Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9288
Full metadata record
DC FieldValueLanguage
dc.creatorSouza, Edlene Ribeiro Prudêncio de
dc.date.accessioned2023-11-19T20:12:24Z-
dc.date.available2023-11-19T20:12:24Z-
dc.date.issued2021-04-30
dc.identifier.citationSOUZA, Edlene Ribeiro Prudêncio de. Efeito de compostos fenólicos e probióticos em modelo parkinsoniano de Saccharomyces cerevisiae. 2021. 132 f. Tese. (Doutorado em Química, Química Medicinal e Biológica) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9288-
dc.description.abstractParkinson's disease (PD) is a progressive neurodegenerative disorder associated mainly with aging and that has not been cured until now. The current understanding of the pathophysiology of PD suggests a central role in the accumulation of the protein α-synuclein (α -sin) and several evidences have been directing that the initial site of this process would be the enteric nervous system. It is known that the intake of phenolic substances contributes to the redox balance of the organism, however its bioactivities are highly impacted by microbial biotransformations that occur in the intestinal lumen. The objective of this work was to evaluate the influence of microbial biotransformations on the antioxidant activity of phenolic substances phenethyl ester of caffeic acid (CAPE) and mangiferin, as well as their effects on the toxicity of α-synuclein protein, both in eukaryotic cells of the yeast Saccharomyces cerevisiae. In the tests to evaluate the antioxidant activity, CAPE and mangiferin (0.1 mM) decreased the oxidative damage induced by hydrogen peroxide in the control strain (BY4741) and in the mutant strains sod1, gsh1 and ctt1, deficient in antioxidant systems. Microbial fermentation maintained the antioxidant capacity of CAPE and mangiferin in the in vivo model, revealing an increase only with CAPE in the in vitro analysis. However, this mangiferin activity was not significant in intracellular viability and oxidation tests. When the CAPE and mangiferin substances were evaluated in transformed yeast that expressed the α-synuclein gene, it was observed that the substances without fermentation did not inhibit the aggregation of the protein, but that their fermentates reduced the aggregation by about 50% in the fluorescence microscopy assay. The inhibition of aggregation was not correlated with antioxidant activity, but with the presence of fermented metabolites. The detection of 3-HPPA, a microbial metabolite associated with the reduction of α-sin toxicity, converges with recent theories that the microbiota influences the etiology of Parkinson's disease, however further studies are needed to investigate which microorganisms would produce this metabolite and whether other products of microbial metabolism are involved in reducing the toxicity of α-sin. The results of our studies suggest that interactions between the microbiome and certain dietary factors may support new therapeutic strategies to modulate the onset and/or progression of synucleinopathies.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDoença de Parkinsonpor
dc.subjectSaccharomyces cerevisiaepor
dc.subjectcompostos fenólicospor
dc.subjectprobióticospor
dc.subjectestresse oxidativopor
dc.subjectParkinson's diseaseeng
dc.subjectphenolic compoundseng
dc.subjectprobioticseng
dc.subjectoxidative stresseng
dc.titleEfeito de compostos fenólicos e probióticos em modelo parkinsoniano de Saccharomyces cerevisiaepor
dc.title.alternativeEffect of phenolic and probiotic compounds in a parkinsonian model of Saccharomyces cerevisiaeeng
dc.typeTesepor
dc.contributor.advisor1Riger, Cristiano Jorge
dc.contributor.advisor1ID030.096.277-00por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8756160468801705por
dc.contributor.advisor-co1Pereira, Marcos Dias
dc.contributor.referee1Riger, Cristiano Jorger
dc.contributor.referee2Outeiro, Tiago Fleming
dc.contributor.referee3Cordeiro, Yraima Moura Lopes
dc.contributor.referee4Luchese, Rosa Helena
dc.contributor.referee5Salles, Cristiane Martins Cardoso de
dc.creator.ID133.663.677-76por
dc.creator.IDhttps://orcid.org/0000-0002-8486-3721por
dc.creator.Latteshttp://lattes.cnpq.br/4073001345884045por
