDA, Y. et al. Sterol 14-demethylase P450 (CYP51) provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily. Biochemical and biophysical research communications, v. 273, n. 3, p. 799–804, 14 jul. 2000. YUNG-CHI, C.; PRUSOFF, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical pharmacology, v. 22, n. 23, p. 3099–3108, 1 dez. 1973. ZINGALES, B. et al. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applicationsInfection, Genetics and Evolution, mar. 2012. . Acesso em: 15 abr. 2020por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/73068/2021%20-%20Larissa%20Henriques%20Evangelista%20Castro.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6553
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-05-02T21:27:15Z No. of bitstreams: 1 2021 - Larissa Henriques Evangelista Castro.pdf: 7382938 bytes, checksum: 0f6d9dd3eab2a65b6e1d58680ba9fbba (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-05-02T21:27:15Z (GMT). No. of bitstreams: 1 2021 - Larissa Henriques Evangelista Castro.pdf: 7382938 bytes, checksum: 0f6d9dd3eab2a65b6e1d58680ba9fbba (MD5) Previous issue date: 2021-12-16eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Larissa Henriques Evangelista Castro.pdf7.21 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.