Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9254
Full metadata record
DC FieldValueLanguage
dc.creatorMelos, Jorge Luiz Ribeiro de
dc.date.accessioned2023-11-19T20:11:50Z-
dc.date.available2023-11-19T20:11:50Z-
dc.date.issued2012-09-24
dc.identifier.citationMELOS, Jorge Luiz Ribeiro de. Síntese e caracterização de tiossemicarbazonas, carbimidotioatos e derivados benzotriazocínicos, avaliação da atividade antiparasitária de tiossemicarbazonas derivadas do núcleo 3,4-metilenidioxila. 2012. 238 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2012.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9254-
dc.description.abstractDiseases caused by parasites of the species of Trypanosoma and Leishmania affect hundreds of thousands of people in more than ninety countries on five continents. Thousands of people suffer from Chagas and Leishmaniasis disease in Brazil. People infected by these parasites are generally poor. The treatments available are old, aggressive, expensive and ineffective, and this is explained in part by the lack of sensitivity of the pharmaceutical industry, who are unwilling to invest in drugs for low-income populations. What led these parasites, among other diseases, to compose the list of diseases called "neglected”. This work presents the synthesis of twenty-two thiosemicarbazones, including twelve 3,4-metilenodioxil derived and ten benzo-fluorinateds derived. Fourteen of these are new thiosemicarbazones. Although six compounds were synthesized from the class of hydrazine-carbimidothioates and two were synthesized from the class of benzotriazocin-6(5H)-2-one, all never reported. The compounds were structurally characterized by IV and RMN 1H, 13C, DEPT Q e DEPT 135º. Different synthetic methodologies were employed as alternative means for the reactions of Sandmayer, aiming good results for the core 3.4-metilenodioxil. The chlorination reaction of piperonal with trichloroisocyanuric acid is reported in this study originally. The synthesis reactions of thiosemicarbazones showed yields between 91.0% and 98.5%. Was made a review about enzymes, biosynthetic and metabolic pathways of trypanosomatids, that could be chemotherapeutic targets of these synthesized compounds. Antitripanosomic assessing experiments, in vitro, with epimastigogas T. cruzi and promastigotes of L. amazonensis, was performed with ten synthesized thiosemicarbazones. Five substances have shown trypanomicidal activity below 100 μM, three of which with very promising IC50 values ie, the iodine-substituted IC50 = 7,00 μM, the amino-substituted with IC50 = 7,62 μM and the dicloroaceacetilamino-substituted with IC50 = 9,00 μM. Assays were performed against the macrophage cell line J774-A1 to evaluate the cytotoxicity and selectivity index was calculated from the values obtained in the IC50 trypanomicidal activity. The results indicated the iodine-substituted thiosemicarbazone with the best selectivity index, ie, a low cytotoxicity (279 IC50 μM) and high trypanocidal action (7,0 μM), revealed itself as very promising for in vivo testing. Tests carried forward to murine macrophages infected with amastigote L. amazonensis showed very promising results with IC50 = 10.37 M to the cyano-substituted thiosemicarbazone and IC50 = 9.45 M for iodine-substituted thiosemicarbazone. In this context, appears as a very important way of iron ions sequestration, since the superoxide dismutase enzyme of trypanosomes are dependent on these ions, while in the human host