dc.description.resumoA doença de Parkinson (DP) é uma desordem neurodegenerativa progressiva associada principalmente ao envelhecimento e que não tem cura até o momento. O entendimento atual sobre a fisiopatologia da DP sugere um papel central do acúmulo da proteína α-sinucleína (α-sin) e diversas evidências vêm direcionando que o local inicial deste processo seria o sistema nervoso entérico. É sabido que a ingestão de substâncias fenólicas contribui para o equilíbrio redox do organismo, no entanto suas bioatividades são altamente impactadas por biotransformações microbianas que ocorrem no lúmen intestinal. O objetivo deste trabalho foi avaliar a influência das biotransformações microbianas na atividade antioxidante das substâncias fenólicas éster fenetílico do ácido cafeico (CAPE) e mangiferina, assim como seus efeitos sobre a toxicidade da proteína -sinucleína, ambos em células eucarióticas da levedura Saccharomyces cerevisiae. Nos ensaios para avaliação da atividade antioxidante, CAPE e mangiferina (0,1 mM) diminuíram os danos oxidativos induzidos por peróxido de hidrogênio na cepa controle (BY4741) e nas cepas mutantes sod1, gsh1 e ctt1, deficientes em sistemas antioxidantes. A fermentação microbiana manteve a capacidade antioxidante do CAPE e da mangiferina no modelo in vivo, revelando aumento somente com o CAPE na análise in vitro. Contudo, esta atividade da mangiferina não foi significativa nos testes de viabilidade e oxidação intracelulares. Quando as substâncias CAPE e mangiferina foram avaliadas em levedura transformada que expressava o gene da α-sinucleína observou-se que as substâncias sem fermentar não inibiram a agregação da proteína, mas que os seus fermentados reduziram a agregação em cerca de 50% no ensaio de microscopia de fluorescência. A inibição da agregação não teve correlação com a atividade antioxidante, mas sim com a presença de metabólitos fermentados. A detecção de 3-HPPA, metabólito microbiano associado à redução da toxicidade de α-sin, converge com as teorias recentes de que a microbiota influencia na etiologia da doença de Parkinson, entretanto estudos posteriores são necessários em investigar quais micro-organismos produziriam este metabólito e se outros produtos do metabolismo microbiano estariam envolvidos na redução da toxicidade de α-sin. Os resultados de nossos estudos sugerem que interações entre o microbioma e certos fatores dietéticos podem embasar novas estratégias terapêuticas para modular o início e/ou progressão de sinucleinopatias.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesALBERDI, E. et al. Mangiferin and Morin Attenuate Oxidative Stress, Mitochondrial Dysfunction, and Neurocytotoxicity, Induced by Amyloid Beta Oligomers. Oxidative medicine and cellular longevity, v. 2018, p. 2856063, 2018. ANHÊ, F. F. et al. Gut Microbiota Dysbiosis in Obesity-Linked Metabolic Diseases and Prebiotic Potential of Polyphenol-Rich Extracts. Current obesity reports, v. 4, n. 4, p. 389–400, 2015. ARENDARSKI, P. et al. Sumoylation Protects Against β-Synuclein Toxicity in Yeast. Frontiers in Molecular Neuroscience, v. 11, n. March, p. 1–17, 2018. ASCHERIO, A.; SCHWARZSCHILD, M. A. The epidemiology of Parkinson’s disease: risk factors and prevention. The Lancet Neurology, v. 15, n. 12, p. 1257– 1272, 2016. AULUCK, P. K.; CARAVEO, G.; LINDQUIST, S. α-Synuclein: Membrane Interactions and Toxicity in Parkinson’s Disease. Annual Review of Cell and Developmental Biology, v. 26, n. 1, p. 211–233, 2010. ÁVILA, M. et al. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International, v. 42, n. 10, p. 1453–1461, 2009. AYALA, A.; MUÑOZ, M. F.; ARGÜELLES, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2- Nonenal. Oxidative Medicine and Cellular Longevity, v. 2014, p. 1–31, 2014. BARBOSA, K. B. F. et al. Estresse oxidativo: Conceito, implicações e fatores modulatórios. Revista de Nutricao, v. 23, n. 4, p. 629–643, 2010. BARBUT, D.; STOLZENBERG, E.; ZASLOFF, M. Gastrointestinal Immunity and Alpha-Synuclein. Journal of Parkinson’s Disease, v. 9, p. 1–10, 2019. BAYLIAK, M. M.; BURDYLYUK, N. I.; LUSHCHAK, V. I. Quercetin increases stress resistance in the yeast Saccharomyces cerevisiae not only as an antioxidant. Annals of Microbiology, v. 66, n. 2, p. 569–576, 2016. BEL-RHLID, R. et al. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533. AMB Express, v. 3, n. 1, p. 28, 2013. BELINHA, I. et al. Quercetin Increases Oxidative Stress Resistance and Longevity in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, v. 55, p. 2446–2451, 2007. BIENERT, G. P.; SCHJOERRING, J. K.; JAHN, T. P. Membrane transport of hydrogen peroxide. Biochimica et biophysica acta, v. 1758, n. 8, p. 994–1003, ago. 2006. BIRBEN, E. et al. Oxidative Stress and Antioxidant Defense. WAO Journal, v. 5, n. January, p. 9–19, 2012. BRAAK, H. et al. