Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9304
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Ribeiro, Felipe Vitório | |
dc.date.accessioned | 2023-11-19T20:12:45Z | - |
dc.date.available | 2023-11-19T20:12:45Z | - |
dc.date.issued | 2020-03-06 | |
dc.identifier.citation | RIBEIRO, Felipe Vitório. Planejamento, síntese e avaliação antitumoral de derivados di-idropirimidinonas e imidazopiridinas derivadas de 3-ceto-cumarinas substituídas. 2020. 252 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9304 | - |
dc.description.abstract | Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other tissues, and can spread to distant places in the body through the blood and lymphatic systems through a process known as metastasis, being considered by the World Health Organization. One of the biggest health problems facing humanity in this century. Among the various therapeutic classes for the treatment of cancer are coumarins and imidazopyridines, which are the target of continuous investigations of biological interest due to their pharmaceutical properties and different mechanisms of action. Thus, the present thesis proposes the planning, the synthesis of a series of dihydropyrimidinonic analogues to monastrol, the determination of the mechanistic reaction pathway, since its attainment goes through a Biginelli three-component reaction, and its biological evaluation. The planning, synthesis, characterization and antiproliferative evaluation of new imidazopyrines is also a focus of this work. The series described here were planned through molecular hybridization of the dihydropyrimidinone or imidazopyrine nucleus with the coumarin subunit. Both nuclei are proven to be active on tumor cell lines. Therefore, this work aims to study the synthesis process of the planned series, its reaction scope and to evaluate its antiproliferative properties. The series were synthesized through classic reactions of organic chemistry. All series were characterized by physical and chemical methods of analysis. This is the first report proving by MS-ESI and theoretical calculations that the coumarin nucleus and its multicomponent reaction mechanism curiously passes through a Knoevenagel intermediate, which was considered unlikely in the literature. The libraries of new compounds were obtained with low to excellent yields (23-96%), and their final structure was also confirmed by X-ray diffraction studies. Among the dihydropyrimidinones the ones that are most active against the PC-3 tumor cell were those that have a coumarin position 7 diethylamino (IC50 = 3.28 μM) and those with more structural similarity to monastrol (IC50 = 8, 89 μM), most of the tested substances were more active than monastrol (IC50 = 22.02 μM). And among imidazopyridines, this substitution profile is also the most active (IC50 = 2.07 μM for cell B16-F10), being ten times more selective for that cell compared to healthy cells. You can then see a very interesting structure-to-activity analysis and promising compounds in potency and selectivity | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Câncer | por |
dc.subject | DHPM | por |
dc.subject | Mecanismo reacional | por |
dc.subject | Novobiocin | por |
dc.subject | Reação multicomponente | por |
dc.subject | Cancer | eng |
dc.subject | coumarins | eng |
dc.subject | DHPM | eng |
dc.subject | reaction mechanism | eng |
dc.subject | monastrol | eng |
dc.subject | novobiocin | eng |
dc.subject | multicomponent reaction | eng |
dc.title | Planejamento, síntese e avaliação antitumoral de derivados di-idropirimidinonas e imidazopiridinas derivadas de 3-ceto-cumarinas substituídas | por |
dc.title.alternative | Planning, synthesis and antitumor evaluation of derivatives dihydropyrimidinone and imidazopyridine derived from substituted 3-keto-coumarins | eng |
dc.type | Tese | por |
dc.contributor.advisor1 | Kümmerle, Arthur Eugen | |
dc.contributor.advisor1ID | 053.978.487-78 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5598000938584486 | por |
dc.contributor.referee1 | Kümmerle, Arthur Eugen | |
dc.contributor.referee1ID | 053.978.487-78 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/5598000938584486 | por |
