Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9285
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Silva, Soraia John da | |
dc.date.accessioned | 2023-11-19T20:12:22Z | - |
dc.date.available | 2023-11-19T20:12:22Z | - |
dc.date.issued | 2019-09-17 | |
dc.identifier.citation | SILVA, Soraia John da. Disfunção cognitiva canina: estudo de novas abordagens terapêuticas e diagnósticas para a patologia e contribuições a pesquisas direcionadas ao Mal de Alzheimer. 2019. 121p Tese (Doutorado em Química). Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9285 | - |
dc.description.abstract | Canine Cognitive Dysfunction (CCD) is a neurodegenerative disorder that affects older dogs and it is very similar to Alzheimer's Disease (AD) in humans. Both pathologies are considered multifactorial and present evidence of b-amyloid deposition; oxidative stress; hyperphosphorylation of Tau protein; imbalance in neurotransmitter levels, such as acetylcholine (ACh) among other factors. Since ACh plays a key role in cognitive processes, this work aimed to evaluate the effect of DCC on enzymes that degrade Ach, also known as cholinesterases, and two enzymes of the antioxidant system: catalase and glutathione S-transferase. Thus, blood samples from 48 dogs divided into 5 groups were evaluated: control, risk group, mild DCC, moderate DCC, severe DCC. This aforementiones part of the paper composes chapter 1 of this thesis. Although there was no significant difference between the activities of these enzymes in the five groups studied, it was possible to observe changes in the average activities of cholinesterases (using acetylthiocholine as substrate), catalase and GST. These differences show that although such enzymes are not shown to be suitable as CCD biomarkers, they may in future be used as adjuvants in the analysis of disease evolution and in the assessment of response to treatment used. Since many AD treatments are based on the use of acetylcholinesterase inhibitors (AChE), this work also aimed to evaluate the efficacy of infusions, phytochemicals and synthetic compounds in the in vitro inhibition of this enzyme in dog’s brain. This second part of the paper composes chapter 2 of this thesis. The infusion of Peumus boldus presented prominence in this study proving effective in the inhibition of this enzyme and with significant antioxidant potential. The phytochemical quercetin and synthetic compounds Cum3 and Cum4 have stood out as competitive inhibitors of AChE activity. The effect of these compounds, as well as of boldo infusion, on the serum activity of butyrylcholinesterase (BChE) in dogs was also evaluated. However, all treatments were more effective in inhibiting brain AChE activity than BChE activity in serum. Although the outcomes of this study are still initial, they are promising ones and can contribute to an advance in the studies of new forms of diagnosis and treatment of CCD | eng |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Anticolinesterásicos | por |
dc.subject | Biomarcadores | por |
dc.subject | Disfunção cognitiva | por |
dc.subject | Anticholinesterases | eng |
dc.subject | Biomarkers | eng |
dc.subject | Cognitive dysfunction | eng |
dc.title | Disfunção cognitiva canina: estudo de novas abordagens terapêuticas e diagnósticas para a patologia e contribuições a pesquisas direcionadas ao Mal de Alzheimer | por |
dc.title.alternative | Canine cognitive dysfunction: study of new therapeutical and diagnostic approaches for the pathology and contributions to research directed to Alzheimer's Disease | eng |
dc.type | Tese | por |
dc.contributor.advisor1 | Salles, Cristiane Martins Cardoso de | |
dc.contributor.advisor1ID | 035.399.287-90 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3610279707231709 | por |
dc.contributor.advisor-co1 | Kümmerle, Arthur Eugen | |
dc.contributor.advisor-co1ID | 053.978.487-78 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/5598000938584486 | por |
dc.contributor.referee1 | Salles, Cristiane Martins Cardoso de | |
dc.contributor.referee1ID | 035.399.287-90 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/3610279707231709 | por |
dc.contributor.referee2 | Santos, André Marques dos | |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/3428935182333406 | por |
dc.contributor.referee3 | Vieira, André Luiz Gomes | |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/3094411593964707 | por |
dc.contributor.referee4 | Rodrigues, Alexandre dos Santos | |
dc.contributor.referee4ID | https://orcid.org/0000-0002-1005-5967 | por |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/6562608334824537 | por |
dc.contributor.referee5 | Senger, Mário Roberto | |
dc.contributor.referee5ID | https://orcid.org/0000-0003-2384-2692 | por |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/7350096811187949 | por |
dc.creator.ID | 129.462.487-39 | por |
dc.creator.Lattes | http://lattes.cnpq.br/4441542153901175 | por |
dc.description.resumo | A Disfunção Cognitiva Canina (DCC) é uma alteração neurodegenerativa que afeta cães idosos e que apresenta bastante semelhança com a Doença de Alzheimer (DA) em humanos. Ambas as patologias são consideradas multifatoriais e apresentam evidência de depósito de -amilóide; dano oxidativo; hiperfosforilação da proteína Tau; desequilíbrio nos níveis de neurotransmissores, como acetilcolina (ACh); entre outros fatores. Uma vez que a ACh desempenha papel fundamental em processos cognitivos, este trabalho teve como objetivo avaliar o efeito da DCC sobre enzimas que degradam ACh, também conhecidas como colinesterases, e sobre duas enzimas do sistema antioxidante: catalase e glutationa S-transferase. Para isso foram avaliadas amostras de sangue de 48 cães divididos em 5 grupos: controle, grupo de risco, DCC leve, DCC moderada, DCC avançada. Esta parte do trabalho compõe o capítulo 1 da presente tese. Embora não tenha ocorrido diferença significativa entre as atividades destas enzimas nos cinco grupos estudados, foi possível observar alteração nas atividades médias das colinesterases (utilizando acetiltiocolina como substrato), catalase e GST. Estas diferenças mostram que, apesar de tais enzimas não se mostrarem apropriadas como biomarcadores da DCC, elas podem futuramente vir a ser usadas como adjuvantes na análise da evolução da doença e na avaliação da resposta ao tratamento utilizado. Uma vez que muitos tratamentos da DA são baseados no uso de inibidores de acetilcolinesterase (AChE), este trabalho também teve como objetivo avaliar a eficácia de infusões, fitoquímicos e de compostos sintéticos na inibição in vitro desta enzima em cérebro de cães. Esta segunda parte do trabalho compõe o capítulo 2 desta tese. A infusão de Peumus boldus apresentou destaque neste estudo mostrando-se eficaz na inibição desta enzima e com potencial antioxidante significativo. O fitoquímico quercetina e os compostos sintéticos Cum3 e Cum4 se destacaram como inibidores competitivos da atividade de AChE. Também foi avaliado o efeito destes compostos, bem como da infusão de boldo, sobre a atividade sérica de butirilcolinesterase (BChE) em cães. Entretanto, todos os tratamentos foram mais eficazes na inibição da atividade de AChE cerebral do que da atividade de BChE em soro. Os resultados obtidos neste trabalho, embora