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. Journal of Neural Transmission, v. 110, n. 5, p. 517–536, 2003. BRÁS, I. C. et al. Yeast-based screens to target alpha-synuclein toxicity. Methods in Molecular Biology, v. 1948, p. 145–156, 2019. BREGER, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathogens, v. 3, n. 2, p. 0168–0178, 2007. CAKMAK, Y. O. Provotella-derived hydrogen sulfide, constipation, and neuroprotection in Parkinson’s disease. Movement Disorders, v. 30, n. 8, p. 1151, 2015. CANUTO, K. M. Propriedades Químicas e Farmacológicas de Mangiferina: Um Composto Bioativo de Manga (Mangifera indica L.). Embrapa Semi-Árido Petrolina- PE, p. 10–11, 2009. CELIK, S.; ERDOGAN, S. Caffeic acid phenethyl ester (CAPE) protects brain against oxidative stress and inflammation induced by diabetes in rats. Molecular and Cellular Biochemistry, v. 312, n. 1–2, p. 39–46, 2008. CELLI, N. et al. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. Journal of Agricultural and Food Chemistry, v. 55, n. 9, p. 3398–3407, 2007. CHEN, F.; GONG, P. Caffeic acid phenethyl ester protect mice hepatic damage against Cadmium exposure. Procedia Environmental Sciences, v. 8, p. 633–636, 2011. CHEN, J. L.; STEELE, T. W. J.; STUCKEY, D. C. Metabolic reduction of resazurin; location within the cell for cytotoxicity assays. Biotechnology and Bioengineering, v. 115, n. 2, p. 351–358, 2018. CHINTA, S. J. et al. Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neuroscience Letters, v. 486, n. 3, p. 235–239, 2010. CURIEL, J. A. et al. Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chemistry, v. 120, n. 1, p. 225–229, 2010. DA SILVA, C. G. et al. Protective effects of flavonoids and extract from Vellozia kolbekii Alves against oxidative stress induced by hydrogen peroxide in yeast. Journal of Natural Medicines, v. 66, n. 2, p. 367–372, 2012. DAVANI-DAVARI, D. et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods, v. 8, n. 3, p. 1–27, 2019. DE FARIAS, C. C. et al. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: Disease and staging biomarkers and new drug targets. Neuroscience Letters, v. 617, p. 66–71, 2016. DI MAIO, R. et al. α-synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Science Translational Medicine, v. 8, n. 342, p. 1–15, 2016. DONG, J. et al. Current Pharmaceutical Treatments and Alternative Therapies of Parkinson’s Disease. Current Neuropharmacology, v. 14, n. 4, p. 339–355, 2016. DU, S. et al. Mangiferin : An effective therapeutic agent against several disorders ( Review ). p. 4775–4786, 2018. EL-SEEDI, H. et al. Recent Insights into the Biosynthesis and Biological Activities of Natural Xanthones. Current Medicinal Chemistry, v. 17, n. 9, p. 854– 901, 2010. ESCALANTE-CHONG, R. et al. Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 5, p. 1636–1641, 2015. FELICE, V. D. et al. Microbiota-gut-brain signalling in Parkinson’s disease: Implications for non-motor symptoms. Parkinsonism and Related Disorders, v. 27, p. 1–8, 2016. FENG, S. et al. Mangiferin : A multipotent natural product preventing neurodegeneration in Alzheimer ’ s and Parkinson ’ s disease models. Pharmacological Research, v. 146, n. July, p. 104336, 2019. FERNANDES, P. N. et al. Oxidative stress response in eukaryotes: effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses in Saccharomyces cerevisiae. Redox report : communications in free radical research, v. 12, n. 5, p. 236–244, 2007. FILANNINO, P. et al. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, v. 46, p. 272–279, 2015. FILOSA, S.; DI MEO, F.; CRISPI, S. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regeneration Research, v. 13, n. 12, p. 2055–2059, 2018. FLEMING, T.; LINDQUIST, S. Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology. Science, v. 302, n. 5651, p. 1772–1775, 2003. FRANÇA, M. B.; PANEK, A. D.; ELEUTHERIO, E. C. A. The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae. Cell Stress and Chaperones, v. 10, n. 3, p. 167–170, 2005. FRASSINETTI, S. et al. Antimutagenic and antioxidant activity of Lisosan G in Saccharomyces cerevisiae. Food Chemistry, v. 135, n. 3, p. 2029–2034, 2012. FRITSCH, C. et al. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates. Food Microbiology, v. 57, p. 178–186, 2016. GALLEGOS, S. et al. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson’s disease. Frontiers in Neuroscience, v. 9, n. FEB, p. 1–11, 2015. GAO, Y. et al. Antioxidant activity evaluation of dietary flavonoid hyperoside using Saccharomyces cerevisiae as a model. Molecules, v. 24, n. 4, 2019. GARDANA, C. et al. Biotransformation strategy to reduce allergens in propolis. Applied and Environmental Microbiology, v. 78, n. 13, p. 4654–4658, 2012. GERSHANIK, O. S. Does Parkinson’s disease start in the gut? A doença de Parkinson começa no intestino? Arq Neuropsiatr, n. November, p. 67–70, 2018. GÖÇER, H.; GÜLÇIN, I. Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. International journal of food sciences and nutrition, v. 62, n. 8, p. 821–5, 2011. GOLOMIDOV, I. M. et al. Yeast red pigment modifies cloned human α-synuclein pathogenesis in Parkinson disease models in Saccharomyces cerevisiae and Drosophila melanogaster. Neurochemistry International, v. 120, p. 172–181, 2018. GUPTA, A. et al. The yeast stress inducible Ssa Hsp70 reduces α-synuclein toxicity by promoting its degradation through autophagy. PLoS Genetics, v. 14, n. 10, p. 1–27, 2018. HILL, C. et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, v. 11, n. 8, p. 506–514, 2014. HO, L. et al. Heterogeneity in gut microbiota drive polyphenol metabolism that influences α-synuclein misfolding and toxicity. Journal of Nutritional Biochemistry, v. 64, p. 170–181, 2019. HOLMQVIST, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathologica, v. 128, n. 6, p. 805– 820, 2014. HU, L. F. et al. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell, v. 9, n. 2, p. 135–146, 2010. HUR, S. J. et al. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, v. 160, p. 346–356, 2014. HWANG, O. Role of Oxidative Stress in Parkinson’s Disease. Experimental Neurobiology, v. 22, n. 1, p. 11, 2013. INGELSSON, M. Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other lewy body disorders. Frontiers in Neuroscience, v. 10, n. SEP, p. 1–10, 2016. JAKUBOWSKI, W.; BARTOSZ, G. Estimation of oxidative stress in Saccharomyces cerevisiae with fluorescent probes. International Journal of Biochemistry and Cell Biology, v. 29, n. 11, p. 1297–1301, 1997. JANDA, E. et al. Defective autophagy in Parkinson’s disease: Role of oxidative stress. Molecular Neurobiology, v. 46, n. 3, p. 639–661, 2012. JARDIM, C. et al. (Poly)phenol metabolites from Arbutus unedo leaves protect yeast from oxidative injury by activation of antioxidant and protein clearance pathways. Journal of Functional Foods, v. 32, n. 29, p. 333–346, 2017. JILANI, H. et al. Biosorption of green and black tea polyphenols into Saccharomyces cerevisiae improves their bioaccessibility. Journal of Functional Foods, v. 17, p. 11–21, 2015. JILANI, H. et al. Improved bioaccessibility and antioxidant capacity of olive leaf (Olea europaea L.) polyphenols through biosorption on Saccharomyces cerevisiae. Industrial Crops and Products, v. 84, p. 131–138, 2016. JUNG, J. et al. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: Ginsenoside conversion and antioxidant effects. Journal of Ginseng Research, p. 1–7, 2017. KALKAN YILDIRIM, H. et al. Biotransformation of propolis phenols by L. plantarum as a strategy for reduction of allergens. Food Science and Biotechnology, v. 27, n. 6, p. 1727–1733, 2018. KARDANI, J.; ROY, I. Understanding Caffeine’s Role in Attenuating the Toxicity of α-Synuclein Aggregates: Implications for Risk of Parkinson’s Disease. ACS Chemical Neuroscience, v. 6, n. 9, p. 1613–1625, 2015. KARDANI, J.; SETHI, R.; ROY, I. Nicotine slows down oligomerisation of α- synuclein and ameliorates cytotoxicity in a yeast model of Parkinson’s disease. Biochimica et Biophysica Acta - Molecular Basis of Disease, v. 1863, n. 6, p. 1454–1463, 2017. KASBE, P.; JANGRA, A.; LAHKAR, M. Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level. Journal of Trace Elements in Medicine and Biology, v. 31, 2015. KAVITHA, M. et al. Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson’s disease mice. Chemico-Biological Interactions, v. 206, n. 2, p. 239–247, 2013. KAVITHA, M. et al. Mangiferin antagonizes rotenone: Induced apoptosis through attenuating mitochondrial dysfunction and oxidative stress in SK-N-SH neuroblastoma cells. Neurochemical Research, v. 39, n. 4, p. 668–676, 2014. KHANAM, H. et al. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. European Journal of Medicinal Chemistry, v. 124, p. 1121–1141, 2016. KIDA, K. et al. Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxidants and Redox Signaling, v. 15, n. 2, p. 343–352, 2011. KLIS, F. M. et al. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews, v. 26, n. 3, p. 239–256, 2002. LEE, S. B. et al. Mass-based metabolomic analysis of lactobacillus sakei and its growth media at different growth phases. Journal of Microbiology and Biotechnology, v. 27, n. 5, p. 925–932, 2017. LEE, Y. J. et al. Defects in very long chain fatty acid synthesis enhance alphasynuclein toxicity in a yeast model of Parkinson’s disease. PLoS ONE, v. 6, n. 1, 2011. LEI, G. et al. Fast quantification of phenylethyl alcohol in rose water and chemical profiles of rose water and oil of rosa damascena and rosa rugosa from southeast China. Journal of Liquid Chromatography and Related Technologies, v. 38, n. 7, p. 823–832, 2015. LIDDLE, R. A. Parkinson’s disease from the gut. Brain Research, v. 1693, p. 201–206, 2018. LIMA, É. S.; SAES, D.; ABDALLA, P. Peroxidação lipídica : mecanismos e avaliação em amostras biológicas. Revista Brasileira de Ciências Farmacêuticas, v. 37, n. 3, p. 293–303, 2001. LIU, B. et al. Vagotomy and Parkinson disease. Neurology, v. 88, p. 1996– 2002, 2017. LUSHCHAK, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, v. 224, p. 164–175, 2014. MACEDO, D. et al. (Poly)phenols protect from α-synuclein toxicity by reducing oxidative stress and promoting autophagy. Human Molecular Genetics, v. 24, n. 6, p. 1717–1732, 2015. MACEDO, D. et al. Phycocyanin protects against Alpha-Synuclein toxicity in yeast. Journal of Functional Foods, v. 38, p. 553–560, 2017. MACEDO, D. et al. (Poly)phenol-digested metabolites modulate alphasynuclein toxicity by regulating proteostasis. Scientific Reports, v. 8, n. 1, p. 1–15, 2018. MANDALARI, G. et al. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of Applied Microbiology, v. 103, n. 6, p. 2056–2064, 2007. MANFREDINI, V. et al. Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1Δ sod2Δ double mutants against oxidative damage. Brazilian Journal of Medical and Biological Research, v. 37, n. 2, p. 159–165, 2004. MARAZZA, J. A. et al. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. Journal of Functional Foods, v. 4, n. 3, p. 594–601, 2012. MARIS, A. F. et al. Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Current Genetics, v. 39, n. 3, p. 137– 149, 2001. MELO, T. Q.; COPRAY, S. J. C. V. M.; FERRARI, M. F. R. Alpha-Synuclein Toxicity on Protein Quality Control, Mitochondria and Endoplasmic Reticulum. Neurochemical Research, v. 43, n. 12, p. 2212–2223, 2018. MENDES, V. et al. Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress. Oxidative Medicine and Cellular Longevity, v. 2015, 2015. MENEZES, R. et al. From the baker to the bedside: yeast models of Parkinson’s disease. Microbial Cell, v. 2, n. 8, p. 262–279, 2015. MENG, D. et al. Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. Journal of Functional Foods, v. 38, p. 36– 44, 2017. MENSOR, L. L. et al. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. PHYTOTHERAPY RESEARCH, v. 15, p. 127–130, 2001. MICHIELS, C. et al. Importance of se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical Biology and Medicine, v. 17, n. 3, p. 235–248, 1994. MILLER-FLEMING, L.; GIORGINI, F.; OUTEIRO, T. F. Yeast as a model for studying human neurodegenerative disorders. Biotechnology Journal, v. 3, n. 3, p. 325–338, 2008. MOOSAVI, F. et al. Derivatives of caffeic acid, a natural antioxidant, as the basis for the discovery of novel nonpeptidic neurotrophic agents. Bioorganic & Medicinal Chemistry, v. 25, n. 12, p. 3235–3246, 15 jun. 2017. MORAIS, T. C. et al. Mangiferin ameliorates the intestinal inflammatory response and the impaired gastrointestinal motility in mouse model of postoperative ileus. Naunyn-Schmiedeberg’s Archives of Pharmacology, v. 388, n. 5, p. 531– 538, 2015. MULAK, A.; BONAZ, B. Brain-gut-microbiota axis in Parkinson’s disease. World Journal of Gastroenterology, v. 21, n. 37, p. 10609–10620, 2015. MURTAZA, G.; KARIM, S.; AKRAM, M. Caffeic Acid Phenethyl Ester and Therapeutic Potentials. BioMed Research International, v. 2014, p. 1–9, 2014. O’MAHONY, S. M. et al. Serotonin, tryptophan metabolism and the brain-gutmicrobiome axis. Behavioural Brain Research, v. 277, p. 32–48, 2015. PAN-MONTOJO, F. et al. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE, v. 5, n. 1, 2010. PAN, L. et al. Metabolomic analysis of significant changes in Lactobacillus casei Zhang during culturing to generation 4,000 under conditions of glucose restriction. Journal of Dairy Science, v. 102, n. 5, p. 3851–3867, 2019. PARIHAR, A. et al. Alpha synuclein and parkinson’s disease. Pathology, Prevention and Therapeutics of Neurodegenerative Disease, p. 1–14, 2018. PARKINSON, J. “An essay on the shaking palsy” 200 years old. The Journal of neuropsychiatry and clinical neurosciences, v. 14, n. 2, p. 223–236, 2002. PEÑA-BAUTISTA, C. et al. Lipid peroxidation in neurodegeneration. Clinica Chimica Acta, v. 497, n. May, p. 178–188, 2019. PENG, S. et al. Neuroprotection of mangiferin against oxidative damage via arousing Nrf2 signaling pathway in PC12 cells. BioFactors, v. 45, n. 3, p. 381–392, 2019. PEREIRA, M. D.; ELEUTHERIO, E. C.; PANEK, A. D. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC microbiology, v. 1, p. 11, 2001. PEREZ-PARDO, P. et al. The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies. European Journal of Pharmacology, v. 817, n. November 2016, p. 86–95, 2017. PERFEITO, R. et al. Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Molecular and Cellular Neuroscience, v. 62, p. 51–59, 2014. PIOVEZAN-BORGES, A. C. et al. Potencial antioxidante de extratos de ervamate (Ilex paraguariensis St. Hil.) em Saccharomyces cerevisiae deficientes para genes de defesa oxidante. Brazilian Journal of Biology, v. 76, n. 2, p. 539–544, 2016. POEWE, W. et al. Parkinson disease. Nature Reviews Disease Primers, v. 3, p. 1–21, 2017. PONOMAROVA, O. et al. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Cell Systems, v. 5, n. 4, p. 345- 357.e6, 2017. POPOVA, B.; KLEINKNECHT, A.; BRAUS, G. H. Posttranslational modifications and clearing of α-synuclein aggregates in yeast. Biomolecules, v. 5, n. 2, p. 617–634, 2015. POURRAMEZAN, Z. et al. In vitro study of antioxidant and antibacterial activities of Lactobacillus probiotic spp. Folia Microbiologica, 2017. PROCHÁZKOVÁ, D.; BOUŠOVÁ, I.; WILHELMOVÁ, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, v. 82, n. 4, p. 513–523, 2011. RATAJCZAK, E.; MURPHY, S.; MARTINSON, H. A. Alpha-synuclein pathology and the role of the microbiota in Parkinson’s disease. Frontiers in Neuroscience, v. 13, n. APR, p. 1–13, 2019. RATAJCZAK, W. et al. Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs). Acta Biochimica Polonica, v. 66, n. 1, p. 1–12, 2019. RAZZAGHI-ASL, N. et al. Antioxidant properties of hydroxycinnamic acids: a review of structure- activity relationships. Current Medicinal Chemistry, v. 20, n. 36, p. 4436–4450, 2013. REICHARDT, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME Journal, v. 8, n. 6, p. 1323–1335, 2014. RENCUS-LAZAR, S. et al. Yeast models for the study of amyloid-associated disorders and development of future therapy. Frontiers in Molecular Biosciences, v. 6, n. MAR, p. 1–10, 2019. ROCHA, E. M.; DE MIRANDA, B.; SANDERS, L. H. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiology of Disease, v. 109, p. 249–257, 2018. ROEHRS, R. et al. Effect of vitamin A treatment on superoxide dismutasedeficient yeast strains. Archives of Microbiology, v. 192, n. 3, p. 221–228, 2010. SÁ, R. A. DE et al. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Brazilian journal of microbiology, v. 44, n. 3, p. 993–1000, 2013. SADOWSKA-BARTOSZ, I. et al. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS yeast research, v. 13, n. 8, p. 820–30, 2013. SAHA, S.; SADHUKHAN, P.; SIL, P. C. Mangiferin: A xanthonoid with multipotent anti-inflammatory potential. BioFactors, v. 42, n. 5, p. 459–474, 2016. SAMPSON, T. The impact of indigenous microbes on Parkinson’s disease. Neurobiology of Disease, 2019. SAMPSON, T. R.; MAZMANIAN, S. K. Control of brain development, function, and behavior by the microbiome. Cell Host and Microbe, v. 17, n. 5, p. 565–576, 2015. SANCENON, V. et al. Suppression of α-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context. Human Molecular Genetics, v. 21, n. 11, p. 2432–2449, 2012. SÁNCHEZ-PATÁN, F. et al. Capability of lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. Journal of Agricultural and Food Chemistry, v. 60, n. 29, p. 7142–7151, 2012. SANDOVAL-ACUÑA, C.; FERREIRA, J.; SPEISKY, H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Archives of biochemistry and biophysics, v. 559, p. 75–90, 1 out. 2014. SANTOS, N. A. G. DOS et al. Caffeic acid phenethyl ester (CAPE) protects PC12 cells from MPP+ toxicity by inducing the expression of neuron-typical proteins. NeuroToxicology, v. 45, p. 131–138, 2014. SANUGUL, K. et al. Isolation of a human intestinal bacterium that transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond. Biological & Pharmaceutical Bulletin, v. 28, n. 9, p. 1672–1678, 2005. SCHEPERJANS, F. et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders, v. 30, n. 3, p. 350–358, 2015. SCHMID, F.