dc.contributor.referee2 | Castro, Rosane Nora | |
dc.contributor.referee2ID | https://orcid.org/0000-0001-8983-3786 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/5479814788308057 | por |
dc.contributor.referee3 | Lacerda, Renata Barbosa | |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/2068820144272983 | por |
dc.contributor.referee4 | Mariz e Miranda, Leandro Soter de | |
dc.contributor.referee4ID | https://orcid.org/0000-0003-0634-5846 | por |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/7387849390654555 | por |
dc.contributor.referee5 | Vieira, Daniel Pais Pires | |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/8564684974338964 | por |
dc.creator.ID | 124.035.327-89 | por |
dc.creator.Lattes | http://lattes.cnpq.br/6382382867114353 | por |
dc.description.resumo | Câncer é um termo usado para doenças em que células anormais se dividem sem controle e são capazes de invadir outros tecidos, podendo se espalhar para lugares distantes no corpo através dos sistemas sanguíneos e linfáticos por um processo conhecido como metástase, sendo considerado pela Organização Mundial da Saúde um dos maiores problemas de saúde enfrentados pela humanidade neste século. Dentre as várias classes terapêuticas para o tratamento do câncer se encontram as cumarinas e imidazopiridinas, que são alvos de contínuas investigações de interesse biológico devido às suas propriedades farmacológicas e diferentes mecanismos de ação. Dessa forma, a presente tese propõe o planejamento, a síntese de uma série de análogos di-idropirimidinônicos ao monastrol, a determinação da via mecanística reacional, visto que sua obtenção passa por uma reação tricomponente de Biginelli, e sua avaliação biológica. O planejamento, síntese, caracterização e avaliação antiproliferativa de novas imidazopirinas também é foco deste trabalho. As séries aqui descritas foram planejadas através de hibridação molecular do núcleo di-idropirimidinona ou imidazopirina com a subunidade cumarínica. Ambos os núcleos são comprovadamente ativos sobre linhagens de células tumorais. Portanto este trabalho tem como objetivo estudar o processo de síntese das séries planejadas, seu escopo reacional e avaliar suas propriedades antiproliferativas. As séries foram sintetizadas através de reações clássicas de química orgânica. Todas as séries foram caracterizadas por métodos físicos e químicos de análise. Este é o primeiro relato provando por EM-IE e cálculos teóricos que o núcleo cumarínico e o seu mecanismo reacional multicomponente curiosamente passa através de um intermediário de Knoevenagel, que foi considerado improvável pela literatura. As bibliotecas de novos compostos foram obtidas com rendimentos de baixos a excelentes (23-96%), tendo sua estrutura final confirmada, também, por estudos de difração de raios-X. Dentre as di-idropirimidinonas as que se mostram mais ativas frente a célula tumoral PC-3 foram as que possuem um grupo dietilamino da posição 7 da cumarina (CI50 = 3,28 μM) e as com mais semelhança estrutural com o monastrol (CI50 = 8,89 μM), a maioria das substancias testadas foram mais ativas que o monastrol (CI50 = 22,02 μM). E dentre as imidazopiridinas esse perfil de substituição também é o mais ativo (CI50 = 2,07 μM frente a célula B16-F10), sendo dez vezes mais seletiva para a referida célula em comparação a células saudáveis. Pode-se observar então uma análise de relação estrutura atividade muito interessante e compostos promissores em potência e seletividade | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Química | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | Agência Nacional de Vigilância Sanitária. Disponível em: <https://consultas.anvisa.gov.br/#/medicamentos/q/?substancia=22353>. Acessado em 28 jul. 2018. ALVIM, H. G. O.; DE LIMA, T. B.; DE OLIVEIRA, H. C. B.; GOZZO, F. C.; DE MACEDO, J. L.; ABDELNUR, P. V.; SILVA, W. A.; NETO, B. A. D. Ionic Liquid Effect over the Biginelli Reaction under Homogeneous and Heterogeneous Catalysis. ACS Catalysis, v. 3, p. 1420-1430, 2013. ALVIM, H. G. O.; JÚNIOR, E. N. S.; NETO, B. A. D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Advances, v. 4, p. 54282-54283, 