ainda iniciais, são promissores e podem contribuir para um avanço nos estudos de novas formas de diagnóstico e tratamento da DCC | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Química | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | ABBOTT, C. A. et al. Relationship between serum butyrylcholinesterase activity, hypertriglyceridaemia and insulin sensitivity in diabetes mellitus. Clinical Science, v. 85, n. 1, p. 77-81, 1993. ABRAz: Associação Brasileira de Alzheimer - Atualizações Científicas. http://abraz.org.br/web/sobre-alzheimer/atualizacoes-cientificas/ Acesso em 26 de maio de 2019. ADAMS, B.; CHAN, A.; CALLAHAN, H.; MILGRAM, N. The Canine as a Model of Human Cognitive Aging: Recent developments. Progress in Neuro-Psychopharmacology & Biological Psychiatry, v. 24, p. 675-692, 2000. AKASSOGLOU, K. et al. Brain-specific deletion of neuropathy target esterase/swisscheese results in neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, v. 101, n. 14, p. 5075-5080, 2004. AKKAYA, C.; YAVUZER, S.S. ; YAVUZER, H.; ERKOL, G.; BOZLUOLCAY, M.; DINÇER, Y. DNA damage, DNA susceptibility to oxidation and glutathione redox status in patients with Alzheimer's disease treated with and without memantine. Journal of the Neurological Sciences, v. 378, p. 158-162, 2017. ALKALAY, A. et al. Plasma acetylcholinesterase activity correlates with intracerebral β-amyloid load. Current Alzheimer Research, v. 10, n. 1, p. 48, 2013. ALLOCATI, N.; MASULLI, M.; DI ILIO, C.; FEDERICI, L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis, v. 7, n. 1, p. 8, 2018. ALMEIDA, J. R. Estudos de modelagem molecular e relação estrutura-atividade da acetilcolinesterase e inibidores em Mal de Alzheimer. 2011. 145 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade de São Paulo, Ribeirão Preto. 2011. ALMEIDA, J. R. Planejamento, ensaio e otimização in silico de novos protótipos inibidores da enzima acetilcolinesterase. 2015. 39 f. Tese (Doutorado em Ciências Farmacêuticas). Universidade de São Paulo, Ribeirão Preto. 2015. AMARAL, F. G. Efeito de extractos aquosos de Plectranthus barbatus e de Peumus boldus na acção do etanol e na absorção conjunta de colesterol em linhas celulares. 2011. 65 f. Dissertação (Mestrado em Bioquímica). Universidade de Lisboa, Lisboa. 2011. ANAND, P.; SINGH, B.; SINGH, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorganic & medicinal chemistry, v. 20, n. 3, p. 1175-1180, 2012. ANDRADE, C. A. O papel do peróxido de hidrogênio na tolerância de soja (Glycine max) ao alagamento. 2013. 57 f. Dissertação (Mestrado em Agronomia). Universidade Federal de Lavras, Lavras. 2013. AOYAMA, K.; NAKAKI, T. Inhibition of GTRAP3-18 May Increase Neuroprotective Glutathione (GSH) Synthesis. International Journal of Molecular Sciences, v. 13, n. 9, 2012. ARAUJO, J. et al. Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs. Journal of Alzheimer's Disease, v. 26, n. 1, p. 143-155, 2011. ARENDT, T.; BRUCKNER, M. K.; LANGE, M.; BIGL, V. (1992). Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease resemble embryonic 92 development—a study of molecular forms. Neurochemistry international, v. 21, n. 3, p. 381-396. ASHRAF, G. M. et al. The possibility of an infectious etiology of Alzheimer disease. Molecular Neurobiology, v. 56, n. 6, p. 4479-4491, 2019. AUDI, E. A.; PUSSI, F. D. Isoenzimas do CYP450 e biotransformação de drogas. Acta Scientarum, v. 22, n. 2, p. 599-604, 2000. AZEVEDO, D. et al. Espectroscopia de prótons na doença de Alzheimer e no comprometimento cognitivo sem demência: estudo de uma amostra comunitária. Arquivos de Neuropsiquiatria, v. 63, n. 4, p. 1021-1027, 2005. BADJA, M. et al. Structure-Based Search for New Inhibitors of Cholinesterases. International Journal of Molecular Sciences, v. 14, p. 5608-5632, 2013. BAGATINI, M. Avaliação da atividade de enzimas que degradam nucleotídeos de adenina e ésteres de colina e estudo do perfil oxidativo em pacientes com cardiopatia isquêmica. 2010. 136 f. Tese (Doutorado em Ciências Biológicas). Universidade Federal de Santa Maria, Santa Maria, RS, 2010. BASHA, M. R. et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. Journal Neuroscience, v. 25, n. 4, p. 823-829, 2005. BARBOSA FILHO, J. et al. Natural products inhibitors of the enzyme acetylcholinesterase. Revista Brasileira de Farmacognosia, v. 16, n. 2, p. 258-285, 2006. BARTUS, R. T. et al. The cholinergic hypothesis of geriatric memory dysfunction. Science, v. 217teoria, p. 408-414, 1982. BASSO, P. et al. Biomarcadores inflamatórios e indicadores de estresse oxidativo em cadelas submetidas à ovariossalpingohisterectomia convencional, por NOTES híbrida e NOTES total. Ciência Rural, v. 44, n. 5, p. 884-890, 2014. BAWASKAR, H. S.; BAWASKAR, P. H.; BAWASKAR, P. H. RBC acetyl cholinesterase: A poor man's early diagnostic biomarker for familial alzheimer's and Parkinson's disease dementia. Journal of Neurosciences in Rural Practice, v.6, n. 1, p. 33-38, 2015. BELINHA, I.; AMORIM, M. A.; RODRIGUES, P.; FREITAS, V.; MORADAS-FERREIRA, P.; MATEUS, N.; COSTA, V. Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. Journal of agricultural and food chemistry, v. 55, n. 6, p. 2446-2451, 2007. BELO, M. F.; SOUZA, A. L. Estudo cinético da enzima catalase (EC 1.11. 1.6) de extrato bruto de batata doce (Ipomoea batatas). Scientia Plena, v. 12, n. 7, 2016. BIANCHI, M. L. P.; ANTUNES, L. M. G. Radicais livres e os principais antioxidantes da dieta. Revista de Nutrição, v. 12, n. 2, p. 123-30, 1999. BICCA, M. A participação do receptor TRPA-1 na toxicidade induzida por oligômeros de beta-amilóide em diferentes modelos experimentais: um potencial novo alvo para a Doença de Alzheimer. 2016. 278 p. Tese (Doutorado em Farmacologia). Universidade Federal de Santa Catarina, Florianópolis. 2016. BOBERG, D. R.; FURTADO-ALLE, L.; SOUZA, R. L.; CHAUTARD, E. A. Molecular forms of butyrylcholinesterase and obesity. Genetics and Molecular Biology, v. 33, n. 3, p. 452-454, 2010. 93 BOEIRA, J. M.; SILVA, J.; ERDTMANN, B.; HENRIQUES, J. Genotoxic effects of the alkaloids harman and harmine assessed by comet assay and chromosome aberration test in mammalian cells in vitro. Basic & Clinical Pharmacology & Toxicology, v. 89, n. 6, p. 287-294, 2001. BOLZÁN, A. D.; BIANCHI, N. O.; LARRAMENDY, M. L.; BIANCHI, M. S. Chromosomal sensitivity of human lymphocytes to bleomycin. Influence of antioxidant enzyme activities in whole blood and different blood fractions. Cancer Genet Cytogenet, y. 64, p. 133-138, 1992. BONO, G. F. Investigação de associação entre a Butirilcolinesterase e a doença de Alzheimer. 2014. 96 p. Dissertação (Mestrado em Genética). Universidade Federal do Paraná, Curitiba. 2014. BORRAS, D.; FERRER, I.; PUMAROLA, M. Age-related changes in the brain of the dog. Veterinary Pathology Online, v. 36, n. 3, p. 202-211, 1999. BOSCH, M. et al. Dogs with cognitive dysfunction syndrome: a natural model of Alzheimer’s disease. Current Alzheimer Research, v. 9, n. 3, p. 298-314, 2012. BOWEN, J.; HEATH, S. Geriatric behavioural issues. In: Behaviour problems in small animals. Practical advice for the veterinary team. London: WB Saunders, 2005. p. 59-69. BOYLE, P. A. et al. Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline. Neurology, v. 67, n. 3, p. 441-445, 2006. BRASIL. Portaria Conjunta nº 13, de 28 de novembro de 2017. Aprova o Protocolo Clínico e Diretrizes Terapêuticas da Doença de Alzheimer. Disponível em: <http://portalarquivos2.saude.gov.br/images/pdf/2017/dezembro/08/465660-17-10-MINUTA-de-Portaria-Conjunta-PCDT-Alzheimer-27-11-2017---COMPLETA.pdf>. Acesso em: 27 julho 2018. BRAZ, P. H.; HANIU, A. E. C. J.; DE SOUZA, A. I..; BRUM, K. B. Epidemiologia do mastocitoma em cães em uma região do Mato Grosso do Sul. Pubvet, 11, 0947-1073, 2017. BROADFOOT, P. J. et al. Integrating Complementary Medicine into veterinary Practice. John Wiley e Sons, 2009, 928 p. BUSCHE, M. A. et al. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Threshold, v. 30, n. 40, p. 50, 2019. CADONIC, C.; SABBIR, M. G.; ALBENSI, B. C. Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Molecular neurobiology, v. 53, n. 9, p. 6078-6090, 2016. CAETANO, L. A. O.; SILVA, F. S. D.; SILVEIRA, C. A. B. Alzheimer, sintomas e grupos: uma revisão integrativa. Vínculo, v. 14, n. 2, 84-93, 2017. CAMATTI-SARTORI, V. Atividade biológica de aveloz (Euphorbia tirucalli), boldo (Pneumus boldus) e cânfora (Cinnamomun camphora) sobre Alternaria sp e Fusarium sp. Cadernos de Agroecologia, v. 8, n. 13871, 2013. CARAMELLI, P. et al. Diagnóstico de doença de Alzheimer no Brasil. Brazil: Dementia e Neuropsychologia, v. 5, n. 1 p. 11-20, 2011. CASIDA, J.; QUISTAD, G. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chemical Research in Toxicology, v. 17, n. 8, p. 983-998, 2004. CARLETTI-CASSANI, A. F. Perfusão por ressonância magnética (arterial spin labeling) em pacientes com doença de Alzheimer leve e comprometimento cognitivo leve e sua 94 relação com o desempenho cognitivo. 2019. 88 p. Dissertação (Mestrado em Ciências). Universidade Estadual de Campinas, Campinas. 2019. CHAPAGAIN, D.; RANGE, F.; HUBER, L.; VIRÁNYI, Z. Cognitive Aging in Dogs. Gerontology, 2017. CHEN, Y, et al. Behavioral and biochemical studies of total furocoumarins from seeds of Psoralea corylifolia in the forced swimming test in mice. Journal of Ethnopharmacology, v. 96, n. 3, p. 451-459, 2005. CHICO, D. E.; LISTOWSKY, I.Diverse expression profiles of glutathione-S-transferase subunits in mammalian urinary bladders. Archives of Biochemistry and Biophysics, v. 435, n. 1, p. 56-64, 2005. CHIOUA, M et al. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer's disease. European Journal of Medicinal Chemistry, v. 15, 839-846, 2018. CHIPPERFIELD, B.; NEWMAN, P.; MOYES, I. Decreased erythrocyte cholinesterase activity in dementia. The Lancet, v. 318, n. 8239, p. 199, 1981. COLOVIC, M. B.; KRSTIC, D. Z.; LAZAREVIC-PASTI, T. D.; BONDZIC, A. M.; VASIC, V. M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Current Neuropharmacology, v. 11, n. 3, p. 315-335, 2013. CORNEC, A. S. Multitargeted Imidazoles: Potential Therapeutic Leads for Alzheimer's and Other Neurodegenerative Diseases. Journal of Medicinal Chemistry, v. 60, n. 12, p. 5120-5145, 2017. COSTA, E. M. M. B.; OLIVEIRA, V.; PIMENTA, F. C. Citocromos P450 e biotransformação microbiana. Atualização, v. 33, p. 21-31, 2004. COSTA, P. Atividade da NTPDase, 5-nucleotidase, acetilcolinesterase e níveis de peroxidação lipídica em ratos expostos ao cádmio e tratados com curcumina. 2014. 90 f. Dissertação (Mestrado em Ciências Biológicas). Universidade Federal de Santa Maria, Santa Maria, RS. 2014. COTMAN, C. W. et al. Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction. Neurobiology of aging, v. 3, n. 5, p. 809-818, 2002. COTMAN, C. W.; HEAD, E. The canine (dog) model of human aging and disease: dietary, environmental and immunotherapy approaches. Journal of Alzheimer's Disease, v. 15, n. 4, p. 685-707, 2008. CRISTALLI, D. et al. Peripheral markers in neurodegenerative patients and their first-degree relatives. Journal of the Neurological Sciences, v. 314, n. 1, p. 48-56, 2012. DANYSZ, W.; PARSONS, C. G. Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine – searching for the connections. British Journal of Pharmacology, v. 167, n. 2, p. 324-352. DAS, U. N. Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Medical Science Monitor Basic Research, v. 13, n. 12, p. 214-221, 2007. DAVE, K. R.; SYAL, A. R.; KATYARE, S. S. Tissue cholinesterases. A comparative study of their kinetic properties. Zeitschrift für Naturforschung, v. 55, n. 1-2, p. 100-108, 2000. 95 DE ALMEIDA, G. et al. Perfil clínico-epidemiológico da fibrilação atrial espontânea em cães. Revista da Sociedade de Cardiologia do Estado do Rio de Janeiro, v. 19, n. 1, p. 20-28, 2006. DGACHI, Y. et al. Synthesis and biological evaluation of benzochromenopyrimidinones as cholinesterase inhibitors and potent antioxidant, non-hepatotoxic agents for Alzheimer’s disease. Molecules, v. 21, n. 5, p. 634, 2016. DECKER, H. Disfunção Sináptica e Comprometimento do Transporte Axonal induzidos por Oligômeros do Peptídeo β-amilóide. 2010. 127 f. Tese (Doutorado em Ciências Morfológicas). Universidade Federal do Rio de Janeiro, Rio de Janeiro. 2010. DEWEY, C.; COSTA, R. Practical guide to canine and feline neurology. 3 ed. Wiley Blackwell, 2015. 688 p. DIDZIAPETRIENĖ, J. et al. Significance of blood serum catalase activity and malondialdehyde level for survival prognosis of ovarian cancer patients. Medicina, v. 50, n. 4, p. 204-208, 2014. DIETZ, A. et al. Improved method for the differentiation of cholinesterase variants. American journal of human genetics, v. 24, n. 1, p. 58, 1972. DINIZ, L. P. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia, v. 62, n. 12, p. 1917-1931, 2014. DINIZ, L. P. Astrocyte transforming growth factor beta 1 protects synapses against Aβ oligomers in Alzheimer's disease model. Journal of Neuroscience, 3351-16, 2017. DURASEVIC, S. et al. The influence of vitamin e supplementation on the oxidative status of rat liver. Archives of Biological Sciences, v. 62, n. 3, p. 677-681, 2010. ELLMAN, G. L. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, v. 7, n. 2, p.88-95, 1961. ENSINO prático e teórico-prático: Determinação da actividade enzimática de colinesterases. Aula prática 8. Disciplina de Bioquímica I. Faculdade de Medicina da Universidade de Coimbra. 2007. 7p. ESTEVÃO, I. Influência dos níveis de ferritina sérica, das mutações no gene da beta globina e dos valores das enzimas de detoxificação catalase e glutationa S-transferase na expressão fenotípica de Beta Talassemia Heterozigota. 2011. 152 f. Tese (Doutorado em Genética). Universidade Estadual Paulista, SP. 2011. EYER, P. et al. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical biochemistry, v. 312, n. 2, p. 224-227, 2003. EVANS, R.; WROW, J. 1978. Is serum cholinesterase activity a predictor of succinyl choline sensitivity? An assessment of four methods. Clinical Chemistry, v. 24, n. 10, p. 1762-1766. FALÉ, P. et al. Acetylcholinesterase inhibition, antioxidant activity and toxicity of Peumus boldus water extracts on HeLa and Caco-2 cell lines. Food and Chemical Toxicology, v. 50, n. 8, p. 2656-2662, 2012. FAST, R. et al. An observational study with long-term follow-up of Canine Cognitive Dysfunction: clinical characteristics, survival, and risk factors. Journal Veterinary Internal Medicine, v. 27, p. 822-829, 2013. 96 FERNANDES, T. Análise fitoquímica de duas espécies de Rutaceae: Helietta apiculata benth e Zanthoxylum fagara (L.) sarg. 2016. 