the homologous superoxide dismutase enzyme has atoms of zinc or manganese like central metal. Thus, evaluation of chelating activity against the Fe+2 and Zn+2 ions was performed. The results were very interesting showing the greatest effect of chelating substances tested for Fe+2 when compared to Zn+2 , and greater intensity for the iodine-substituted thiosemicarbazone that showed the best leishmanicidal and trypanomicidal activity. The high selectivity shown by the 6-iodo-1,3-benzodioxole-5-carbaldehyde-thiosemicarbazone on the ion Fe+2, compared with the same capacity on the ion Zn+2, suggests the impossibility of metalloenzyme superoxide dismutase of parasites through the hardship of a vital element for this enzyme.eng
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectTiossemicarbazonaspor
dc.subjectQuelaçãopor
dc.subjectTripanossomatídeospor
dc.subjectThiosemicarbazoneseng
dc.subjectChelationeng
dc.subjectTiypanosomatidseng
dc.titleSíntese e caracterização de tiossemicarbazonas, carbimidotioatos e derivados benzotriazocínicos avaliação da atividade antiparasitária de tiossemicarbazonas derivadas do núcleo 3,4-metilenidioxilapor
dc.title.alternativeSynthesis and characterization of thiosemicarbazones, carbimidothioates and benzotriazocinic derivatives. Evaluation of antiparasitic activity of thiosemicarbazones derived from the 3,4-methylenidioxyl nucleuseng
dc.typeTesepor
dc.contributor.advisor1Lima, Aurea Echevarria Aznar Neves
dc.contributor.advisor1ID668.742.388-68por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1879077396134052por
dc.contributor.referee1Nascimento, Maria da Graça
dc.contributor.referee2Aguiar, Alcino Palermo de
dc.contributor.referee3Costa, João Batista Neves da
dc.contributor.referee4Soares, Renata O. Araújp
dc.creator.ID696.540.857-04por
dc.creator.Latteshttp://lattes.cnpq.br/7530840103306860por
dc.description.resumoPatologias causadas por parasitas de espécies dos gêneros Trypanosoma e Leishmania afetam centenas de milhares de pessoas em mais de noventa países dos cinco continentes. No Brasil milhares de pessoas sofrem da doença de Chagas e de Leishmanioses. As pessoas infectadas por esses parasitas, geralmente, são pobres. Os tratamentos disponíveis são antigos, agressivos, caros e ineficazes; e isto se explica, em parte, pela falta de sensibilidade da indústria farmacêutica, que não se dispõem a investir em medicamentos para populações de baixa renda. O que levou estas parasitoses, dentre outras doenças, a compor o rol das doenças ditas “negligenciadas”. Assim, este trabalho apresenta a síntese de vinte e duas tiossemicarbazonas sendo doze derivadas do núcleo 3,4-metilenodioxila e dez benzofluoradas que objetivaram a ação tripanocida sobre Tyipanssoma cruzi e Leishmania amazonensis. Dentre estas tios-semicarbazonas quatorze são inéditas. Ainda foram sintetizados seis compostos da classe dos carbimidotioatos e dois da classe dos benzotriazocínicos, não relatados na literatura. Os compostos foram caracterizados estruturalmente, através de experimentos de IV e RMN 1H, 13C, DEPT Q e DEPT 135º. Diferentes metodologias sintéticas foram empregadas como formas alternativas para as reações de Sandmayer, objetivando bons resultados, para o núcleo 3,4-metilenodioxila.. A reação de cloração do piperonal com ácido tricloroisocianúrico é relatada neste trabalho originalmente. As reações de síntese das tiosemicarbazonas apresentaram rendimentos entre 91,0% e 98,5%. Foi realizada uma revisão da literatura