Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9301
Full metadata record
DC FieldValueLanguage
dc.creatorXavier Junior, Neubi Francisco
dc.date.accessioned2023-11-19T20:12:39Z-
dc.date.available2023-11-19T20:12:39Z-
dc.date.issued2022-03-24
dc.identifier.citationXAVIER JUNIOR, Neubi Francisco. Investigações computacionais do polimorfismo da glicina em meio interestelar: equilíbrio de fases e reações em superfícies. 2022. 101 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9301-
dc.description.abstractGlycine, the simplest amino acid, has already been detected in meteoritic and cometary samples. The understanding of its existence in the solid state, in the interstellar medium (ISM) is limited, due the lack of studies concerning its reactivity in this environment. Therefore, this work was developed aiming to investigate, by means of computational methodologies, the thermodynamic equilibrium of the α-, β-, and γ-glycine polymorphs and their reactivity in the solid-gas interface, in ISM analogous conditions. Computational methodologies were performed at the PBE-D3 level and adopting the Vanderbilt Ultrasoft pseudopotentials for the inner electrons. Kinetic cutoff energy values were tested and converged to 80 Ry. A k-points mesh of 4 x 2 x 4, 4 x 3 x 4 e 3 x 3 x 4 were assumed for the α-, β-, and γ-glycine, respectively. Vibrational properties were obtained by means of phonons density of state (PHDOS) calculations and adopting the quasi-harmonic approximation for the estimation of solid-state thermodynamic properties. Calculated entropy values were slightly lower than experimental findings, with absolute deviations of 5.27, 0.13 and 5.42 J mol-1 K-1, for the α-, β- and γ-glycine, respectively, at 298.15 K. The obtained Sα - Sγ difference value was of 0.44 J mol-1K-1, in good agreement with the experimental value of 0.35 J mol-1 K-1, at 298.15 K. Gibbs free energy values were obtained in the range between 50 K and 500 K and at ambient pressure, being possible to suggest the correct stability order among the crystalline phase: > α > β. The γ→α phase transition was suggested at 442.55 K, in excellent agreement with the experimental value of 440 K. Sublimation properties were investigated considering the gas-phase transformations between the zwitterionic glycine, present in the crystalline phase and the gas-phase most stable conformer. Sublimation temperature values were estimated by means of the Clausius-Clapeyron equation, with a maximum deviation of -5.31 K for the α-glycine, in the pressure range between 0.1 and 1 Pa, in comparison with experimental findings. Glycine decomposition reactions, forming CO2 and CH3NH2, on a (010) α-glycine surface, were investigated. For this reason, a 3 x 3 expansion containing 4 glycine layers was considered. A k-point sample of 2 x 2 x 1 was adopted. Decarboxylation reaction proceeded through a 4 steps mechanism, with barrier heights of 30.01, 112.10 and 108.83 kJ mol-1, respectively. Decarboxylation reactions on a α-glycine surface showed a decrease in the barrier height of 200 kJ mol-1 with respect to the gas phase reaction, whereas the glycine formation reactions showed barrier height value of roughly 100 kJ mol-1 lower. Therefore, the good agreement between computational investigations, reported here, and experimental findings, it is possible to suggest that the solid-solid and solid-gas reactivity model of glycine, proposed here, can be adopted for future investigations of the reactivity of amino acids in the ISM.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectPolimorfismopor
dc.subjectGlicinapor
dc.subjectTeoria do Funcional de Densidadepor
dc.subjectPolymorphismeng
dc.subjectGlycineeng
dc.subjectDensity Functional Theoryeng
dc.titleInvestigações computacionais do polimorfismo da glicina em meio interestelar: equilíbrio de fases e reações em superfíciespor
dc.typeTesepor
dc.contributor.advisor1Bauerfeldt, Glauco Favilla
dc.contributor.advisor1ID069.023.487-23por
dc.contributor.advisor-co1Silva Junior, Antônio Marques da
dc.contributor.advisor-co1ID070.079.186-89por
dc.contributor.referee1Bauerfeldt, Glauco Favilla
dc.contributor.referee2Sant’Anna, Carlos Mauricio Rabello de
dc.contributor.referee3Leitão, Alexandre Amaral
dc.contributor.referee4Oliveira Júnior, Ricardo Rodrigues de
dc.contributor.referee5Rocha, Ivan Guilhon Mitoso
dc.creator.ID125.815.237-19por
dc.creator.IDOrcid iD: https://orcid.org/0000-0002-2133-0557por
dc.creator.Latteshttp://lattes.cnpq.br/4668989034458574por