170 f. Tese (Doutorado em Química). Universidade Federal de Santa Maria, Rio Grande do Sul. 2016. FERREIRA, A. L. A.; MATSUBARA, L. S. Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Revista da Associação Médica Brasileira, v. 43, n. 1, p. 61-68, 1997. FERREIRA, R. et al. Constituintes químicos e atividade antioxidante in vivo de flavonoides isolados de Clusia lanceolata (Clusiaceae). Química Nova, v. 39, n. 9, p. 1093-1097, 2016. FOIDL, B. et al. Cholinergic neurodegeneration in an Alzheimer mouse model overexpressing amyloid-precursor protein with the Swedish-Dutch-Iowa mutations. Neurobiology of Learning and Memory, v. 136, p. 86-96, 2016. FOLEGO, G. ADNet: Diagnóstico assistido por computador para Doença de Alzheimer usando Rede Neural Convolucional 3D com cérebro inteiro. 2018. 58 f. Dissertação (Mestrado em Ciência da Computação). Universidade Estadual de Campinas, Campinas. 2018. FORLENZA, O.; GATTAZ, W. Influência de mecanismos colinérgicos nos processos neurodegenerativos relacionados à formação de amilóide e à fosforilação da proteína tau. Revista Psiquiatria Clínica, v. 25, n. 3, p. 114-117, 1998. FOSSUM, T. Cirurgia de pequenos animais. 3 ed. Brasil. Elsevier, 2008. 1314 p. FRANCIS, P. T.; PALMER, A. M.; SNAPE, M.; WILCOCK, G. K. The cholinergic hypothesis of alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry, v. 66, n. 2, p. 137-147, 1999. FREIRE, D. Dispositivo eletrônico detecta moléculas ligadas a câncer, Alzheimer e Parkinson. Agência FAPESP, 2016. Disponível em: http://agencia.fapesp.br/dispositivo_eletronico_detecta_moleculas_ligadas_a_cancer_alzheimer_e_parkinson/23098/ Acesso em: 28 setembro 2017. FREITAS, D. R. J.; VAZ JUNIOR, I. S.; MASUDA, A. Expressão e atividade enzimática de glutationa s-transferase em tecidos de fêmeas de Boophilus microplus. Revista Brasileira de Parasitologia Veterinária (Online), v. 17, n. 2, p. 99-104, 2008 . FREITAS, L. Síntese de 1,2,3-triazóis com potencial atividade biológica e como precursores de carbenos mesoiônicos n-heterocíclicos. 2014. 160 f. Tese (Doutorado em Ciências). Universidade Federal de Minas Gerais, Belo Horizonte. 2014. FUKUMOTO, H. et al. β-Secretase protein and activity are increased in the neocortex in Alzheimer disease. Archives of Neurology, v. 59, n. 9, p. 1381-1389, 2002. FURLANELLO, T. et al. Validation of an automated spectrophotometric assay for the determination of cholinesterase activity in canine serum. Veterinary Research Communications, v. 30, n. 7, p. 723-733, 2006. GANDY, S.; BARTFAI, T.; LEES, G. V.; SANO, M. Midlife interventions are critical in prevention, delay, or improvement of Alzheimer's disease and vascular cognitive impairment and dementia. F1000Research, v.6, p. 413, 2017. GARCÍA AYLLÓN, M. et al. Altered levels of acetylcholinesterase in Alzheimer plasma. Plos One, v. 5, n. 1, p. 8701, 2010. 97 GHOSAL, S.; MEHTA, R.; BHATTACCHARYA, S. K. Naturally occurring and synthetic β-carbolines as cholinesterase inhibitors. Journal of Pharmaceutical Sciences, v. 61, n. 5, p. 808-810, 1972. GHOSH, A.; BRINDISI, M.; TANG, J. Developing β‐secretase inhibitors for treatment of Alzheimer’s disease. Journal of Neurochemistry, v. 120, n. s1, p. 71-83, 2012. GIACOBINI, E. Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of Alzheimer's disease? Drugs Aging, v. 18, n. 12, p. 891-898, 2001. GIORDANO, C. et al. Amyloid-beta neuroprotection mediated by a targeted antioxidant. Scientific Reports, v. 4, p. 4983, 2014. GONZÁLEZ-MARTÍNEZ, A. et al. Plasma β-amyloid peptides in canine aging and cognitive dysfunction as a model of Alzheimer's disease. Experimental Gerontology, v. 46, n. 7, p. 590-596, 2011. GOTH, L.; NAGY, T., PARAGH, G.; KAPLAR, M. Blood Catalase Activities, Catalase Gene Polymorphisms and Acatalasemia Mutations in Hungarian Patients with Diabetes Mellitus. Global Journal Of Obesity Diabetes And Metabolic Syndrome, v. 3, n. 1, p. 1-5, 2016. GONÇALVES, E. A. G.; CARMO, J. S. Diagnóstico da doença de Alzheimer na população brasileira: um levantamento bibliográfico. Revista Psicologia e Saúde, v. 4, n. 2, 2012. GREENAMYRE, J. T.; MARAGOS, W. F.; ALBIN, R. L.; PENNEY, J. B.; YOUNG, A. B. (1988). Glutamate transmission and toxicity in Alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 12, n. 4, p. 421-430, 1988. HAMID, N. et al. Effect of vitamin E (Tri E) on antioxidant enzymes and DNA damage in rats following eight weeks exercise. Nutrition Journal, v. 10, n. 37, 2011. HARDY, J. A.; HIGGINS, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science, v. 256, n. 5054, p. 184, 1992. HEAD, E. Brain Aging in Dogs: Parallels with Human Brain Aging and Alzheimer´s Disease. Veterinary Therapeutics, v. 2, n. 3, p. 247-260, 2001. HEAD, E. Neuropathology in ageing dogs. In: Hill`s European Symposium on Canine Brain Aging. 2002. p 10-12. HEAD, E. et al. Oxidative damage increases with age in a canine model of human brain aging. Journal of Neurochemistry, v. 82, n. 2, p. 375-381, 2002. HEAD, E. A canine model of human aging and Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, v. 1832, n. 9, p. 1384-1389, 2013. HEATH, S. Behaviour problems in geriatric pet. In: HORWITZ, D. F.; MILLS, D. S.; HEATH, S. BSAVA Manual of Canine and Feline Behavioural Medicine. Waterwells: British Small Animal Veterinary Association, 2002. p. 109-118. HECKLER, M. et al. Síndrome da Disfunção Cognitiva em cães. Clínica Veterinária, v. 90, p. 70-74, 2011. HEIBLUM, M.; LABASTIDA, R.; CHAVES, G.; TEJEDA, A. “Didy,” a clinical case of cognitive dysfunction syndrome. Journal of Veterinary Behavior, v. 2, p. 68-72, 2007. HERNANDEZ, M. et al. Acetylcholinesterase inhibition and antioxidant activity of the water extracts of several Hypericum species. Food chemistry, v. 120, n. 4, p. 1076-1082, 2010. 98 HORWITZ, D.; NEILSON, J. Disfunção cognitiva: caninos e felinos. In: Blackwell´s – Consulta Veterinária em 5 minutos: Comportamento canino e felino, São Paulo, 2008. p. 378-386. HOST'ÁLKOVÁ, A. et al. Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity. Natural Product Communications, v. 10, n. 4, p. 577-580, 2015. HU, X.; DAS, B.; HOU, H.; HE, W.; YAN, R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. Journal of Experimental Medicine, 2018. INESTROSA, N. C. et al. Blood markers in Alzheimer disease: subnormal acetylcholinesterase and butyrylcholinesterase in lymphocytes and erythrocytes. Journal of the Neurological Sciences, v. 122, n. 1, p. 1-5, 1994. INOUYE, K; OLIVEIRA, G. Avaliação crítica do tratamento farmacológico atual para doença de Alzheimer. Infarma, v. 15, n. 11-12, p. 80-84, 2004. JACKISCH, R. et al. Inhibitory potency of choline esterase inhibitors on acetylcholine release and choline esterase activity in fresh specimens of human and rat neocortex. Journal Alzheimers Disease, v. 16, n. 3, p. 635-647, 2009. JAZAYERI, S. et al. A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. DARU Journal of Pharmaceutical Sciences, v. 22, n. 1, p. 17, 2014. JEBALI, J. et al. Characterization and evaluation of cholinesterase activity in the cockle Cerastoderma glaucum. Aquatic Biology, v. 13, n. 3, p. 243-250, 2011. JOHNSON, M. K. The delayed neurotoxic effect of some organophosphorus compounds. Identification of the phosphorylation site as an esterase. Biochemical Journal, v. 114, p. 711-717, 1969. JOHNSON, M. K. Improved assay of neurotoxic esterase for screening organophosphates for delayed neurotoxicity potential. Archives of Toxicology, v. 37, p. 113-115, 1977. JOUBERT, J. et al. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, v. 125, p. 853-864, 2017. KAPETANOVIC, I. M. et al. Exposure and toxicity of green tea polyphenols in fasted and non-fasted dogs. Toxicology, v. 260, n. 1, p. 28-36, 2009. KATINA, S.; FARBAKOVA, J.; MADARI, A.; NOVAK, M.; ZILKA, N. factors for canine cognitive dysfunction syndrome in Slovakia. Acta Veterinary Scandinavica, v. 58, n. 17, 2016. KREUTZ, F. Efeito do peptídeo beta-amilóide sobre a biossíntese de gangliosídeos e avaliação da atividade neuroprotetora do GM1. 2010. 84 f. Dissertação (Mestrado em Ciências Biológicas). Universidade Federal do Rio Grande do Sul, Porto Alegre, RS. 2010. KRSKOVA, Z.; MARTIN, J.; DUSEK, J. The inhibition activity of selected beta-carboline alkaloids on enzymes of acetylcholinesterase and butyrylcholinesterase. Ceska a Slovenska Farmacie, v. 60, n. 3, p. 125-131, 2011. 99 KRSTIC, D.; KNUESEL, I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nature Reviews Neurology, v. 9, n. 1, 25, 2013. GALAN, A. et al. Comparative study of select biochemical markers in cerebrospinal fluid of healthy dogs before and after treatment with nutraceuticals. Veterinary Clinical Pathology, v. 43, n. 1, p. 72-77, 2014. GHANEI-NASAB, S. et al. Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety. European Journal of Medicinal Chemistry, v. 121, p. 40-46, 2016. GIACOBINI, E. Cholinesterases: new roles in brain function and in Alzheimer's disease. Neurochemical Research, v. 28, n. 3-4, p. 515-522, 2003. HABIG, W. H.; PABST, M. J.; JAKOBY, W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, v. 249, n. 22, p. 7130-7139, 1974. HOLLMAN, A.; TCHOUNWOU, P.; HUANG, H. The association between gene-environment interactions and diseases involving the human GST superfamily with SNP variants. International Journal of Environmental Research and Public Health, v. 13, n. 4, p. 379, 2016. JONES, C. K.; BYUN, N.; BUBSER, M. Muscarinic and Nicotinic Acetylcholine Receptor Agonists and Allosteric Modulators for the Treatment of Schizophrenia. Neuropsychopharmacology, v. 37, p. 16–42, 2012. KUMAR, S.; TRIVEDI, P. K. Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Frontiers in Plant Science, v. 9, 2018. LAN, J. et al. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, v. 32, n. 1, 2017. LANDSBERG, G.; HUNTHASUEN, W.; ACKERMAN, L. The effects of aging on the behavior of senior pets. In: Handbook of Behavior Problems of the Dog and Cat, 2 ed. Saunders: Edinburgh, 2003. p. 269 – 304. LANDSBERG, G. Therapeutic agents for the treatment of cognitive dysfunction syndrome in senior dogs. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 29, n. 3, p. 471-479, 2005. LANDSBERG, Gary. Therapeutic options for cognitive decline in senior pets. Journal of the American Animal Hospital Association, v. 42, n. 6, p. 407-413, 2006. LANDSBERG, G. M.; MALAMED, R. Clinical picture of canine and feline cognitive impairment. In: LANDSBERG, G.; MAD´ARI, A.; ZILKA, N. Canine and Feline Dementia. Springer, Cham. 2017. p. 1-12. LASSED, S. et al. Protective Effect of Green Tea (Camellia sinensis (L.) Kuntze) against Prostate Cancer: From In Vitro Data to Algerian Patients. Evidence-Based Complementary and Alternative Medicine, v. 2017, 2017. LEE, D. J.; LOZANO, A. M. Current Status of Deep Brain Stimulation for Alzheimer's Disease: From Chance Observation to Clinical Trials. In: Cold Spring Harbor symposia on quantitative biology, 2019. 100 LEMKUL, J. A.; BEVAN, D. R. Destabilizing Alzheimer’s Aβ42 protofibrils with Morin: mechanistic insights from molecular dynamics simulations. Biochemistry, v. 49, n. 18, p. 3935-3946, 2010. LEVIN, E.; SIMON, B. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology, v. 138, n. 3, p. 217-230, 1998. LIMA, D. Tratamento farmacológico da doença de Alzheimer. Revista Hospital Universitário Pedro Ernesto, v. 7, n. 1, 2008. LINHARES, J. J. et al. Polimorfismo em gene do receptor da progesterona (PROGINS) e da glutationa S-transferase (GST) e risco de câncer da mama: revisão de literatura. Revista Brasileira de Cancerologia, v. 52, n. 4, p. 387-393, 2006. LINHARES, A. Efeito de pesticidas organofosforados e carbamatos sobre a acetilcolinesterase eritrocitária humana e seu potencial uso como biomarcador da exposição ocupacional. 2014. 81 f. Dissertação (Mestrado em Ciências Biológicas). Universidade Federal de Pernambuco, Recife, 2014. LISTON, D. et al. Pharmacologyof selective acetylcholinesterase inhibitors: implications for use in Alzheimer-s disease. European Journal of Pharmacology, v. 486, p. 9-17, 2004. LIU, H.; HARRELL, L. E.; SHENVI, S.; HAGEN, T.; LIU, R. M. Gender differences in glutathione metabolism in Alzheimer's disease. Journal of Neuroscience Research, v. 79, n. 6, p. 861-867, 2005. LIU, J. Synthesis and characterization of 1H-phenanthro[9,10-d]imidazole derivatives as multifunctional agents for treatment of Alzheimer's disease. Biochimica et Biophysica Acta, v. 1840, n. 9, p. 2886-2903, 2014 LOPES, J. P. Síntese de dímeros quirais do tipo bis-tacrina com potencial aplicação no tratamento da doença de Alzheimer. 2014. 142 f. Dissertação (Mestrado em Química). Universidade Federal do Rio Grande do Sul, Porto Alegre. 2014 LOUZADA, S. M. et al. Efeito da obesidade induzida pela dieta da cafeteria sobre os parâmetros oxidativos no ovário de ratas. Revista da Sociedade Brasileira de Ciência em Animais de Laboratório, v. 2, n. 2, p. 92-102, 2013. LOVEBIOLOGY - Biology GCSE Revision Quiz. [online]. Disponível em: http://lovebiology.co.uk/MCImages/MCImages.004.jpg. Acesso em: 10 abril 2016. MALHOTRA, A.; DHAWAN, D. Zinc improves antioxidative enzymes in red blood cells and hematology in lithium-treated rats. Nutrition Research, v. 28, p. 43-50, 2008. MARQUES, E. F.; VIEIRA, P. C.; SEVERINO, R. P. Alcaloides acridônicos inibem catepsina L e V. Química Nova, v. 39, n. 1, p. 58-62, 2016. MARQUIS, J. K. Pharmacological significance of acetylcholinesterase inhibition by tetrahydroaminoacridine. Biochemical Pharmacology, v. 40, n. 5, p. 1071-1076, 1990. MARTINS, M. E. G. Coeficiente de correlação amostral. Revista de Ciência Elementar, v. 2, n. 2, 2014. MATSUBARA, S.; RODRIGUEZ-AMAYA, D. B. Conteúdo de miricetina, quercetina e kaempferol em chás comercializados no Brasil. Ciência e Tecnologia de Alimentos, v. 26, n. 2, p. 380-385, 2006. 101 MAZZETTI, A. P.; FIORILE, M. C.; PRIMAVERA, A.; BELLO, M. L. Glutathione transferases and neurodegenerative diseases. Neurochemistry International, v. 82, p. 10-18, 2015. MCKHANN, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & dementia, v. 7, n. 3, p. 263-269, 2011. MEHTA, M.; ADEM, A.; SABBAGH, M. (2012). New acetylcholinesterase inhibitors for Alzheimer's disease. International Journal of Alzheimer’s disease, 2012. MENEGHETTI, A. Avaliação dos mecanismos envolvidos na toxicidade de oligômeros do peptídeo β-amiloide em cultura organotípica de hipocampo de ratos. 2014. 95 f. Dissertação (Mestrado em Ciências Biológicas). Universidade Federal do Rio Grande do Sul. 2014 MESULAM, M. et al. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience, v. 110, n. 4, p. 627-639, 2002. MIKICIUK-OLASIK, E; SZYMAŃSKI, P.; ŻUREK, E. Diagnostics and therapy of Alzheimer’s disease. Indian Journal of Experimental Biology, v. 45, p. 315-325, 2007. MILGRAM, N. et al. Long-term treatment with antioxidants and a program of behavioral enrichment reduces age-dependent impairment in discrimination and reversal learning in beagle dogs. Experimental Gerontology, v. 39, n. 5, p. 753-765, 2004. MOHAMMADI-FARANI, A.; AHMADI, A.; NADRI, H.; ALIABADI, A. Synthesis, docking and acetylcholinesterase inhibitory assessment of 2-(2-(4-Benzylpiperazin-1-yl) ethyl) isoindoline-1, 3-dione derivatives with potential anti-Alzheimer effects. DARU Journal of Pharmaceutical Sciences, v. 21, n. 1, p.47, 2013. MOHAMMADI-KHANAPOSHTANI, M. et al. Potent acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, and docking study of acridone linked to 1, 2, 3-triazole derivatives. European Journal of Medicinal Chemistry, v. 92, p. 799-806, 2015. MOLLATAGHI, A. et al. Anti-acetylcholinesterase, anti-α-glucosidase, anti-leishmanial and anti-fungal activities of chemical constituents of Beilschmiedia species. Fitoterapia, v. 83, n. 2, p. 298-302, 2012. MONTEIRO, A. B.; DINIZ, J. A. O.; FILHO, F. L. C. Regressão e validação do modelo de correlação entre ce e std: uma contribuição ao estudo do aquífero cabeças. Sudeste da bacia sedimentar do Parnaíba – PI. XVIII Congresso Brasileiro de Águas Subterrâneas, 2014. MORALLES, P. Biomarcadores sanguíneos para a doença de Alzheimer: avaliação da expressão gênica da ADAM10 e de micro-RNAs. 2016.125 f. Tese (Doutorado em Ciências Fisiológicas). Universidade Federal de São Carlos, São Carlos. 2016. MOURA, D. Estudo dos alcaloidescarbolínicos em diferentes modelos biológicos. 2006. 132 f. Dissertação (Mestrado em Biologia Celular e Molecular). Universidade Federal do Rio Grande do Sul, Porto Alegre. 2006. NAKAMURA, K. et al. A low activity in dog erythrocytes is due to a very low content of catalase protein despite having a normal specific activity. The International Journal of Biochemistry and Cell Biology, v. 30, p. 823-831, 1998. 102 NAKAMURA, K., WATANABLE, M., SASAKI, Y., & IKEDA, T. Purification and characterization of liver catalase in acatalasemic beagle dog: comparison with normal dog liver catalase. The International Journal of Biochemistry & Cell Biology, v. 32, n. 1, p. 89-98, 2000. NEILSON, J.; HART, B.; CLIFF, K.; RUEHL, W. Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. Journal American Veterinary Medical Association, v. 218, n. 11, p. 1787-1791, 2001. NELSON, D.; KIESOW, L. Enthalpy of decomposition of hydrogen peroxide by catalase at 25C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry, v. 49, P. 474-478, 1972. NICHOLLS, P.; FITA, I.; LOEWEN, P. Enzymology and structure of catalases. Advances in Inorganic Chemistry, v. 51, p. 51-106, 2000. NISHIYAMA, F. et al. Chá verde brasileiro (Camellia sinensis var assamica): efeitos do tempo de infusão, acondicionamento da erva e forma de preparo sobre a eficiência de extração dos bioativos e sobre a estabilidade da bebida. Ciência e tecnologia de Alimentos, v.v30, n. 1, 2010. NOH, D.; CHOI, S.; CHOI, H.; LEE, Y.; LEE, K. Evaluation of interthalamic adhesion size as an indicator of brain atrophy in dogs with and without cognitive dysfunction. Veterinary Radiology & Ultrasound, v. 58, n. 5, p. 581-587, 2017. NORDBERG, A.; SVENSSON, A. Cholinesterase inhibitors in the treatment of Alzheimer’s disease. Drug safety, v. 19, n. 6, p. 465-480, 1998. NORDBERG, A. et al. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. The primary care companion for CNS disorders, v. 15, n. 2, 2013. OCAMPO, L.; PAOLO, L.; FUENTES OVIEDO, L. M.; VILLALBA CEBALLOS, F. Predictive capacity of a battery of neuropsychological tests in the early diagnosis of mild cognitive impairment (MCI) in a group of adults. Encuentros, v. 13, n. 1, p. 25-35, 2015. OLIVEIRA, R. F. MERCES, L.; VELLO, T. P.; BUFON, C. C. B. Water-gated phthalocyanine transistors: Operation and transduction of the peptide–enzyme interaction. Organic Electronics, v. 31, p. 217-226, 2016. OGANE, N.; GIACOBINI, E.; STRUBLE, R. Differential inhibition of acetylcholinesterase molecular forms in normal and Alzheimer disease brain. Brain Research, v. 589, n. 2, p. 307-312,1992. OGATA, M. Mammalian Acatalasemia: The Perspectives of Bioinformatics and Genetic Toxicology. Acta Medica Okayama, v. 63, n. 2, p. 121-122, 2009. ONDREICKA, R. et al. Relation between levels of vitamins C, E, A and beta-carotene and activity of antioxidant enzyme in the blood. Bratisl Lek Listy, v. 99, n. 5, p. 250-254, 1998. PANTOJA, L. Contribuição ao diagnóstico clínico da disfunção cognitiva canina. 2010. 54 f. Dissertação (Mestrado em Medicina Veterinária). Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2010. PANZA, F. et al. Possible role of S-adenosylmethionine, S-adenosylhomocysteine, and polyunsaturated fatty acids in predementia syndromes and Alzheimer's disease. Journal Alzheimer disease, v. 16, n. 3, 467-470, 2009. 103 PEDRO, M. M. Pesquisa de actividade inibitória do enzima acetilcolinesterase em extratos aquosos de várias plantas usadas como infusões: identificação de compostos com maior actividade inibitória. 2008. 72 f. Dissertação (Mestrado em Bioquímica). Universidade de Lisboa, Lisboa. 2008. PERRIN, R. et al. Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer’s disease: a case-control study. Gerontology, v. 36, n. 5-6, p. 306-313, 1990. PETERSON, G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, v. 83, n. 2, p. 346-356, 1977. PEYON, A. Implementação de um bioindicador para a neuropatia tardia induzida por organofosforados (OPDIN). 2007. 53 f. Dissertação (Mestrado em Ciências). Escola Nacional de Saúde Pública, Rio de Janeiro. 2007. PFEFFER, R. et al. Measurement of functional activities in older adults in the community. Journal of Gerontology, v. 37, n. 3, p. 323-329, 1982. PIAZZI, L. et al. Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorganic & Medicinal Chemistry Letters, v. 18, n. 1, p. 423-426, 2008. PILGER, C.; BARTOLUCCI, C.; LAMBA, D.; TROPSHA, A.; FELS, G. Accurate prediction of the bound conformation of galanthamine in the active site of torpedo californica acetylcholinesterase using molecular docking1. Journal of Molecular Graphics and Modelling, v. 19, n. 3-4, p.288-296, 2001. PINEDA, S.; MAS, A.; IBANEZ, M. Cognitive dysfunction syndrome: update behavioral and clinical evaluations as a tool to evaluate the well-being of ageing dogs. Archivos de Medicina Veterinaria, v. 46, p. 1-12. 2014. PISANI, L et al. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: development and biopharmacological profiling of 7-[(3-chlorobenzyl) oxy]-4-[(methylamino) methyl]-2 H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor. Journal Of Medicinal Chemistry, v. 52, n. 21, p. 6685-6706, 2009. PISANI, L. et al. Design, Synthesis, and Biological Evaluation of Coumarin Derivatives Tethered to an Edrophonium‐like Fragment as Highly Potent and Selective Dual Binding Site Acetylcholinesterase Inhibitors. ChemMedChem, v. 5, n. 9, p. 1616-1630, 2010. PLUMLEE, K. et al. Effect of time and storage temperature on cholinesterase activity in blood from normal and organophosphorus insecticide-treated horses. Journal of Veterinary Diagnostic Investigation, v. 6, n. 2, p. 247-249, 1994. POCERNICH, C. B.; BUTTERFIELD, D. A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochemistry and Biophysics Acta, v. 1822, n. 5, p. 625-630, 2012. PRABHU, K.; BHAT, G.; VASUDEVAN, D. M. Can serum glutathione-s-transferase levels in carcinoma cervix be a predictor of radiation response? Indian Journal of Clinical Biochemistry, v. 20, n. 1, p. 95-97, 2005. PRZEDBORSKI, S. et al. Blood Superoxide Dismutase, Catalase and Gluthatione Peroxidase activities in familialand sporadic amyotrophic lateral sclerosis. Neurodegeneration, v. 5, p. 57-64, 1996. 