2014. AUDISIO, D.; METHY-GONNOT, D.; RADANYI, C.; RENOIR, J.; DENIS, S.; SAUVAGE, F.; VERGNAUD-GAUDUCHON, J.; BRION, J.; MESSAOUDI, S.; ALAMI, M. Synthesis and antiproliferative activity of novobiocin analogues as potential hsp90 inhibitors, European Journal of Medicinal Chemistry, v. 83, p. 498-507, 2014. AUGUSTINE, J. K.; BOMBRUN, A.; RAMAPPA, B.; BOODAPPA, C. An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensation. Tetrahedron Lett., v. 53 p. 4422-4425, 2012. BAILLY, C.; BAL, C.; BARBIER, P.; COMBES, S.; FINET, J. P.; HILDEBRAND, M. P. Synthesis and biological evaluation of 4-arylcoumarinanalogues of combretastatins. Jounal of Medicinal Chemistry, v. 46, p. 5437-5444, 2003. BAIRAGI, S. H.; SALASKAR, P. P.; LOKE, S. D.; SURVE, N. N.; TANDEL, D. V.; DUSARA, M. D. Medicinal significance of coumarins. International Journal of Pharmaceutical Research, v. 4, p. 16-19, 2012. BALLANTYNE, M. M.; MCCABE, P. H.; MURRAY, R. D. H. Claisen rearrangements—II: Synthesis of six natural coumarins, Tetrahedron, v. 27, p. 871-877, 1971. BERGER, J.; BATCHO, A. D. Coumarin - Glycoside Antibiotics. Journal of Chromatography Library, v. 15, p. 101, 1978. BESTMANN, H. J.; SCHMID, G.; SANDMEIER, D. Kumulierte Ylide als Bausteine zur Synthese von Heterocyclen. Angewandte Chemie, v. 88, p. 92-93, 1976. BHATIA, R.; PATHANIA, S.; SINGH, V.; RAWAL, R. K. Metal-catalyzed synthetic strategies toward coumarin derivatives. Chemistry of Heterocyclic Compounds, v. 54, p. 280, 2018. BIGINELLI, P. Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones. Chimica Italiana, v. 23, p. 360-416, 1893. 172 BORCHARDT, J. K. The Beginnings of Drug Therapy: Ancient Mesopotamian Medicine. Drug News Perspect, v. 15, p. 187, 2002. BORGES, F.; ROLEIRA, F.; MILHAZES, N.; SANTANA, L.; URIARTE, E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Current Medicinal Chemistry, v. 12, p. 887, 2005. BORGES, M. F. M.; ROLEIRA, F. M. F.; VILLARES, E. U.; PENIN, L. S. In Frontiers in Medicinal Chemistry; Atta-ur-Rahman, Reitz, A. B., Choudhary, M. I., Eds.; Bentam Science Publishers Ltd., v. 4, p. 23-85, 2008. BU, M.; LU, G.; CAI, C. Visible-light photoredox catalyzed cyclization of aryl alkynoates for the synthesis of trifluoromethylated coumarins, Catalysis Communications, v. 114, p. 70-74, 2018. BULUT, M.; ERK, C. Improved Synthesis of Some Hydroxycoumarins. Dyes Pigments. v. 30, p. 99-104, 1996. CAREY, F. A.; SUNDBERG, R. J. Advanced Organic Chemistry Part A: Structure and Mechanisms 2008. CHEN, H.; LI, S.; YAO, Y.; ZHOU. L.; ZHAO, J.; GU, Y. Design, synthesis, and anti-tumor activities of novel triphenylethyleneecoumarin hybrids, and their interactions with Ct-DNA. Bioorganic and Medicinal Chemistry Letters, v. 23, p. 4785-4789, 2013. CLARK, J. H.; MACQUARRIE, D. J.; SHERWOOD, J. The Combined Role of Catalysis and Solvent Effects on the Biginelli Reaction: Improving Efficiency and Sustainability. Chemistry - A European Journal, v. 19, p. 5174-5182, 2013. DALLINGER, D.; STADLER, A.; KAPPE, C. O. Solid- and solution-phase synthesis of bioactive dihydropyrimidines. Pure and Applied Chemistry, v. 76, p. 1017-1024, 2004. DE SOUZA, G. A.; DA SILVA, S. J.; DEL CISTIA, C. N.; PITASSE-SANTOS, P.; PIRES, L. O.; PASSOS, Y. M.; CORDEIRO, Y.; CARDOSO, C. M.; CASTRO, R. N.; SANT’ANNA, C. M. R.; KÜMMERLE, A. E. Discovery of novel dual-active 3-(4-(dimethylamino)phenyl)-7-aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. Journal of Enzyme Inhibition and Medicinal Chemistry, v. 34, p. 631-637, 2019. DE SOUZA, R.; DA PENHA, E. T.; MILAGRE, H. M. S.; GARDEN, S. J.; ESTEVES, P. M.; EBERLIN, M. N.; ANTUNE, O. A. C. The Three‐Component Biginelli Reaction: A Combined Experimental and Theoretical Mechanistic Investigation. Chemistry – A European Journal, v. 15, p. 9799-9804, 2009. DONDONI, A.; MASSI, A. Design and Synthesis of New Classes of Heterocyclic C-Glycoconjugates and Carbon-Linked Sugar and Heterocyclic Amino Acids by Asymmetric Multicomponent Reactions (AMCRs). Accounts of Chemical Research, v. 39, p. 451-463, 2006. 