sobre as enzimas, rotas metabólicas e biossintéticas de tripanossomatídeos que pudessem ser alvos quimioterápicos dos compostos sintetizados. Experimentos da avaliação antiparasitária, in vitro, com as formas epimastigogas de T. cruzi e promastigotas de L. amazonensis foram conduzidos com dez das tiossemicarbazonas sintetizadas, cinco mostraram atividade tripanomicida abaixo de 100 M, sendo que três delas com valores de IC50 muito promissores, ou seja, a iodo-substituída IC50=7,00 M, a amino-susbtituída com IC50 = 7,62 M e a dicloroaceacetilamino-substituída com IC50 = 9,00 M. Foram realizados ensaios frente a macrófagos da linhagem celular J774-A1 para avaliação da citotoxicidade e cálculo do índice de seletividade em relação aos valores de IC50 obtidos na avaliação da atividade tripanocida. Os resultados indicaram a tiossemicarbazona iodo-substituída com melhor índice de seletividade, isto é, uma baixa citotoxicidade (279 IC50 M) e elevada ação tripanocida (7,0 M), revelando-se como bastante promissora para ensaios in vivo. Ensaios realizados frente à macrófagos murinos infectados com a forma amastigota de L. amazonensis revelaram resultados muito promissores com valores de IC50 = 10,37 M para a tiossemicarbazona ciano-substituída e IC50 = 9,45 M para a tiossemicarbazona iodo-substituída Neste contexto, aparece como uma via muito importante o seqüestro de íons de Fe+2, já que a enzima superóxido dismutase dos tripanossomatídeos são dependentes destes íons, enquanto no hospedeiro humano a enzima homóloga superóxido dismutase tem como metal central átomos de zinco ou manganês. Assim, a avaliação da atividade quelante frente aos íons Fe+2 e Zn+2 foi realizada, Os resultados obtidos foram muito interessantes indicando o maior efeito quelante das substâncias ensaiadas para o Fe+2 quando comparado ao Zn+2 e, com maior intensidade para a tiossemicarbazona iodo-substituída que foi a que apresentou melhor atividade leishmanicida e tripanomicida. A alta seletividade apresentada pela 6-iodo-1,3-benzodioxol-5-carbaldeídotiossemicarbazona sobre o íon Fe+2, comparado a mesma capacidade sobre o íon Zn+2, sugere a inviabilidade da metaloenzima superóxido dismutase dos parasitas através da privação de um elemento vital para essa enzima.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAFRASIABI, Z.; SINN, E.; PADHYE, S.; DUTTA, S.; PADHYE, S.; NEWTON, C.; ANSON, C. E.; POWELL, Transition metal complexes of phenanthrenequinone thiosemicarbazone as potential anticancer agents: synthesis, structure, spectroscopy, electrochemistry and in vitro anticancer activity against human breast cancer cell-line, T47D. A. K. J. Inorg. Biochem., 2003, 95: 306. AGUIAR, A. P. & FRANÇA, T. C. C.; Evolução do programa de pós-graduação em química do Instituto Militar de Engenharia: 40 anos; Rev. Mil. Ciên. Tecnol., 2010, 27: 50. ALEXANDER, B. H.; GERTLER, S. I.; ODA, T. A.; BOWN, R. T.; IHNDRIS, R. W.; BEROZA, M. New organic compunds for use in insect control. J. Org. Chem. 1960, 25: 626. ALLINGER, N. L.; CAVA, M. P.; JONGH, D. C.; JOHNSON C. R.; LEBEL, N. A.; STEVENS, C. L. Química orgânica. Rio de Janeiro: Editora Guanabara Koogan S.A, 1978, 1087 p. ALVES, P. B. & VICTOR, M. M. Reação da cânfora com boridreto de sódio: uma estratégia para o estudo da estereoquímica da reação de redução. Quím. Nova, 2010, 33: 103. ANKEL, E. & PETERING, D. H.; Iron-chelating agents and the reductive removal of iron from transferrin. Biochem. Pharmacol. 