104 PUERTAS, M. C. et al. Plasma oxidative stress parameters in men and women with early stage Alzheimer type dementia. Experimental Gerontology, v. 47, n. 8, p. 625-630, 2012. QUEZADA, R. Asociación entre el déficit colinérgico, las disfunciones de la memoria y el metabolismo energético en un modelo de rata. 2013. 107 F. Tese (Mestrado em Biologia Experimental). Universidad Autómona Metropolitana, México D.F., 2013. RACHAKONDA, V.; PAN, T. H.; LE, W. D. Biomarkers of neurodegenerative disorders: how good are they?. Cell Research, v. 14, n. 5, p. 349-360, 2004. RADIC, Z.; REINER, E.; TAYLOR, P. Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Molecular Pharmacology, v. 39, n. 1, p. 98-104, 1991. RAGHAVENDRA, H. L.; PRASHITH, K. T. R.; KHANUM, F. Acetylcholinesterase Inhibitory Activity of Green Tea Polyphenols. Science, Technology and Arts Research Journal, v. 3, n. 4, p. 141-142, 2015. RAKONCZAY, Z. Potencies and selectivities of inhibitors of acetylcholinesterase and its molecular forms in normal and Alzheimer's disease brain. Acta Biologica Hungarica, v. 54, n. 2, p. 183-189, 2003. RAZA, H. Dual Localization of Glutathione S-Transferase in the Cytosol and Mitochondria: Implications in Oxidative Stress, Toxicity and Disease. Federation of European Biochemical Societies, v. 278, n. 22, p. 4243-4251, 2011. RAZA, A. et al. Pharmacological Evaluation and Docking Studies of 3-Thiadiazolyl- and Thioxo-1,2,4-triazolylcoumarin Derivatives as Cholinesterase Inhibitors. ISRN Pharmacology, 2012. ROBERDS, S. L. et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Human Molecular Genetics, v. 10, n. 12, p. 1317-1324, 2001. RODRIGUES, A. A.; BARBONI, S. A.. Revisão bibliográfica sobre a ausência da atividade da catalase em humanos: importância deste conhecimento para cirurgiões dentistas. Sitientibus, v. 19, p. 87-98, 1998. ROFINA, J. E. et al. Cognitive disturbances in old dogs suffering from the canine counterpart of Alzheimer's disease. Brain Research, v. 1069, n. 1, p. 216-226, 2006. RUEHL, W.; HART, B. In: DODMAN, N.; SHUSTER, L. Psychopharmacology of Animal Behavior Disorders. Blackwell Science, 1998, p.283-303. RYDBERG, E. H. et al. Complexes of Alkylene-Linked Tacrine Dimers with Torpedo c alifornica Acetylcholinesterase: Binding of Bis (5)-tacrine Produces a Dramatic Rearrangement in the Active-Site Gorge. Journal of Medicinal Chemistry, v. 49, n. 18, p. 5491-5500, 2006. SACCARO, R. Atividade de colinesterase sérica em cães antes e durante o uso de coleira impregnada com agente anticolinesterásico. 2007. 42 f. Especialização em Análises Clínicas Veterinárias. Universidade Federal do Rio Grande do Sul, Porto Alegre. 2007. SAEED, A. et al. Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives. Bioorganic Chemistry, v. 63, p. 58-63, 2015. SAHARAN, S.; MANDAL, P. K.The emerging role of glutathione in Alzheimer's disease. Journal of Alzheimer´s Disease, v. 40, n. 3. 519-529, 2014. 105 SALKOVIC-PETRISIC, M.; KNEZOVIC, A.; OSMANOVIC-BARILAR, J.; REUTTER, W. Therapeutic effect of oral galactose treatment in a rat model of Sporadic Alzheimer-s Disease. Alzheimer´s and Dementia, 2014. SALVIN, H. E. et al. The canine cognitive dysfunction rating scale (CCDR): a data-driven and ecologically relevant assessment tool. The Veterinary Journal, v. 188, n. 3, p. 331-336, 2011. SANTORO, D. et al. Evaluation on the effects of 0.1% Peumus boldus leaf and Spiraea ulmaria plant extract combination on bacterial colonization in canine atopic dermatitis: A preliminary randomized, placebo controlled, double-blinded study. Research in Veterinary Science, v. 118, p. 164-170, 2018. SANTOS, V. M. R.; DONNICI, C. L.; DACOSTA, J. B. N.; CAIXEIRO, J. M. M. R. Compostos organofosforados pentavalentes: histórico, métodos sintéticos de preparação e aplicações como inseticidas e agentes antitumorais. Química Nova, v. 30, n. 1, p. 159-170, 2007. SBERNA, G. et al. The Amyloid β‐Protein of Alzheimer's Disease Increases Acetylcholinesterase Expression by Increasing Intracellular Calcium in Embryonal Carcinoma P19 Cells. Journal of Neurochemistry, v. 69, n. 3, p. 1177-1184, 1997. SCHRAG, M. et al. Oxidative stress in blood in Alzheimer's disease and mild cognitive impairment: a meta-analysis. Neurobiology of disease, v. 59, p. 100-110, 2013. SCHUTT, T.; TOFT, N.; BERENDT, M. A comparison of 2 screening questionnaires for clinical assessment of canine cognitive dysfunction. Journal of Veterinary Behavior, v. 10, n. 2, p. 452-458, 2015. SEIDL, C. Efeitos da uleina em alvos relacionados com doença de Alzheimer e estudos enzimáticos on-line com enzima beta-secretase imobilizada. 2014. 121 f. Tese (Doutorado em Ciências Farmacêuticas). Universidade Federal do Paraná, Curitiba. 2014. SEOANE, M. Avaliação da ocorrência das alterações ultrassonográficas na cavidade abdominal, detectadas em cães idosos clinicamente saudáveis atendidos no Hospital Veterinário da Universidade Federal do Paraná. 2012. 113 f. Dissertação (Mestrado em Ciências Veterinárias). Universidade Federal do Paraná, Curitiba. 2012. SERRÃO, S. A. et al. Avaliação dos efeitos do flavonóide morina sobre a memória de animais normais e com Alzheimer induzido por D-galactose. Revista Brasileira de Farmacologia, v. 92, n. 4, p. 384-391, 2011. SHIMMYO, Y. et al. Flavonols and flavones as BACE-1 inhibitors: structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochimica et Biophysica Acta, v. 1780, n. 5, p. 819-825, 2008 SHIMOHAMA, S. et al. Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer‐type dementia. Journal of Neurochemistry, v. 46, n. 1, p. 288-293, 1986. SMITH, M. A. C. Doença de Alzheimer. Revista Brasileira de Psiquiatria, v. 21, p. 03-07, 1999. SILMAN, I.; SUSSMAN, J. Acetylcholinesterase:‘classical’and ‘non-classical’functions and pharmacology. Current Opinion in Pharmacology, v. 5, n. 3, p. 293-302, 2005. SILVA, A. A.; GONÇALVES, R. C. Reactive oxygen species and the respiratory tract diseases of large animals. Ciência Rural, v. 40, n. 4, p. 994-1002, 2010. 106 SILVA, W. J.; FERRARI, C. K. Metabolismo mitocondrial, radicais livres e envelhecimento. Revista Brasileira de Geriatria e Gerontologia, p. 441-451, 2011. SINGH, M. et al. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. European Journal of Medicinal Chemistry, v. 70, p. 165-188, 2013. SIWAK, C. Behavioural Correlates of Age-Associated Cognitive Changes in Dogs. In: Hill's European Symposium on Canine Brain Ageing. Barcelona, 2002. p. 28-30. SIWAK, C. et al. Region specific neuron loss in the aged canine hippocampus is reduced by enrichment. Neurobiology of Aging, v. 29, n. 1, p. 39-50, 2008. SNIGDHA, S., DE RIVERA, C., MILGRAM, N., COTMAN, C. Effect of mitochondrial cofactors and antioxidants supplementation on cognition in the aged canine. Neurobiology of Aging, v. 37, p. 171-178, 2016. SOARES, D. G.; ANDREAZZA, A. C.; SALVADOR, M. Avaliação de compostos com atividade antioxidante em células da levedura Saccharomyces cerevisiae. Revista Brasileira de Ciências Farmacêuticas, v. 41, n. 1, p. 95-100, 2005. SOFIC, E. et al. Brain catalase in the streptozotocin-rat model of sporadic Alzheimer’s disease treated with the iron chelator–monoamine oxidase inhibitor, M30. Journal of Neural Transmission, v. 122, n. 4, p. 559-564, 2015. SOUZA, L. G.; RENNÓ, M. N.; FIGUEROA-VILLAR, J, D. Coumarins as cholinesterase inhibitors: A review. Chemico-biological interactions, v. 254, p. 11-23, 2016. SUETH-SANTIAGO, V.; FRANKLIM, T. N.; LOPES, N. D.; LIMA, M. E. F. CYP51: Uma Boa Ideia?. Revista Virtual de Química, v. 7, n. 2, p. 539-575, 2015. STARLING, D. Investigação de biomarcadores diagnósticos para a doença de Alzheimer no líquido cefalorraquidiano, na saliva e na mucosa oral. 2012. 113 f. Tese (Doutorado em Neurociências). Universidade Federal de Minas, Belo Horizonte, 2012. STEEN, E. et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? Journal Alzheimers Disease, v. 7, n. 1, p. 63-80, 2005. STUDZINSKI, C.; ARAUJO, J.; MILGRAM, N. The canine model of human cognitive aging and dementia: pharmacological validity of the model for assessment of human cognitive-enhancing drugs. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 29, n. 3, p. 489-498, 2005. SULTANA, R.; BUTTERFIELD, D. A. Oxidatively Modified GST and MRP1 in Alzheimer’s Disease Brain: Implications for Accumulation of Reactive Lipid Peroxidation Products. Neurochemical Research, v. 29, n. 12, p. 2215-22290, 2004. SULTZER, D. L. et al. Cholinergic Receptor Binding in Alzheimer's Disease and Healthy Aging: Assessment in Vivo with PET Imaging. The American Journal of Geriatric Psychiatry, 38 p. 2017. TECLES, F.; SUBIELA, S. M.; BERNAL, L. J.; CERÓN, J. J. Use of whole blood for spectrophotometric determination of cholinesterase activity in dogs. The Veterinary Journal, v. 160, n. 3, p. 242-249, 2000. TECLES, F.; PANIZO, C. G.; SUBIELA, S. M.; CERON, J. J. Effects of different variables on whole blood cholinesterase analysis in dogs. Journal of Veterinary Diagnostic Investigation, v. 14, n. 2, p. 132-139, 2002. 107 THOMAS, K. D. et al. New quinolin-4-yl-1, 2, 3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. European Journal of Medicinal Chemistry, v. 46, n. 6, p. 2503-2512, 2011. TODA, T. et al. Apple Procyanidins Suppress Amyloid Protein Aggregation. Biochemistry Research International, v. 2011, 2011. TORRES, M. C. L.; SOARES, N. F. F.; MAIA, J. F. Parâmetros cinéticos da Glutationa STransferase e sua ativação por extratos de vegetais. Ciência e Tecnologia de Alimentos, Campinas, v.24, n.2, p.243- 248, 2004. TORRES, L. et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer's disease. Journal of Alzheimer's Disease, v. 26, n. 1, p. 59-68, 2011. TORRES, J. M. Structural insights into cholinesterases inhibition by harmane β-carbolinium derivatives: A kinetics – molecular modeling approach. Phytochemistry, v.81, p. 24-30, 2012. TRAVANCINHA, J. Alterações comportamentais sugestivas de síndrome da disfunção cognitiva em cães geriátricos. 2014. 81 f. Dissertação (Mestrado em Medicina Veterinária). Universidade de Lisboa, Lisboa, 2014. VALKO, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, v. 39, n. 1, p. 44-84, 2007. VASCONCELLOS, R. Disfunção cognitiva em cães idosos: avaliação clínica e estratégias terapêuticas. Clínica Veterinária, XVII, n. 103, p. 62-70, 2013. VENTURA, A. L. M. et al. Sistema colinérgico: revisitando receptores, regulação e a relação com a doença de Alzheimer, esquizofrenia, epilepsia e tabagismo. Revista Psiquiatria Clínica, v. 37, n. 2, p. 66-72, 2010. VIEGAS JR, C. et al. Produtos naturais como candidatos a fármacos úteis no tratamento do Mal de Alzheimer. Química Nova, p. 655-660, 2004. VILAÇA, R. et al. Quercetin protects Saccharomyces cerevisiae against oxidative stress by inducing trehalose biosynthesis and the cell wall integrity pathway. Plos One, v. 7, n. 9, p. e45494, 2012. VURAL, H. et al. Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer’s disease. Journal of Trace Elements in Medicine and Biology, v. 24, n. 3, p. 169-173, 2010. WANG, D. M.; LI, S. Q.; WU, W. L.; ZHU, X. Y.; WANG, Y.; YUAN, H. Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochemical Research, v. 39, n. 8, p. 1533-1543, 2014. WANG, T. Glutathione S-transferases variants as risk factors in Alzheimer's disease. Neurological Sciences, v. 36, n. 10, p. 1785-1792, 2015. WEILL, M. et al. Insecticide resistance: a silent base prediction. Current Biology, v. 14, n. 14, p. 552-553, 2004. WINK, M. Interference of alkaloids with neuroreceptors and ion channels. Studies in Natural Products Chemistry, v. 21, p. 3-122, 2000. WISEMAN, Frances K. et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nature Reviews Neuroscience, v. 16, n. 9, p. 564, 2015. 108 WISNIEWSKI, H. M. Aged dogs: an animal model to study beta-protein amyloidogenesis. Springer Vienna, 1990. p. 151-168. WU, C. R.; CHANG, C. L.; HSIEH, P. Y.; LIN, L. W.; CHING, H. Psoralen and isopsoralen, two coumarins of Psoraleae Fructus, can alleviate scopolamine-induced amnesia in rats. Planta Medica, v. 73, n. 3, p. 275-278, 2007. XIE, S. S. et al. YDesign, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease. European Journal of Medicinal Chemistry, v. 64, p. 540-553, 2013. YAMAMOTO, Y. et al. Plasma and serum G4 isoenzyme of acetylcholinesterase in patients with Alzheimer-type dementia and vascular dementia. Annals Clinical Biochemistry, v. 27, p. 321-326, 1990. YAN, D.; ZHANG, Y.; LIU, L.; YAN, H. Pesticide exposure and risk of Alzheimer’s disease: a systematic review and meta-analysis. Scientific reports, 6, 32222, 2016.7 YAO, D. et al. Design, synthesis and biological evaluation of coumarin derivatives as novel acetylcholinesterase inhibitors that attenuate H2O2-induced apoptosis in SH-SY5Y cells. Bioorganic Chemistry, v. 68, p. 112-123, 2016. ZAFRILLA, P. et al. Oxidative stress in Alzheimer patients in different stages of the disease. Current Medicinal Chemistry, v. 13, n. 9, p. 1075-1083, 2006. ZHENG, W. H. et al. Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience, v. 115, n. 1, p. 201-211, 2002. ZINSER, E.; HARTMANN, T.; GRIMM, M. Amyloid beta-protein and lipid metabolism. Biochimica et Biophysica Acta (BBA)-Biomembranes, v. 1768, n. 8, p. 1991-2001, 2007. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/67790/2019%20-%20Soraia%20John%20da%20Silva.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5295 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-12-27T13:19:35Z No. of bitstreams: 1 2019 - Soraia John da Silva.pdf: 5511612 bytes, checksum: ca2d10a65171b7045669f36c8841100a (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2021-12-27T13:19:35Z (GMT). No. of bitstreams: 1 2019 - Soraia John da Silva.pdf: 5511612 bytes, checksum: ca2d10a65171b7045669f36c8841100a (MD5) Previous issue date: 2019-09-17 | eng |
Appears in Collections: | Doutorado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019 - Soraia John da Silva.pdf | 2019 - Soraia John da Silva | 5.38 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.