-X. Biological Macromolecules : Spectrophotometry Concentrations. In: Encyclopedia of life sciences. [s.l.] Macmillan Publishers Ltd, Nature Publishing Group, 2001. p. 1–4. SETHIYA, N. K.; MISHRA, S. H. Investigation of Mangiferin, as a Promising Natural Polyphenol Xanthone on Multiple Targets of Alzheimer’s Disease. Journal of Biologically Active Products from Nature, v. 4, n. 2, p. 111–119, 2014. SHAHIDI, F.; AMBIGAIPALAN, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, v. 18, p. 820–897, 2015. SILVA, J. A. et al. Aplicação da metodologia de planejamento fatorial e análise de superfícies de resposta para otimização da fermentação alcoólica. Quimica Nova, v. 31, n. 5, p. 1073–1077, 2008. SINGAB, R. et al. Biotransformation of caffeic acid into a promising biologically active metabolite by Candida albicans isolate CI-24. Archives of Pharmaceutical Sciences Ain Shams University, v. 2, n. 1, p. 37–46, 2018. SISWANTO, S. et al. The Effect of Mangiferin Against Brain Damage Caused by Oxidative Stress and Inflammation Induced by Doxorubicin. HAYATI Journal of Biosciences, v. 23, n. 2, p. 51–55, 2016. SOCRIER, L. et al. Flax phenolic compounds as inhibitors of lipid oxidation: Elucidation of their mechanisms of action. Food Chemistry, v. 274, p. 651–658, 2019. SOMMER, F.; BÄCKHED, F. The gut microbiota-masters of host development and physiology. Nature Reviews Microbiology, v. 11, n. 4, p. 227–238, 2013. SOPER, J. H. et al. alpha-Synuclein–induced Aggregation of Cytoplasmic Vesicles in Saccharomyces cerevisiae. Molecular Biology of the Cell, v. 19, n. March, p. 1093–1103, 2008. SOUSA, C. M. D. M. et al. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quimica Nova, v. 30, n. 2, p. 351–355, 2007. SPIELMAN, L. J.; GIBSON, D. L.; KLEGERIS, A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochemistry International, v. 120, p. 149–163, 2018. STEELS, E. L.; LEARMONTH, R. P.; WATSON, K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology, v. 140, n. 1994, p. 569–76, 1994. STOLZENBERG, E. et al. A Role for Neuronal Alpha-Synuclein in Gastrointestinal Immunity. Journal of Innate Immunity, v. 9, n. 5, p. 456–463, 2017. SUBHASWARAJ, P. et al. Determination of antioxidant activity of Hibiscus sabdariffa and Croton caudatus in Saccharomyces cerevisiae model system. Journal of Food Science and Technology, v. 54, n. 9, p. 2728–2736, 2017. SUN, M. F. OF GUT MICROBIOTA AND MICROBIAL METABOLITES IN P. D.; SHEN, Y. Q. Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease. Ageing Research Reviews, v. 45, n. April, p. 53–61, 2018. SVENSSON, E. et al. Vagotomy and subsequent risk of Parkinson’s disease. Annals of Neurology, v. 78, n. 4, p. 522–529, 2015. SWINNEN, E. et al. Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Division, v. 1, p. 1–8, 2006. SZWAJGIER, D.; JAKUBCZYK, A. Biotransformation of ferulic acid by Lactobacillus acidophilus K1 and selected Bifidobacterium strains. Acta Sci. Pol., Technol. Aliment., v. 9, n. 1, p. 45–59, 2010. TARDIFF, D. F. et al. Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates α-synuclein toxicity in neurons. Science, v. 342, n. 6161, p. 979–83, 2013. TENREIRO, S.; ECKERMANN, K.; OUTEIRO, T. F. Protein phosphorylation in neurodegeneration: Friend or foe?Frontiers in Molecular Neuroscience, 2014. TENREIRO, S.; OUTEIRO, T. F. A levedura como modelo para estudar as bases moleculares da doença de Parkinson. Revista Brasileira de Ciências do Envelhecimento Humano, v. 12, n. 3, p. 288–298, 2016. TOLEDANO, M. B. et al. Oxidative stress responses in yeast. Yeast Stress Responses, v. 1, p. 242–87, 2003. TOMASIK, P.; TOMASIK, P. Probiotics, non-dairy prebiotics and postbiotics in nutrition. Applied Sciences (Switzerland), v. 10, n. 4, 2020. TOMIYAMA, R. et al. 3 , 4-dihydroxybenzalacetone and caffeic acid phenethyl ester induce preconditioning ER stress and autophagy in SH-SY5Y cells. Journal of cellular physiology, v. 233, n. 2, p. 1671–1684, 2018. TORRES, A. R. et al. Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from Melipona quadrifasciata quadrifasciata and Tetragonisca angustula stingless bees. Brazilian Journal of Medical and Biological Research, v. 51, n. 6, p. 1–10, 2018. VALDÉS, L. et al. The relationship between phenolic compounds from diet and microbiota: Impact on human health. Food and Function, v. 6, n. 8, p. 2424–2439, 2015. VALERO-CASES, E.; NUNCIO-JÁUREGUI, N.; FRUTOS, M. J. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices. Journal of Agricultural and Food Chemistry, p. acs.jafc.6b04854, 2017. VAMVACA, K.; VOLLES, M. J.; JR, P. T. L. The First N-terminal Amino Acids of α -Synuclein Are Essential for α -Helical Structure Formation In Vitro and Membrane Binding in Yeast. Journal of Molecular Biology, v. 389, n. 2, p. 413–424, 2009. VOLLES, M. J.; JR, P. T. L. Relationships between the Sequence of α - Synuclein and its Membrane Affinity , Fibrillization Propensity , and Yeast Toxicity. p. 1510–1522, 2007. VON STASZEWSKI, M. et al. Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity. Journal of Functional Foods, v. 4, n. 4, p. 800– 809, 2012. WANCHAO, S. et al. Protective effect and mechanism of lactobacillus on cerebral ischemia reperfusion injury in rats. Brazilian Journal of Medical and Biological Research, v. 51, n. 7, p. 1–7, 2018. WANG, J. et al. Gene expression profile of probiotic Lactobacillus casei Zhang during the late stage of milk fermentation. Food Control, v. 25, n. 1, p. 321–327, 2012. WANG, K. et al. Antifungal activity of phenolic monoterpenes and structurerelated compounds against plant pathogenic fungi. Natural Product Research, v. 33, n. 10, p. 1423–1430, 2019. WANG, L. I. Y. A. N.; TANG, Z. H. I. J. U. N.; HAN, Y. U. Z. Neuroprotective effects of caffeic acid phenethyl ester against sevoflurane ‑ induced neuronal degeneration in the hippocampus of neonatal rats involve MAPK and PI3K / Akt signaling pathways. Molecular Medicine Reports, n. 14, p. 3403–3412, 2016. WANG, M. et al. Antioxidant Protection of Nobiletin, 5-Demethylnobiletin, Tangeretin, and 5-Demethyltangeretin from Citrus Peel in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, v. 66, n. 12, p. 3155–3160, 2018. WANG, Y. et al. Antioxidant properties of probiotic bacteria. Nutrients, v. 9, n. 5, 2017. WANG, Y. Q. et al. Comparative study of eight strains of Lactic Acid Bacteria in vitro Antioxidant Activity. Advanced Materials Research, v. 1073–1076, p. 183–188, 2014. WATANABE, D.; TAKAGI, H. Yeast prion-based metabolic reprogramming induced by bacteria in fermented foods. FEMS Yeast Research, v. 19, n. 6, p. 1–6, 2019. WINDERICKX, J. et al. SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on Sir2-mediated mitophagy. Autophagy, v. 8, n. 10, p. 1494–1509, 2012. WONG, Y. C.; KRAINC, D. α-synuclein toxicity in neurodegeneration: Mechanism and therapeutic strategies. Nature Medicine, v. 23, n. 2, p. 1–13, 2017. WU, B. et al. Structure elucidation of in vivo and in vitro metabolites of mangiferin. Journal of Pharmaceutical and Biomedical Analysis, v. 55, n. 5, p. 1075–1082, 2011. WU, W. M. et al. Free radical scavenging and antioxidative activities of caffeic acid phenethyl ester (CAPE) and its related compounds in solution and membranes: A structure-activity insight. Food Chemistry, v. 105, n. 1, p. 107–115, 2007. YAMASAKI, T. R. et al. Gut Microbiome-Modified Polyphenolic Compounds Inhibit α-Synuclein Seeding and Spreading in α-Synucleinopathies. Frontiers in Neuroscience, v. 14, n. May, p. 1–9, 2020. YUNES, R. A. et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe, v. 42, p. 197–204, 2016. ZABKA, M.; PAVELA, R. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, v. 93, n. 6, p. 1051–1056, 2013. ZAIA, D. A. M.; ZAIA, C. T. B. V.; LICHTIG, J. DETERMINAÇÃO DE PROTEÍNAS TOTAIS VIA ESPECTROFOMETRIA: VANTAGENS E DESVANTAGENS DOS MÉTODOS EXISTENTES. Journal of Biochemical and Biophysical Methods, v. 21, n. 6, 1998. ZAITONE, S. A. et al. Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: Relevance to Parkinson’s disease therapy. Pharmacological Reports, v. 71, n. 1, p. 32–41, 2019. ZALÁN, Z. et al. Production of organic acids by Lactobacillus strains in three different media. European Food Research and Technology, v. 230, n. 3, p. 395– 404, 2010. ZAMPOL, M. A.; BARROS, M. H. Melatonin improves survival and respiratory activity of yeast cells challenged by alpha-synuclein and menadione. Yeast, v. 35, n. 3, p. 281–290, 2018. ZHANG, H.; TSAO, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, v. 8, p. 33–42, 1 abr. 2016. ZHANG, Z. et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radical Biology and Medicine, v. 84, 2015. ZHENG, J. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, v. 70, n. 4, p. 2782–2858, 2020.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72666/2021%20-%20Edlene%20Ribeiro%20Prud%c3%aancio%20de%20Souza.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6449
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-03-21T18:01:48Z No. of bitstreams: 1 2021 - Edlene Ribeiro Prudêncio de Souza.pdf: 2292271 bytes, checksum: d3d424f97d039ea0cf9282f565e5c950 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-03-21T18:01:49Z (GMT). No. of bitstreams: 1 2021 - Edlene Ribeiro Prudêncio de Souza.pdf: 2292271 bytes, checksum: d3d424f97d039ea0cf9282f565e5c950 (MD5) Previous issue date: 2021-04-30eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Edlene Ribeiro Prudêncio de Souza.pdf2.24 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.