173 DREWES, S. E.; NJAMELA, O. L.; EMSLIE, N. D.; RAMESAR, N.; FIELD, J. S. Intramolecular Baylis-Hillman Reaction: A Pathway to Substituted Coumarins. Synthetic Communications, v. 23, p. 2807-2815, 1993. FARIDOON, O. T. O.; TUKULULA, M.; KLEIN, R.; KAYE, P. T. Strong base- or acid-mediated chemoselectivity shifts in the synthesis of 2H-chromene or coumarin derivatives from common Baylis-Hillman adducts. Tetrahedron, v. 71, p. 4868-4873, 2015. FERREIRA, B. R. V.; CORREA, D. N.; EBERLIN, M. N.; VENDRAMINI, P. H. Fragmentation Reactions of Rhodamine B and 6G as Revealed by High Accuracy Orbitrap Tandem Mass Spectrometry. Journal of the Brazilian Chemical Society, v. 28, p. 136-142, 2017. FOLKERS, K.; JOHNSON, T. B. Researches on Pyrimidines. CXXXVI. The Mechanism of Formation of Tetrahydropyrimidines by the Biginelli Reaction. Journal of American Chemical Society, v. 55, p. 3784-3791, 1933. Food and Drugs Administration. Disponível em: <https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process> Acessado em: 28 jul. 2019. GANINA, O.G.; DARAS, E.; BOURGAREL-REY, V.; PEYROT, V.; ANDRESYUK, A. N.; FINET, J. P. Synthesis and biological evaluation of polymethoxylated 4-heteroarylcoumarins as tubulin assembly inhibitor. Bioorganic & Medicinal Chemistry, v. 16, p. 8806-8812, 2008. GARRO, H. A., MANZUR, J. M.; CIUFFO, G. M., TONN, C. E.; PUNGITORE, C. R. Inhibition of reverse transcriptase and Taq DNA polymerase by compounds possessing the coumarin framework. Bioorganic and Medicinal Chemistry Letters, v. 24, p. 760-764, 2014. GARRO, H. A.; PUNGITORE, C. R. DNA Related Enzymes as Molecular Targets for Antiviral and Antitumoral Chemotherapy. Current Drug Targets, v. 20, p. 70-80, 2019. GHOSH, P.; GANGULY, B.; KAR, B.; DWIVEDI, S.; DAS, S.. Green procedure for highly efficient, rapid synthesis of imidazo[1,2-a]pyridine and its late stage functionalization. Synthetic Communications, v. 48, p. 1076-1084, 2018. GHULAM, R. A Concise Introduction of Perkin Reaction. Organic Chemistry Current Research, v. 7, p. 2, 2018. GOVINDAIAH, P.; DUMALA, N.; MATTAN, I.; GROVER, P.; PRAKASH, M. J. Design, synthesis, biological and in silico evaluation of coumarin-hydrazone derivatives as tubulin targeted antiproliferative agentes. Bioorganic Chemistry, v. 91, p. 103143, 2019. GRAEBIN, C. S.; VITÓRIO, F.; ROGÉRIO, K. R.; KUMMERLE, A. E. Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Current Organic Synthesis, v. 16, p. 855-899, 2019. GUGGILAPU, S. D.; PRAJAPTI, S. K.; NAGARSENKAR, A.; LALITA, G.; NAIDU VEGI, G. M.; BABU, B. N. MoO2Cl2 catalyzed efficient synthesis of functionalized 3,4- 174 dihydropyrimidin-2(1H)-ones/thiones and polyhydroquinolines: recyclability, fluorescence and biological studies. New Journal of Chemistry, v. 40, p. 838-843, 2016. HAO, S.; FENG, S.; WANG, X.; WANG, Z.; CHEN, S.; HUI, L. Novel conjugates of podophyllotoxin and coumarin: Synthesis, cytotoxicities, cell cycle arrest, binding CT DNA and inhibition of Topo IIβ. Bioorganic & Medicinal Chemistry Letters, v. 29, p. 2129-2135, 2019. HARBER, D. Roads leading to breast câncer. The New England Journal of Medicine, v. 343, p. 1566-1568, 2000. HE, W.; ZHANG, B. L.; ZHOU, S. Y.; SUN, X. L.; ZHANG, S. Y. Facile Total Synthesis of Xanthotoxol. Synthetic Communications, v. 37, p. 361, 2007. HEJMADI, M. Introduction to Cancer Biology. 2ª ed. Bath BookBoon. 2010. 48 p. ISBN 978-87-7681-478-6. HERAVI, M. M.; ASADI, S.; LASHKARIANI, B. M. Recent progress in asymmetric Biginelli reaction. Molecular Diversity, v. 17, p. 389-407, 2013. HOESCH, K. A new synthesis of aromatic ketones. I. Preparation of some phenol ketones. Chemische Berichte, v. 48, p. 1122, 1915. HOUBEN, J. Action of organomagnesium on lactones. Chemische Berichte, v. 37, p. 489-502, 1904. HUO, C.; TANG, J.; XIE, H.; WANG, Y.; DONG, J.. CBr4 Mediated Oxidative C–N Bond Formation: Applied in the Synthesis of Imidazo[1,2-α]pyridines and Imidazo[1,2-α]pyrimidines. Organic Letters, v. 18, p. 1016-1019, 2016. HUSSIEN, F. A.; KESHE, M.; ALZOBAR, K.; MERZA, J.; KARAM, A. Synthesis and Nitration of 7-Hydroxy-4-Methyl Coumarin via Pechmann Condensation Using Eco-Friendly Medias. International Letters of Chemistry, Physics and Astronomy, v. 69, p. 66-73, 2016. HWU, J. R.; HUANG, W. C.; LIN, S. Y.; TAN, K. T.; HU, Y. C.; SHIEH, F. K.; TSAY, S. C. Chikungunya virus inhibition by synthetic Coumarin−Guanosine conjugates. European Journal of Medicinal Chemistry, v. 166, p. 136-143, 2019. Instituto Nacional