dc.description.resumoGlicina, o aminoácido mais simples, já foi detectada em amostras de meteoritos e cometas. A compreensão acerca de sua presença, apenas em fase sólida, no meio interestelar (ISM) é, entretanto, limitada pela falta de estudos acerca de sua reatividade neste ambiente. Desta forma, este trabalho foi desenvolvido com o objetivo de investigar, através de métodos computacionais, o equilíbrio termodinâmico dos polimorfos α-, β- e γ-glicina, e sua reatividade na interface sólido-gás, em condições análogas às encontradas no meio interestelar. Cálculos foram conduzidos em nível PBE-D3 e adotando um pseudopotencial Ultrasoft de Vanderbilt para o tratamento dos elétrons das camadas internas. Valores de energia cinética de corte foram testados e convergidos para 80 Ry. Uma amostragem de pontos k da rede recíproca de 4 x 2 x 4, 4 x 3 x 4 e 3 x 3 x 4 foi assumida para α-, β- e γ-glicina, respectivamente. As propriedades vibracionais foram obtidas através de cálculos de densidade de estado de fônons (PHDOS) e adotando a aproximação quase-harmônica para a obtenção das propriedades termodinâmicas para a fase sólida. Os valores de entropia calculados foram ligeiramente menores do que os experimentais, com desvios absolutos de 5,27, 0,13 e 5,42 e J mol-1 K-1, para α-, β- e γ-glicina, respectivamente, a 298,15 K. Foi obtida a diferença S – S igual a 0,44 J mol-1 K-1, em bom acordo com o dado experimental, 0,35 J mol-1 K-1, a 298,15 K. Valores de energia livre de Gibbs foram obtidos na faixa entre 50 a 500 K e pressão de 1 bar, sendo possível observar o correto ordenamento de estabilidade entre as fases cristalinas: γ > α > β. A transição γ → α foi observada em 442,55 K, em excelente acordo com o valor experimental de 440 K. Propriedades de sublimação foram investigadas levando em consideração a transformação da forma zwitteriônica, presente na fase cristalina, até a forma não iônica, mais estável em fase gasosa. Valores de temperatura de sublimação foram estimados a partir da equação de Clausius-Clapeyron, obtendo um desvio absoluto máximo de -5.31 K para a α-glicina, na faixa de pressão entre 0,1 e 1 Pa, em comparação com valores experimentais. Reações de decomposição de glicina formando CO2 e CH3NH2, em uma superfície de (010) de α-glicina, foram investigadas. Para tal, uma expansão 3 x 3 da superfície contendo 4 camadas de glicina foi considerada. Uma amostragem de pontos k de 2 x 2 x 1 foi adotada. A reação de descarboxilação procedeu através de 4 etapas, cujas barreiras foram de 30,01, 39,63, 112,10 e 108,83 kJ mol-1, respectivamente. Em comparação com as reações em fase gasosa, as reações em superfície tiveram uma diminuição da barreira de descarboxilação por aproximadamente 200 kJ mol-1, enquanto a de formação de glicina mostra uma barreira até 100 kJ mol-1 menor. Através do bom acordo obtido nas investigações computacionais, é possível concluir que o modelo da reatividade sólido-sólido e sólido-gás da glicina, proposto nesse trabalho, pode ser adotado para futuras investigações da reatividade de aminoácidos no ISM.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesABPLANALP, M. J.; KAISER, R. I. On the formation of complex organic molecules in the interstellar medium: untangling the chemical complexity of carbon monoxide– hydrocarbon containing ice analogues exposed to ionizing radiation via a combined infrared and reflectron time-of-flight analys. Physical Chemistry Chemical Physics, v. 21, n. 31, p. 16949–16980, 2019. ABRAHAM, N. S.; SHIRTS, M. R. Thermal Gradient Approach for the Quasi-harmonic Approximation and Its Application to Improved Treatment of Anisotropic Expansion. Journal of Chemical Theory and Computation, v. 14, n. 11, p. 5904–5919, 2018. ALBRECHT, G.; COREY, R. B. The Crystal Structure of Glycine. Journal of the American Chemical Society, v. 61, n. 5, p. 1087–1103, maio 1939. ALI AHAMED, S. Z. et al. Spectroscopic and thermal studies of γ-glycine crystal grown from potassium bromide for optoelectronic applications. Arabian Journal of Chemistry, v. 6, n. 4, p. 429–433, 2013. ALTWEGG, K. et al. Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, v. 2, n. 5, p. e1600285, 27 maio 2016. ANDERSON, O. L. The Gruneisen ratio for the last 30 years. Geophysical Journal International, v. 143, n. 2, p. 279–294, 1 nov. 2000. ANDREWS, B.; TORRIE, B. H.; POWELL, B. M. Intermolecular potentials for alphaglycine from Raman and infrared scattering measurements. Biophysical Journal, v. 41, n. 3, p. 293–298, mar. 1983. ANIS, M. et al. Monocrystal growth and characterization study of α- and γ-polymorph of glycine to explore superior performance of γ-glycine crystal. Materials Research Innovations, v. 22, n. 7, p. 409–414, 2018. AREE, T.; BÜRGI, H.