de Câncer José Alencar Gomes da Silva. Coordenação de Prevenção e Vigilância. Estimativa 2018: incidência de câncer no Brasil / Instituto Nacional de Câncer José Alencar Gomes da Silva. Coordenação de Prevenção e Vigilância. – Rio de Janeiro: INCA, 2017. JADOO, B.; BOOYSEN, I. N.; AKERMAN, M. P.; RHYMAN, L.; RAMASAMI, P. Novel coumarin rhenium (I) and (V) complexes: Formation, DFT and DNA binding studies. Polyhedron, v. 144, p. 107-118, 2018. JAIN, R. K. Barriers to Drug Delivery in Solid Tumors. Scientific American, v. 271, p. 58, 1994. JALAL, A.; FARHAD, S.; JAFAR, A.; NEZAM, A.; TAYEBEH, M. C. R. A green, efficient and recyclable poly(4-vinylpyridine)-supported copper iodide catalyst for the synthesis of 175 coumarin derivatives under solvent-free conditions. Comptes Rendus Chimie, v. 16, p. 407-411, 2013. JETTI, S. R.; UPADHYAYA, A.; JAIN, S. 3,4-Hydropyrimidin-2-(1H)one derivatives: solid silica-based sulfonic acid catalyzed microwave-assisted synthesis and their biological evaluation as antihypertensive and calcium channel blocking agents. Medicinal Chemistry Research, v. 23, p. 4356-4366, 2014. KAPPE, C. O. A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate. Journal of Organic Chemistry, v. 62, p. 7201-7204 KAPPE, C. O. The Generation of Dihydropyrimidine Libraries Utilizing Biginelli Multicomponent Chemistry. QSAR Combinatorial Science, v. 22, p. 630-645, 2003. KAPPE, C. O.; KUMAR, D.; VARMA, R. S. Microwave-Assisted High-Speed Parallel Synthesis of 4-Aryl-3,4-dihydropyrimidin-2(1H)-ones using a Solventless Biginelli Condensation Protocol. Synthesis, v. 10, p. 1799-1803, 1999. KAPPE, C. O.; ROSCHGER, P. Synthesis and reactions of “biginelli‐compounds”. Part I. Journal of Heterocycle Chemistry, v. 26, p. 55-64, 1989. KATZUNG, B. B. Farmacologia Básica e Clínica. 1ª Ed., Guanabara Koogan, 1994. KHALIGH, N. G. Synthesis of coumarinsvia Pechmann reaction catalyzed by 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate as an efficient, halogen-free and reusable acidic ionic liquid. Catalysis Science & Technology, v. 2, p. 1633-1636, 2012. KIM, N. H.; KIM, S. N.; OH, J. S.; LEE, S.; KIM, Y. K. Anti-mitotic potential of 7- diethylamino-3 (2′-benzoxazolyl)-coumarin in 5-fluorouracil-resistant human gastric cancer cell line SNU620/5-FU, Biochemistry and Biophysics Research Communications, v. 418, p. 616-621, 2012. KNOEVENAGEL, E. Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Berichte Der Deutschen Chemischen Gesellschaft, v. 31, p. 2596-2619, 1898. KOEHN, F. Cancer Drug Discovery and Development. Springer, New York, NY, 2010. KONTOGIORGIS, C.; DETSI, A.; HADJIPAVLOU-LITINA, D. Coumarin-based drugs: a patent review (2008-present). Expert Opinion on Therapeutic Patents, v. 22, p. 437-454, 2012. KOSTOVA, I. Synthetic and Natural Coumarins as Antioxidants. Mini-Reviews in Medicinal Chemistry, v. 6, p. 365-374, 2006. KUZNETSOVA, N. A.; KALIYA, O. L. The photochemistry of coumarin. Russian Chemical Reviews, v. 61, p. 683-696, 1992. LANOOT, B.; VANCANNEYT, M.; CLEENWERCK, I.; WANG, L.; LI, W.; LIU, Z.; SWINGS, J. The search for synonyms among streptomycetes by using SDS-PAGE of whole- 176 cell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus. International Journal of systematic and evolutionary microbiology., v. 52, p. 823-829, 2002. LEWIS, R. J.; TSAI, F. T.; WIGLEY, D. B. Molecular mechanisms of drug inhibition of DNA gyrase. BioEssays, v. 18, p. 661-671, 1996. LI, J. J. Name Reaction. 4th Ed Springer, Berlin, p. 424, 2009 LIU, H.; REN, X.; WANG, W.; GONG, J.; CHU, M.; MA, Q.; WANG, J.; LV, X.. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity. European Journal of Medicinal Chemistry, v. 157, p. 81-87, 2018. LLOYD, J.; FINLAY, H. J.; VACARRO, W.; HYUNH, T.; KOVER, A.; BHANDARU, R.; YAN, L.; ATWAL, K.; CONDER, M. L.; JENKINS-WEST, T.; SHI, H.; HUANG, C.; LI, D.; SUN, H.; LEVESQUE, P. Pyrrolidine amides of pyrazolodihydropyrimidines as potent and selective KV1.5 blockers. Bioorganic & Medicinal Chemistry Letters, v. 20, p. 1436-1439, 2010. LV, N.; SUN, M.; LIU, C.; LI, J.. Design and synthesis of 2-phenylpyrimidine coumarin derivatives as anticancer agentes. Bioorganic & Medicinal Chemistry Letters, v. 27, p. 4578-4581, 