-B. Dynamics and Thermodynamics of Crystalline Polymorphs: α- Glycine, Analysis of Variable-Temperature Atomic Displacement Parameters. The Journal of Physical Chemistry A, v. 116, n. 30, p. 8092–8099, 2 ago. 2012. BADELIN, V. G. et al. Relationship between the molecular structure of amino acids and dipeptides and thermal sublimation effects. Journal of Structural Chemistry, v. 48, n. 4, p. 647–653, jul. 2007. BARONI, S. et al. Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, v. 73, n. 2, p. 515–562, 6 jul. 2001. BARONI, S.; GIANNOZZI, P.; TESTA, A. Green’s-function approach to linear response in solids. Physical Review Letters, v. 58, n. 18, p. 1861–1864, 4 maio 1987. BERAN, G. J. O. et al. Accurate and Robust Molecular Crystal Modeling Using Fragment-Based Electronic Structure Methods. In: [s.l: s.n.]. p. 59–93. BERNSTEIN, M. P. et al. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature, v. 416, n. 6879, p. 401–403, 2002a. BERNSTEIN, M. P. et al. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature, v. 416, n. 6879, p. 401–403, 2002b. BIRCH, F. Finite Elastic Strain of Cubic Crystals. Physical Review, v. 71, n. 11, p. 809–824, 1 jun. 1947. BOLDYREVA, E. V.; DREBUSHCHAK, T. N.; SHUTOVA, E. S. Structural distortion of the α, β, and γ polymorphs of glycine on cooling. Zeitschrift für Kristallographie - Crystalline Materials, v. 218, n. 5, 1 jan. 2003. BOYS, S. F.; BERNARDI, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, v. 19, n. 4, p. 553–566, 1970. BRANDENBURG, J. G. et al. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations. Journal of Physical Chemistry A, v. 117, n. 38, p. 9282–9292, 2013. BROWN, R. D. et al. Microwave spectrum and conformation of glycine. Journal of the Chemical Society, Chemical Communications, n. 13, p. 547, 1978. BUCHHOLZ, H. K.; STEIN, M. Accurate lattice energies of organic molecular crystals from periodic turbomole calculations. Journal of Computational Chemistry, v. 39, n. 19, p. 1335–1343, 2018. CASASSA, S.; UGLIENGO, P.; PISANI, C. Proton-ordered models of ordinary ice for quantum-mechanical studies. The Journal of Chemical Physics, v. 106, n. 19, p. 8030–8040, 15 maio 1997. ČERVINKA, C.; BERAN, G. J. O. Ab initio thermodynamic properties and their uncertainties for crystalline α-methanol. Physical Chemistry Chemical Physics, v. 19, n. 44, p. 29940–29953, 2017. ČERVINKA, C.; BERAN, G. J. O. Ab initio prediction of the polymorph phase diagram for crystalline methanol. Chemical Science, v. 9, n. 20, p. 4622–4629, 2018a. ČERVINKA, C.; BERAN, G. J. O. Ab initio prediction of the polymorph phase diagram for crystalline methanol. Chemical Science, v. 9, n. 20, p. 4622–4629, 2018b. ČERVINKA, C.; BERAN, G. J. O. Towards reliable ab initio sublimation pressures for organic molecular crystals – are we there yet? Physical Chemistry Chemical Physics, v. 21, n. 27, p. 14799–14810, 2019. ČERVINKA, C.; FULEM, M. State-of-The-Art Calculations of Sublimation Enthalpies for Selected Molecular Crystals and Their Computational Uncertainty. Journal of Chemical Theory and Computation, v. 13, n. 6, p. 2840–2850, 2017. ČERVINKA, C.; FULEM, M. Cohesive properties of the crystalline phases of twenty proteinogenic α-aminoacids from first-principles calculations. Physical Chemistry Chemical Physics, v. 21, n. 34, p. 18501–18515, 2019a. ČERVINKA, C.; FULEM, M. Probing the Accuracy of First-Principles Modeling of Molecular Crystals: Calculation of Sublimation Pressures. Crystal Growth & Design, v. 19, n. 2, p. 808–820, 6 fev. 2019b. CHISHOLM, J. A. et al. An ab Initio Study of Observed and Hypothetical Polymorphs of Glycine. Crystal Growth & Design, v. 5, n. 4, p. 1437–1442, 1 jul. 2005. CHYBA, C.; SAGAN, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature, v. 355, n. 6356, p. 125–132, jan. 1992. ČÍŽEK, J. Advances in Chemical Physics. Hoboken, NJ, USA: John Wiley \& Sons, Inc., 1969. v. 14 CRAMER, C. J. Essentials of Computational Chemistry Theories and Models. Second ed. Chichester, UK: Wiley, 2004. CSÁSZÁR, A. G.; PERCZEL, A. Ab initio characterization of building units in peptides and proteins. Progress in Biophysics and Molecular Biology, v. 71, n. 2, p. 243–309, 1999. CUPPEN, H. M.; HERBST, E. Simulation of the Formation and Morphology of Ice Mantles on Interstellar Grains. The Astrophysical Journal, v. 668, n. 1, p. 294–309, 10 out. 2007. CUTINI, M. et al. Assessment of Different Quantum Mechanical Methods for the Prediction of Structure and Cohesive Energy of Molecular Crystals. Journal of Chemical Theory and Computation, v. 12, n. 7, p. 3340–3352, 12 jul. 2016. DANGER, G. et al. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH 2 NH), ammonia (NH 3 ), and hydrogen cyanide (HCN). Astronomy & Astrophysics, v. 535, p. A47, 3 nov. 2011. DAS, T.; GHULE, S.; VANKA, K. Insights Into the Origin of Life: Did It Begin from HCN and H 2 O? ACS Central Science, v. 5, n. 9, p. 1532–1540, 25 set. 2019. DAWSON, A. et al. Effect of High Pressure on the Crystal Structures of Polymorphs of Glycine. Crystal Growth & Design, v. 5, n. 4, p. 1415–1427, jul. 2005. DE JESUS, D. N. et al. Chemical mechanism for the decomposition of CH3NH2 and implications to interstellar glycine. Monthly Notices of the Royal Astronomical Society, v. 501, n. 1, p. 1202–1214, 30 dez. 2020. DE KRUIF, C. G.; VOOGD, J.; OFFRINGA, J. C. A. Enthalpies of sublimation and vapour pressures of 14 amino acids and peptides. The Journal of Chemical Thermodynamics, v. 11, n. 7, p. 651–656, 1979. DREBUSHCHAK, V. A. et al. Synthesis and calorimetric investigation of unstable β- glycine. Journal of Crystal Growth, v. 241, n. 1–2, p. 266–268, maio 2002. DREBUSHCHAK, V. A. et al. Low-temperature heat capacity of α and γ polymorphs of glycine. Journal of Thermal Analysis and Calorimetry, v. 74, n. 1, p. 109–120, 2003. DREBUSHCHAK, V. A. et al. Low-temperature heat capacity of β-glycine and a phase transition at 252 K. Journal of Thermal Analysis and Calorimetry, v. 79, n. 1, p. 65–70, 2005. DUNITZ, J. D.; GAVEZZOTTI, A. How molecules stick together in organic crystals: Weak intermolecular interactions. Chemical Society Reviews, v. 38, n. 9, p. 2622–2633, 2009. DUNITZ, J. D.; GAVEZZOTTI, A. Proteogenic Amino Acids: Chiral and Racemic Crystal Packings and Stabilities. The Journal of Physical Chemistry B, v. 116, n. 23, p. 6740–6750, 14 jun. 2012. EHRENFREUND, P. et al. The Photostability of Amino Acids in Space. The Astrophysical Journal, v. 550, n. 1, p. L95–L99, 2001. EHRENFREUND, P. et al. Astrophysical and astrochemical insights into the origin of life. Reports on Progress in Physics, v. 65, n. 10, p. 1427–1487, 1 out. 2002. EHRENFREUND, P.; CHARNLEY, S. B. Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth. Annual Review of Astronomy and Astrophysics, v. 38, n. 1, p. 427–483, set. 2000. ELSILA, J. E. et al. Mechanisms of Amino Acid Formation in Interstellar Ice Analogs. The Astrophysical Journal, v. 660, n. 1, p. 911–918, 2007. ELSILA, J. E.; GLAVIN, D. P.; DWORKIN, J. P. Cometary glycine detected in samples returned by Stardust. Meteoritics and Planetary Science, v. 44, n. 9, p. 1323–1330, 2009. ENDRES, C. P. et al. The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC. Journal of Molecular Spectroscopy, v. 327, p. 95–104, set. 2016. ERBA, A. et al. On how differently the quasi-harmonic approximation works for two isostructural crystals: Thermal properties of periclase and lime. Journal of Chemical Physics, v. 142, n. 4, p. 0–9, 2015. FOWLES, D. J. et al. Toward Physics-Based Solubility Computation for Pharmaceuticals to Rival Informatics. Journal of Chemical Theory and Computation, p. acs.jctc.1c00130, 14 maio 2021. FREEMAN, C. M. et al. The structure and energetics of glycine polymorphs based on first principles simulation using density functional theory. Chemical Communications, n. 22, p. 2455–2456, 1998. FRISCH, M. J. et al. Gaussian 09, Revision D.01Wallingford, CT, USAGaussian, Inc., 2016. GARROD, R. T. A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE. The Astrophysical Journal, v. 765, n. 1, p. 60, 15 fev. 2013. GERAKINES, P. A. et al. In situ measurements of the radiation stability of amino acids at 15–140K. Icarus, v. 220, n. 2, p. 647–659, ago. 2012. GIANNOZZI, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, v. 21, n. 39, p. 395502, 30 set. 2009. GIBB, E. L. et al. An Inventory of Interstellar Ices toward the Embedded Protostar W33A. The Astrophysical Journal, v. 536, n. 1, p. 347–356, 10 jun. 2000. GLASSER, L.; SHEPPARD, D. A. Cohesive Energies and Enthalpies: Complexities, Confusions, and Corrections. Inorganic Chemistry, v. 55, n. 14, p. 7103–7110, 18 jul. 2016. GLAVIN, D. P.; DWORKIN, J. P. Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proceedings of the National Academy of Sciences, v. 106, n. 14, p. 5487–5492, 2009. GODFREY, P. D. et al. Millimeter-wave spectroscopy of biomolecules: alanine. Journal of the American Chemical Society, v. 115, n. 21, p. 9687–9691, 1 out. 1993. GOLDMAN, N. et al. Synthesis of glycine-containing complexes in impacts of comets on early Earth. Nature Chemistry, v. 2, n. 11, p. 949–954, 12 nov. 2010. GRIMME, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, v. 27, n. 15, p. 1787–1799, 30 nov. 2006. GROOM, C. R. et al. The Cambridge Structural Database. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, v. 72, n. 2, p. 171–179, 1 abr. 2016. HALKIER, A. et al. Basis-set convergence of the energy in molecular Hartree–Fock calculations. Chemical Physics Letters, v. 302, n. 5–6, p. 437–446, mar. 1999. HEIT, Y. N.; BERAN, G. J. O. How important is thermal expansion for predicting molecular crystal structures and thermochemistry at finite temperatures? Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, v. 72, n. 4, p. 514–529, 2016. HERBST, E. The synthesis of large interstellar molecules. International Reviews in Physical Chemistry, v. 36, n. 2, p. 287–331, 3 abr. 2017. HERBST, E.; VAN DISHOECK, E. F. Complex Organic Interstellar Molecules. Annual Review of Astronomy and Astrophysics, v. 47, n. 1, p. 427–480, set. 2009. HINTON, J. K. et al. Effects of pressure on the structure and lattice dynamics of α- glycine: a combined experimental and theoretical study. CrystEngComm, v. 21, n. 30, p. 4457–4464, 2019. HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. Physical Review, v. 136, n. 3B, p. B864–B871, 9 nov. 1964. HORNEKÆR, L. et al. Influence of surface morphology on D2 desorption kinetics from amorphous solid water. The Journal of Chemical Physics, v. 122, n. 12, p. 124701, 22 mar. 2005. HYBERTSEN, M. S.; LOUIE, S. G. First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators. Physical Review Letters, v. 55, n. 13, p. 1418–1421, 23 set. 1985. IITAKA, Y. The crystal structure of β-glycine. Acta Crystallographica, v. 13, n. 1, p. 35–45, 1 jan. 1960. IITAKA, Y. The crystal structure of γ-glycine. Acta Crystallographica, v. 14, n. 1, p. 1–10, 10 jan. 1961. IOPPOLO, S. et al. A non-energetic mechanism for glycine formation in the interstellar medium. Nature Astronomy, v. 5, n. 2, p. 197–205, 16 fev. 2021. IVANOV, A. Y.; SHEINA, G.; BLAGOI, Y. . FTIR spectroscopic study of the UVinduced rotamerization of glycine in the low temperature matrices (Kr, Ar, Ne). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 55, n. 1, p. 219–228, dez. 1998. JACKSON, I.; RIGDEN, S. M. Analysis of P-V-T data: constraints on the thermoelastic properties of high-pressure minerals. Physics of the Earth and Planetary Interiors, v. 96, n. 2–3, p. 85–112, ago. 1996. JOHNSON III, R. D. et al. NIST Computational Chemistry Comparison and Benchmark Database. KAIFU, N. et al. Detection of Interstellar Methylamine. The Astrophysical Journal, v. 191, p. L135, ago. 1974. KAISER, R. I.; MAITY, S.; JONES, B. M. Synthesis of Prebiotic Glycerol in Interstellar Ices. Angewandte Chemie, v. 127, n. 1, p. 197–202, 2015. KAISER, R. I.; ROESSLER, K. Theoretical and Laboratory Studies on the Interaction of Cosmic‐Ray Particles with Interstellar Ices. III. Suprathermal Chemistry–Induced Formation of Hydrocarbon Molecules in Solid Methane (CH 4 ), Ethylene (C 2 H 4 ), and Acetylene (C 2 H 2 ). The Astrophysical Journal, v. 503, n. 2, p. 959–975, 20 ago. 1998. KAYANUMA, M. et al. A theoretical study of the formation of glycine via hydantoin intermediate in outer space environment. Chemical Physics Letters, v. 687, p. 178–183, nov. 2017. KHOLIYA, K.; CHANDRA, J.; VERMA, S. Analysis of Equation of States for the Suitability at High Pressure: MgO as an Example. The Scientific World Journal, v. 2014, p. 1–5, 2014. KITTEL, C. Introduction to solid state physics. [s.l: s.n.]. KOHN, W.; SHAM, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, v. 140, n. 4A, p. A1133–A1138, 15 nov. 1965. KRASNOKUTSKI, S. A. et al. A pathway to peptides in space through the condensation of atomic carbon. Nature Astronomy, v. 6, n. 3, p. 381–386, 10 mar. 2022. KRASNOKUTSKI, S. A.; JÄGER, C.; HENNING, T. Condensation of Atomic Carbon: Possible Routes toward Glycine. The Astrophysical Journal, v. 889, n. 1, p. 67, 27 jan. 2020. KUAN, Y. et al. Interstellar Glycine. The Astrophysical Journal, v. 593, n. 2, p. 848–867, 2003. KVENVOLDEN, K. et al. Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite. Nature, v. 228, n. 5275, p. 923–926, dez. 1970. LARGO, L. et al. The reaction between NH + and CH 3 COOH : a possible process for the formation of glycine precursors in the interstellar medium. Astronomy & Astrophysics, v. 516, p. A79, 2010. LAURENDEAU, N. M. Statistical Thermodynamics: Fundamentals and Applications. 1st. ed. Cambridge: Cambridge University Press, 2010. LEE, C.