2017. MALI, R. S.; TILVE, S. G; YEOLA, S. N.; MANEKAR. A. R. A convenient two-step synthesis of fallylcourarins and their benzoderivatives. Heterocycles, v. 26, 1987. MALI, R. S.; YADAV, V. J. Convenient Synthesis of Naturally Occurring Coumarins, (2-Oxo-2H-benzopyrans) and 4-Methylcoumarins (4-Methyl-2-oxo-2H-benzopyrans). Synthesis, v. 07, p. 464–465, 1977. MARCU, M. G.; CHADLI, A.; BOUHOUCHE, I.; CATELLI, M.; NECKERS, L. M. The Heat Shock Protein 90 Antagonist Novobiocin Interacts with a Previously Unrecognized ATP-binding Domain in the Carboxyl Terminus of the Chaperone. The Journal of Biological Chemistry, v. 275, p. 37181-37816, 2000. MARCU, M. G.; SCHULTE, T. W.; NECKERS, L. Novobiocin and Related Coumarins and Depletion of Heat Shock Protein 90-Dependent Signaling Proteins. Journal of the National Cancer Institute, v. 92, p. 242-248, 2000. MCGOWAN, J. V.; CHUNG, R.; MAULIK, A.; PIOTROWSKA, I.; WALKER, J. M.; YELLON, D. M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovascular Drugs and Therapy, v. 31, p. 63-75, 2017. MEDEIROS, G. A.; DA SILVA, W. A.; BATAGLION, G. A.; FERREIRA, D. A. C.; DE OLIVEIRA, H. C. B.; EBERLIN, M. N.; NETO, B. A. D. Probing the mechanism of the Ugi four-component reaction with charge-tagged reagents by ESI-MS(/MS). Chemical Communications, v. 50, p. 338-340, 2014. 177 MEDINA, F. G.; MARRERO, J. G.; MACÍAS-ALONSO, M.; GONZALES, M. C.; CÓRDOVA-GUERRERO, I.; GARCIA, A. G. T.; OSEGUEDA-ROBLES, S. Coumarin heretocyclic derivative: chemical synthesis and biological activity. Natural Products Reports, v. 32, p. 1472-1507. 2015. MIRUNALINI, S.; KRISHNAVENI, M. Coumarin: a plant derived polyphenol with wide biomedical applications. International Journal of PharmTech Research, v. 3, p. 1693-1696, 2011. MIYAURA, N.; SUZUKI, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical reviews, v. 95, p. 2457-2483, 1995. MOHAMED, M. S.; AWAD, S. M.; ZOHNY, Y. M.; MOHAMED, Z. M. New theopyrimidine derivatives of expected antiinflammatory activity. Pharmacophore, v. 3, p. 62-75, 2012. MOHAMED, T. K.; BATRAN, R. Z.; ELSEGINY, S. A.; ALI, M. M.; MAHMOUD, A. E. Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis. Bioorganic Chemistry, v. 85, p. 253-273, 2019. MOHAN, S.; RANGAPPA, S.; ANILKUMAR, B. A. D.; FUCHS, J. E.; BASAPPA, A. B.; RANGAPPA, J. E.; BHATNAGAR, R. Sulfated Ceria Catalyzed Synthesis of Imidazopyridines and Their Implementation as DNA Minor Groove Binders. Chem Biodivers, v. 16, e1800435, 2019. MOSTAFA, A. S.; KHALID, B. Selim, Synthesis and anticancer activity of new dihydropyrimidinone derivatives. European Journal of Medicinal Chemistry, v. 156, p. 304-315, 2018. MURRAY, R. D. H. Coumarins. Natural Products Reports, v. 12, p. 477-505, 1995. NG, T. B.; LIU, F.; WANG, Z. T. Antioxidative activity of natural products from plants. Life Sciences, v. 66, p. 709, 2000. NICOLAIDES, D. N.; FYLAKTAKIDOU, K. C.; LITINAS, K. E.; ADAMOPOULOS, S. G. The synthesis of some pyrano[2,3-g]chromene-2,7-diones and furo[2,3-g]chromen-6-ones. Journal of Heterocyclic Chemistry, v. 35, p. 91-96, 1998. PADILHA, G.; BIRMANN, P. T.; DOMINGUES, M.; KAUFMAN, T. S.; SAVEGNAGO, L.; SILVEIRA, C. C. Convenient Michael addition/β-elimination approach to the synthesis of 4-benzyl- and 4-aryl-selenyl coumarins using diselenides as selenium sources, Tetrahedron Letters, v. 58, p. 985-990, 2017. PALANIAPPAN, S.; JOHN, A. A novel polyaniline–fluoroboric acid–dodecylhydrogensulfate salt: versatile reusable polymer based solid acid catalyst for organic transformations. Journal of Molecular Catalysis A: Chemical, v. 233, p. 9-15, 2005. 178 PANDHARPATTE, M.; MOHAMMED, N. G. International. Jounal of Synthesis Character, v. 4, p. 69-73, 2011. PARASKAR, A. S.; DEWKAR, G. K.; SUDALAI, A. Cu(OTf)2: a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Letters, v. 44, p. 3305-3308, 2003. PATRE, R. E.; SHET, J. B.; PARAMESWARAN, P. S.; TILVE, S. G. Cascade Wittig reaction-double Claisen and Cope rearrangements: one-pot synthesis of diprenylated coumarins gravelliferone, balsamiferone, and 6,8-diprenylumbelliferone. Tetrahedron Letters, v. 50, p. 6488-6490, 2009. PECHMANN, H. Neue Bildungsweise der Cumarine. Synthese des Daphnetins. I. Chemische Berichte, v.17, p. 929-936, 1884. PENG, J.; DENG, Y. Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Letter, v. 42, p. 5917-5919, 2001. PENG, X.; DAMU, G. L. V.; ZHOU, C. Current Developments of Coumarin Compounds in Medicinal Chemistry. Current Pharmaceutical Design, v. 19, p.3884-3930, 2013. PEREIRA, T. M.; FRANCO, D. F. P.; VITÓRIO, F.; AMARAL, R. C.; PONZONI, A. C.; KÜMMERLE, A. E. Microwave-Assisted Synthesis And Pka Determination Of Umbelliferone: An Experiment For The Undergraduate Organic Chemistry Laboratory. Química Nova, v. 41, p. 1205-1208, 2018. PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; KUMMERLE, A. E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Current Topics in Medicinal Chemistry, v. 18, p. 124-148, 2018. PEREIRA, T. M.; VITÓRIO, F.; AMARAL, R. C.; ZANONI, K. P. S.; IHA, N. Y. M.; KUMMERLE, A. E. Microwave-assisted synthesis and photophysical studies of novel fluorescent N-acylhydrazone and semicarbazone-7-OH-coumarin dyes. New Journal of Chemistry, v. 40, p. 8846-8854, 2016. PERKIN, W. H. On the hydride of aceto-salicyl. Journal of the Chemical Society, v. 21, p. 181-185, 1868. PONNDORF, W. German Pat, v. 338, p. 737, 1921. PUNGITORE, C. R. Natural Products as Inhibitors of DNA Related Enzymes. Current Enzyme Inhibition, v. 4, p. 194-215, 2008. RAMOS, L. M.; GUIDO, B. C.; NOBREGA, C. C.; CORREA, J. R.; SILVA, R. G.; DE OLIVEIRA, H. C. B.; GOMES, A. F.; GOZZO, F. C.; NETO, B. A. D. The Biginelli reaction with an imidazolium-tagged recyclable iron catalyst: kinetics, mechanism, and antitumoral activity. Chemistry - A European Journal, v. 19, p. 4156-4168, 2013. 179 RAMOS, L. M.; TOBIO, A.; DOS SANTOS, M. R.; DE OLIVEIRA, H. C. B.; GOMES, A. F.; GOZZO, F. C.; DE OLIVEIRA, A. L.; NETO, B. A. D. Mechanistic Studies on Lewis Acid Catalyzed Biginelli Reactions in Ionic Liquids: Evidence for the Reactive Intermediates and the Role of the Reagents. Journal of Organic Chemistry, v. 77, p. 10184-10193, 2012. ROGERIO, K. R.; VITÓRIO, F.; KÜMMERLE, A. E.; GRAEBIN, C. S. Multicomponent Reactions: A Brief History and their Versatility for the Synthesis of Biologically Active Molecules. Revista Virtual de Química, v. 8, p. 1934-1962, 2016. ROY, D.; HAQUE, L.; DAS, S.; CHAKRABORTY, A.; GHOSH, R. Metal ion sensing ability and photo-physical properties of 4-hydroxy-3- nitroso-2H-chromen-2-one: Interaction studies with calf thymus-DNA. Journal of Luminescence, v. 206, p. 474-485, 2019. SABETPOOR, S.; HATAMJAFARI, F. Synthesis of Coumarin Derivatives Using Glutamic Acid Under Solvent-Free Conditions. Oriental Journal of Chemistry, v. 30, p. 863-865, 2014. SALEM, M. A.; HELAL, M. H.; GOUDA, M. A.; AMMAR, Y. A.; EL-GABY, M. S. A.; ABBAS, S. Y. An overview on synthetic strategies to coumarins. Synthetic Communications, v. 48, p. 1534-1550, 2018. SÁNCHEZ, C. G.; CASILDA, V. C.; MAYORAL, E. P.; ARANDA, R. M. M.; PEINADO, A. J. L.; BEJBLOVÁ, M.; CEJKA, J. Coumarins Preparation by Pechmann Reaction Under Ultrasound Irradiation. Synthesis of Hymecromone as Insecticide. Intermediate. Catalysis Letters, v. 128, p. 318-322, 2009. SANDHU, S.; BANSAL, Y.; SILAKARI, O.; BANSAL, G. Coumarin Hybrids as Novel Therapeutic Agents. Biooganic and Medicinal Chemistry, v. 22, p. 3806-3814, 2014. Scopus Data Base. Disponível em <www.scopus.com>. Acessado em 20 jan. 2020. SHAHBAZI, R.; BABAZADEH, M.; AFZALI, E. Surface modification of silica-coated on the magnetic nanoparticles with covalently immobilized between imidazolium cation and silane groups for potential application as a green catalyst. Bioorganic & Organic Chemistry, v. 2, p. 1–7, 2018. SINGH, H.; SINGH, J. V.; BHAGAT, K.; GULATI, H. K.; SANDUJA, M.; KUMAR, N.; KINARIVALA, N.; SHARMA, S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorganic & Medicinal Chemistry, v. 27, p. 3477-3510, 2019. SINGH, H.; VIR SINGH, J.; BHAGAT, K.; KAUR GULATI, H.; SANDUJA, M.; KUMAR, N.; KINARIVALA, N.; SHARMA, S. Rational Approaches, Design Strategies, Structure Activity Relationship and Mechanistic Insights for Therapeutic Coumarin Hybrids. Bioorganic & Medicinal Chemistry, v 27, p. 3477-3510, 2019. SOLOMONS, T. W. G.; FRYHLE, C. B. Química Orgânica. v. 2, 2008. SONNENDECKER, G.; KREMERS, E. Urdangs history of pharmacy. American Institute of the History of Pharmacy, Madison, p 17, 1986. 