-W. et al. FORMATION OF GLYCINE ON ULTRAVIOLET-IRRADIATED INTERSTELLAR ICE-ANALOG FILMS AND IMPLICATIONS FOR INTERSTELLAR AMINO ACIDS. The Astrophysical Journal, v. 697, n. 1, p. 428–435, 20 maio 2009. LEE, H. M.; CHOE, J. C. Formation of glycine from HCN and H2O: A computational mechanistic study. Chemical Physics Letters, v. 675, p. 6–10, maio 2017. LIU, Z. et al. Crystallization of metastable β glycine from gas phase via the sublimation of α or γ form in vacuum. Biophysical Chemistry, v. 132, n. 1, p. 18–22, 2008. LOVAS, F. J. et al. Microwave Spectra, Hyperfine Structure, and Electric Dipole Moments for Conformers I and II of Glycine. The Astrophysical Journal, v. 455, n. 2, 20 dez. 1995. LUND, A. M. et al. Crystal structure prediction from first principles: The crystal structures of glycine. Chemical Physics Letters, v. 626, p. 20–24, 2015. MAROM, N. et al. Many-body dispersion interactions in molecular crystal polymorphism. Angewandte Chemie - International Edition, v. 52, n. 26, p. 6629–6632, 2013. MATÉ, B. et al. STABILITY OF EXTRATERRESTRIAL GLYCINE UNDER ENERGETIC PARTICLE RADIATION ESTIMATED FROM 2 keV ELECTRON BOMBARDMENT EXPERIMENTS. The Astrophysical Journal, v. 806, n. 2, p. 151, 15 jun. 2015. MATERESE, C. K.; GERAKINES, P. A.; HUDSON, R. L. Laboratory Studies of Astronomical Ices: Reaction Chemistry and Spectroscopy. Accounts of Chemical Research, v. 54, n. 2, p. 280–290, 19 jan. 2021. MCDONAGH, J. L. et al. Are the Sublimation Thermodynamics of Organic Molecules Predictable? Journal of Chemical Information and Modeling, v. 56, n. 11, p. 2162–2179, nov. 2016. MCGUIRE, B. A. 2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. The Astrophysical Journal Supplement Series, v. 239, n. 2, p. 17, 26 nov. 2018. MEHRINGER, D. M. et al. Detection and Confirmation of Interstellar Acetic Acid. The Astrophysical Journal, v. 480, n. 1, p. L71–L74, 1 maio 1997. MEINERT, C. et al. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science, v. 352, n. 6282, p. 208–212, 8 abr. 2016. MERRICK, J. P.; MORAN, D.; RADOM, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. The Journal of Physical Chemistry A, v. 111, n. 45, p. 11683–11700, nov. 2007. MOGGACH, S. A. et al. How focussing on hydrogen bonding interactions in amino acids can miss the bigger picture: A high-pressure neutron powder diffraction study of ε- glycine. CrystEngComm, v. 17, n. 28, p. 5315–5328, 2015. MOLPECERES, G.; GARCÍA DE LA CONCEPCIÓN, J.; JIMÉNEZ-SERRA, I. Diastereoselective Formation of Trans-HC(O)SH through Hydrogenation of OCS on Interstellar Dust Grains. The Astrophysical Journal, v. 923, n. 2, p. 159, 1 dez. 2021. MOLPECERES, G.; KÄSTNER, J. Adsorption of H 2 on amorphous solid water studied with molecular dynamics simulations. Physical Chemistry Chemical Physics, v. 22, n. 14, p. 7552–7563, 2020. MONKHORST, H. J.; PACK, J. D. Special points for Brillouin-zone integrations. Physical Review B, v. 13, n. 12, p. 5188–5192, 15 jun. 1976. MORALES-GARCÍA, Á.; VALERO, R.; ILLAS, F. An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations. The Journal of Physical Chemistry C, v. 121, n. 34, p. 18862–18866, 31 ago. 2017. MORI-SÁNCHEZ, P.; COHEN, A. J.; YANG, W. Localization and Delocalization Errors in Density Functional Theory and Implications for Band-Gap Prediction. Physical Review Letters, v. 100, n. 14, p. 146401, 7 abr. 2008. MUÑOZ CARO, G. M. et al. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, v. 416, n. 6879, p. 403–406, mar. 2002. MURLI, C. et al. α-Glycine under high pressures: a Raman scattering study. Physica B: Condensed Matter, v. 339, n. 1, p. 23–30, nov. 2003. MURNAGHAN, F. D. The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences of the United States of America, v. 30, n. 9, p. 244–247, 1944. NGUON NGAUV, S.; SABBAH, R.; LAFFITIE, M. Thermodynamique de composes azotes III. Etude Thermochimique de la glycine et de la l-α-alanine. Thermochimica Acta, v. 20, n. 3, p. 371–380, 1977. NHLABATSI, Z. P.; BHASI, P.; SITHA, S. Possible interstellar formation of glycine from the reaction of CH 2 NH, CO and H 2 O: catalysis by extra water molecules through the hydrogen relay transport. Phys. Chem. Chem. Phys., v. 18, n. 1, p. 375–381, 2016. NO, K. T. et al. Determination of proton transfer energies and lattice energies of several amino acid zwitterions. Journal of Physical Chemistry, v. 98, n. 42, p. 10742–10749, 1994. NUEVO, M.; COOPER, G.; SANDFORD, S. A. Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites. Nature Communications, v. 9, n. 1, p. 1–10, 2018. OBA, Y. et al. Nucleobase synthesis in interstellar ices. Nature Communications, v. 10, n. 1, p. 4413, 27 dez. 2019. OHISHI, M. et al. Detection of a new methylamine (CH3NH2) source: Candidate for future glycine surveys. Publications of the Astronomical Society of Japan, v. 71, n. 4, p. 1–11, 2019. OTERO-DE-LA-ROZA, A.; JOHNSON, E. R. A benchmark for non-covalent interactions in solids. Journal of Chemical Physics, v. 137, n. 5, 2012. PERDEW, J. P.; ERNZERHOF, M.; BURKE, K. Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, v. 105, n. 22, p. 9982–9985, 8 dez. 1996. PERDEW, J. P.; RUZSINSZKY, A. Density-functional energy gaps of solids demystified. The European Physical Journal B, v. 91, n. 6, p. 108, 11 jun. 2018. PERLOVICH, G. L.; HANSEN, L. K.; BAUER-BRANDL, A. The polymorphism of glycine: Thermochemical and structural aspects. Journal of Thermal Analysis and Calorimetry, v. 66, n. 3, p. 699–715, 2001. PERNET, A. et al. Possible survival of simple amino acids to X-ray irradiation in ice: The case of glycine. Astronomy and Astrophysics, v. 552, p. 1–8, 2013. PFROMMER, B. G. et al. Relaxation of Crystals with the Quasi-Newton Method. Journal of Computational Physics, v. 131, n. 1, p. 233–240, fev. 1997. PILLING, S. et al. The Influence of Crystallinity Degree on the Glycine Decomposition Induced by 1 MeV Proton Bombardment in Space Analog Conditions. Astrobiology, v. 13, n. 1, p. 79–91, 2013. PILLING, S. et al. The temperature effect on the glycine decomposition induced by 2 keV electron bombardment in space analog conditions. European Physical Journal D, v. 68, n. 3, 2014. PISANI, C.; CASASSA, S.; UGLIENGO, P. Proton-ordered ice structures at zero pressure. A quantum-mechanical investigation. Chemical Physics Letters, v. 253, n. 3–4, p. 201–208, maio 1996. POTAPOV, A.; MCCOUSTRA, M. Physics and chemistry on the surface of cosmic dust grains: a laboratory view. International Reviews in Physical Chemistry, v. 40, n. 2, p. 299–364, 3 abr. 2021. PROVOST, B. Density Functional Theory Study of Aromatic Adsorption on Iron Surfaces. [s.l.] University of Cambridge, 2019. PURVIS, G. D.; BARTLETT, R. J. A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples. The Journal of Chemical Physics, v. 76, n. 4, p. 1910–1918, 15 fev. 1982. QASIM, D. et al. An experimental study of the surface formation of methane in interstellar molecular clouds. Nature Astronomy, v. 4, n. 8, p. 781–785, 13 ago. 2020. RAABE, G. Estimation of Lattice Energies of Organic Molecular Crystals by Combination of Experimentally Determined and Quantum-Chemically Calculated Quantities: A New Value for the Lattice Energy of α-Glycine. Zeitschrift fuer Naturforschung, A: Physical Sciences, v. 54, n. 10–11, p. 611–616, 1999. RIMOLA, A. et al. Computational Surface Modelling of Ices and Minerals of Interstellar Interest—Insights and Perspectives. Minerals, v. 11, n. 1, p. 26, 28 dez. 2020. RIMOLA, A.; SODUPE, M.; UGLIENGO, P. Deep-space glycine formation via Strecker-type reactions activated by ice water dust mantles. A computational approach. Physical Chemistry Chemical Physics, v. 12, n. 20, p. 5285, 2010. RIMOLA, A.; SODUPE, M.; UGLIENGO, P. Computational study of interstellar glycine formation occurring at radical surfaces of water-ice dust particles. Astrophysical Journal, v. 754, n. 1, 2012. RIMOLA, A.; SODUPE, M.; UGLIENGO, P. Role of Mineral Surfaces in Prebiotic Chemical Evolution. In Silico Quantum Mechanical Studies. Life, v. 9, n. 1, p. 10, 17 jan. 2019. RODRÍGUEZ, J. S. et al. Structural and Optoelectronic Properties of the α-, β-, and γ- Glycine Polymorphs and the Glycine Dihydrate Crystal: A DFT Study. Crystal Growth and Design, v. 19, n. 9, p. 5204–5217, 2019. ROSE, J. H.; SMITH, J. R.; FERRANTE, J. Universal features of bonding in metals. Physical Review B, v. 28, n. 4, p. 1835–1845, 15 ago. 1983. SCOTT, A. P.; RADOM, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. The Journal of Physical Chemistry, v. 100, n. 41, p. 16502–16513, jan. 1996. SCUSERIA, G. E.; JANSSEN, C. L.; SCHAEFER, H. F. An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations. The Journal of Chemical Physics, v. 89, n. 12, p. 7382–7387, 15 dez. 1988. SCUSERIA, G. E.; SCHAEFER, H. F. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? The Journal of Chemical Physics, v. 90, n. 7, p. 3700–3703, abr. 1989. SELVARENGAN, P.; KOLANDAIVEL, P. Potential energy surface study on glycine, alanine and their zwitterionic forms. Journal of Molecular Structure: THEOCHEM, v. 671, n. 1–3, p. 77–86, 2004. SHI, Y.; WANG, L. Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy. Journal of Physics D: Applied Physics, v. 38, n. 19, p. 3741–3745, 7 out. 2005. SHIM, S.