180 SOSNICKI, J. G.; STRUK, L.; KURZAWSKI, M.; PERUZYNSKA, M.; MACIEJEWSKAC, G.; DROZDZIK, M. egioselective synthesis of novel 4,5-diaryl functionalized 3,4-dihydropyrimidine-2(1H)-thiones via a non-Biginelli-type approach and evaluation of their in vitro anticancer activity. Organic & Biomolecular Chemistry, v. 12, p. 3427-3440, 2014. SPENGLER, G.; GAJDÁCS, M.; MARĆ, M.A.; DOMÍNGUEZ-ÁLVAREZ, E.; SANMARTÍN, C. Organoselenium Compounds as Novel Adjuvants of Chemotherapy Drugs—A Promising Approach to Fight Cancer Drug Resistance. Molecules, v. 24, p. 336-348, 2019. SRIKRISHNA, D.; TASQEERUDDIN, S.; DUBEY, P. K. Synthesis of 3-substituted Coumarins: An Efficient Green Approach Using L-proline as Catalyst in Triethanolamine Medium. Letters in Organic Chemistry, v. 11, p. 556-563, 2014. SUGINO, T.; TANAKA, K. Solvent-Free Coumarin Synthesis. Chemistry Letters, v. 30, p. 110-111, 2001. SUN, J.; DING, W. X.; ZHANG, K. Y.; ZO, Y. Efficient synthesis and biological evaluation of 4-arylcoumarin derivatives. Chinese Chemical Letters, v. 22, p. 667-670, 2011. SUNKARI, S.; BONAM, S. R.; RAO, A. V. S.; RIYAZ, S. D.; NAYAK, V. L.; KUMAR, KAMAL, H. S. M. A.; BABU, B. N. Synthesis and biological evaluation of new bisindole-imidazopyridine hybrids as apoptosis inducers. Bioorganic Chemistry, v. 87, p. 484-494, 2019. SWAMI, U.; SHAH, U.; GOEL, S. Eribulin in Cancer Treatment. Marine Drugs, v. 13, p.5016-5058, 2015. SWEET, F.; FISSEKIS, J. D. Synthesis of 3,4-dihydro-2(1H)-pyrimidinones and the mechanism of the Biginelli reaction. Journal of American Chemical Society, v. 95, p. 8741-8749, 1973. THAKUR, A.; SINGLA, R.; JAITAK, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies, European Journal of Medicinal Chemistry, v. 101, p. 476-495, 2015. TRKOVNIK, M.; IVEZI, Z. J. Syntheses of some new coumarin‐quinolone carboxylic acids. J. Heterocyclic Chem., v. 37, p. 137-141, 2000. VAHID, V.; FARHAD, H. Microwave Assisted Convenient One-Pot Synthesis of Coumarin Derivatives via Pechmann Condensation Catalyzed by FeF3 under Solvent-Free Conditions and Antimicrobial Activities of the Products. Molecules, v. 19, p. 13093, 2014. VENDITTO, V. J.; SIMANEK, E. E. Cancer Therapies Utilizing the Camptothecins: A Review of in Vivo Literature. Molecular Pharmaceutics, v. 7, p. 307-349, 2010. VITÓRIO, F.; PEREIRA, T. M.; CASTRO, R. N.; GUEDES, G. P.; GRAEBIN, C. S.; KUMMERLE, A. E. Synthesis and mechanism of novel fluorescent coumarin– 181 dihydropyrimidinone dyads obtained by the Biginelli multicomponent reaction. New Journal of Chemistry, v. 39, p. 2323-2332, 2015. WEAVER, B. A. How Taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell, v. 25, p. 2677-2681, 2014. WIPF, P.; CUNNINGHAM, A. A solid phase protocol of the biginelli dihydropyrimidine synthesis suitable for combinatorial chemistry. Tetrahedron Letters, v. 36, p. 7819-7822, 1995. WOO, L.; GANESHAPILLAI, D.; THOMAS, M. P.; SUTCLIFFE, O. B.; MALINI, B.; MAHON, M. F.; PUROHIT, A.; POTTER, B. V. Structure–Activity Relationship for the First‐in‐Class Clinical Steroid Sulfatase Inhibitor Irosustat (STX64, BN83495), ChemMedChem, v. 6, p. 2019-2024, 2011. YAMAGUCHI, Y.; NISHIZONO, N.; KOBAYASHI, D.; YOSHIMURA, T.; WADA, K.; ODA, K. Evaluation of synthesized coumarin derivatives on aromatase inhibitory activity. Bioorganic & Medicinal Chemistry Letters, v. 27, p. 2645-2649, 2017. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/71494/2020%20-%20Felipe%20Vit%c3%b3rio%20Ribeiro.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6162 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-12-21T12:57:36Z No. of bitstreams: 1 2020 - Felipe Vitório Ribeiro.pdf: 10776342 bytes, checksum: 7b5a3b9939597f4b03b743b380177d38 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-12-21T12:57:36Z (GMT). No. of bitstreams: 1 2020 - Felipe Vitório Ribeiro.pdf: 10776342 bytes, checksum: 7b5a3b9939597f4b03b743b380177d38 (MD5) Previous issue date: 2020-03-06 | eng |
Appears in Collections: | Doutorado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2020 - Felipe Vitório Ribeiro.pdf | 2020 - Felipe Vitório Ribeiro | 10.52 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.