-H.; DUFFY, T. S. Constraints on the P-V-T equation of state of MgSiO 3 perovskite. American Mineralogist, v. 85, n. 2, p. 354–363, fev. 2000. SHINOZAKI, A. et al. Behavior of intermolecular interactions in α-glycine under high pressure. The Journal of Chemical Physics, v. 148, n. 4, p. 044507, 28 jan. 2018. SINGH, M. K. Predicting lattice energy and structure of molecular crystals by firstprinciples method: Role of dispersive interactions. Journal of Crystal Growth, v. 396, p. 14–23, 2014. SINGH, S. K. et al. Experimental identification of aminomethanol (NH2CH2OH)—the key intermediate in the Strecker Synthesis. Nature Communications, v. 13, n. 1, p. 375, 19 dez. 2022. SNYDER, L. E. et al. A Rigorous Attempt to Verify Interstellar Glycine. The Astrophysical Journal, v. 619, n. 2, p. 914–930, 2005. STENBACK, H. On the Raman spectra of solid natural α-glycine and solid 15Nsubstituted α-glycine. Journal of Raman Spectroscopy, v. 5, n. 1, p. 49–55, jun. 1976. STIEVANO, L. et al. Density Functional Theory Modeling and Calculation of NMR Parameters: An ab Initio Study of the Polymorphs of Bulk Glycine. Crystal Growth & Design, v. 10, n. 8, p. 3657–3667, 4 ago. 2010. SUGAHARA, H.; MIMURA, K. Glycine oligomerization up to triglycine by shock experiments simulating comet impacts. Geochemical Journal, v. 48, n. 1, p. 51–62, 2014. SUZUKI, T. et al. An Expanded Gas-grain Model for Interstellar Glycine. The Astrophysical Journal, v. 863, n. 1, p. 51, 9 ago. 2018. SVEC, H. J.; CLYDE, D. D. Vapor Pressures of Some α-Amino Acids. Journal of Chemical & Engineering Data, v. 10, n. 2, p. 151–152, abr. 1965. TAKAGI, S.; CHIHARA, H.; SEKI, S. Vapor Pressure of Molecular Crystals. XIII. Vapor Pressure of α-Glycine Crystal. The Energy of Proton Transfer. Bulletin of the Chemical Society of Japan, v. 32, n. 1, p. 84–88, jan. 1959. THEULE, P. et al. Hydrogenation of solid hydrogen cyanide HCN and methanimine CH 2 NH at low temperature. Astronomy & Astrophysics, v. 534, p. A64, 3 out. 2011. TIELENS, A. G. G. M. The molecular universe. Reviews of Modern Physics, v. 85, n. 3, p. 1021–1081, 12 jul. 2013. TKATCHENKO, A. et al. Accurate and efficient method for many-body van der Waals interactions. Physical Review Letters, v. 108, n. 23, p. 1–5, 2012. TOSONI, S. et al. A comparison between plane wave and Gaussian-type orbital basis sets for hydrogen bonded systems: Formic acid as a test case. The Journal of Chemical Physics, v. 127, n. 15, p. 154102, 21 out. 2007. TUMANOV, N. A.; BOLDYREVA, E. V.; AHSBAHS, H. Structure solution and refinement from powder or single-crystal diffraction data? Pros and cons: An example of the high-pressure β ′-polymorph of glycine. Powder Diffraction, v. 23, n. 4, p. 307–316, 29 dez. 2008. VANDERBILT, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, v. 41, n. 11, p. 7892–7895, 15 abr. 1990. VOOGD, J.; DERISSEN, J. L.; VAN DUIJNEVELDT, F. B. Calculation of Proton- Transfer Energies and Electrostatic Lattice Energies of Various Amino Acids and Peptides Using CNDO/2 and ab Initio SCF Methods. Journal of the American Chemical Society, v. 103, n. 26, p. 7701–7706, 1981. WATANABE, N.; KOUCHI, A. Efficient Formation of Formaldehyde and Methanol by the Addition of Hydrogen Atoms to CO in H[TINF]2[/TINF]O-CO Ice at 10 K. The Astrophysical Journal, v. 571, n. 2, p. L173–L176, 2002. WEISSBUCH, I. et al. Solvent Effect on Crystal Polymorphism: Why Addition of Methanol or Ethanol to Aqueous Solutions Induces the Precipitation of the Least Stable β Form of Glycine. Angewandte Chemie International Edition, v. 44, n. 21, p. 3226–3229, 20 maio 2005. WOON, D. E. Pathways to Glycine and Other Amino Acids in Ultraviolet-irradiated Astrophysical Ices Determined via Quantum Chemical Modeling. The Astrophysical Journal, v. 571, n. Woon 1999, p. L177–L180, 2002. XAVIER, N. F.; BAPTISTA, L.; BAUERFELDT, G. F. Thermodynamic and kinetic aspects of glycine and its radical cation under interstellar medium conditions. Monthly Notices of the Royal Astronomical Society, v. 486, n. 2, p. 2153–2164, 21 jun. 2019. XU, W.; ZHU, Q.; HU, C. T. The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space. Angewandte Chemie - International Edition, v. 56, n. 8, p. 2030–2034, 2017. YANG, J. et al. Ab initio determination of the crystalline benzene lattice energy to subkilojoule/ mole accuracy. Science, v. 345, n. 6197, p. 640–643, 8 ago. 2014. ZAMIRRI, L. et al. Quantum Mechanical Investigations on the Formation of Complex Organic Molecules on Interstellar Ice Mantles. Review and Perspectives. ACS Earth and Space Chemistry, v. 3, n. 8, p. 1499–1523, 15 ago. 2019.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69264/2022%20-%20Neubi%20Francisco%20Xavier%20Junior.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5641
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-05-11T18:46:05Z No. of bitstreams: 1 2022 - Neubi Francisco Xavier Junior.pdf: 7572687 bytes, checksum: 714fd5f8081e81d48d2b6bb20ff6882d (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-05-11T18:46:05Z (GMT). No. of bitstreams: 1 2022 - Neubi Francisco Xavier Junior.pdf: 7572687 bytes, checksum: 714fd5f8081e81d48d2b6bb20ff6882d (MD5) Previous issue date: 2022-03-24eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Neubi Francisco Xavier Junior.pdf7.4 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.