1980, 29: 1833. ANTHOLINE, W.; KNIGHT, J.; WHELAN, H.; PETERING, D. H.; Studies of the reaction of 2-formylpyridine thiosemicarbazone and its iron and copper complexes with biological systems; Mol. Pharmacol. 1977, 13: 89. ANTONINI, I.; CLAUDI, F.; FRANCHETTI, P.; GRIFANTINI, M.; MARTELLI, S. Elucidation of the structure of the antineoplastic sgents, 2-formylpyridine and 1-formylisoquinoline thiosemicarbazones. J. Med. Chem. 1977, 20: 447. ARAKAKI, T. L. & MERRIT, E. A. Disponível em: <http://www.pdb.org/pdb/home/home>. Acesso em: 20 de agosto 2011. 140 ARMSON, A.; KAMAU, S. W.; GRIMM, F.; REYNOLIDON, J. A.; BEST, W. N.; MACDONALD, L. M.; THOMPSON, R. C. A. A comparison of the effects of a benzimidazole and the dinitroanilines against Leishmania infantum. Acta Trop. 1999, 73, 303. ARANTES, J. M. Efeitos da desferrioxamina sobre aspectos parasitológicos, bioquímicos e imunológicos durante o curso da infecção aguda pelo Trypanosoma cruzi em camundongos. Tese de Doutorado. UFMG. 2011. ASHASSI-SORKHABI, H.; SHAABANI, B. Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid. Appl Surf Sci, 2005, 239:154. ASLAM, N. S.; STEVENSON, P. C.; PHYTHIAN, S. J.; VEITCH, N. C.; HALL, D. R.; Synthesis of cicerfuran, an antifungal benzofuran, and some related analogues; Tetrahedron , 2006, 62: 4214. BACHEGA, J. F.; NAVARRO, M. V.; BLEICHER, L.; BORTOLETO-BUGS, R. K.; DIVE, D.; HOFFMANN, P.; VISCOGLIOSI, E.; GARRATT, R. C. Systematic structural studies of iron superoxide dismutases from human parasites and a statistical coupling analysis of metal binding specificity; Proteins, 2009, 77: 26. BACZEWSKI, P.; KOPROWSKI, M.; BODZIOCH, A.; MARCINIAK, B.; RYCKA-SOKOOWSKA, E. Unusual transformation of the diarylmethanol derivative into an unknown 1,2,3,6,7,10-hexahidroxylated antracene system. J. Org. Chem. 2009, 71: 2899. BAILEY, S.; FAIRLAMB, A. H.; HUNTER, W. N. Structure of trypanothione reductase from crithidia-fasciculata at 2.6 angstrom resolution - enzyme-nadp interactions at 2.8 angstrom resolution. Acta Crystallogr. Sect. D. 1994, 50: 139. BARREIRO, E. J. & FRAGA, C. A. M. Biodiversidade: fonte potencial para a descoberta de fármacos Quim. Nova, 1999, 22: 744. BARRET, M. P.; COOMBS, G. H.; MOTTRAM, J.C. Recent advances in identifying and validating drug targets in trypanosomes and leishmanias. Trends Microbiol. 1999, 7: 82. 141 BASOLO, F.; Frontiers of inorganic chemistry. Coord. Chem. Rev. 1993, 125: 13. BEARD, J. L.; DAWSON, H.; PEÑERO, D. J. Iron metabolism: a comprehensive review. Nutrit. Rev., 1996, 54: 295. BENBROOK, D. M.; MADLER, M. M.; SPRUCE, L. W.; BIRCKBICHLER, P. J.; NELSON, WANG, B.; WANG, W.; LU, S.; ROWLAND, T. C.; DISEVESTRO, P.; LINDAMOOD, C.; HILL, D. L.; BERLIN, D.; Biologically active heteroarotinoids exhibiting anticancer activity and decreased toxicity. J. Med. Chem. 1997, 40: 3567. BEACH, D. H. GOAD, L. J.; HOLZ, G. G. Effects of ketoconazole on sterol biosynthesis by Trypanosoma cruzi epimastigotes. Biochem. Bioph. Res. Co. 1986, 136: 851. BERALDO, H. Semicarbazonas e tiossemicarbazonas: o amplo perfil farmacológico e usos clínicos; Quím. Nova. 2004, 27: 461. BERMAN, J. D. Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies. Rev. Infect. Dis. 1998, 10: 560. BHARTI, N.; HUSAIN, K.; GARZA, M. T. G.; VEGA, D. E. C.; GARZA, J. C.; CARDENAS, B. D. M.; NAQVI, F.; Synthesis and in vitro antiprotozoal activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazone derivatives; Bioorg. Med. Chem. Lett. 2002, 12: 3475. BHARTI, N.; SHAILENDRA; SHARMA, S.; NAQVI, F.; AZAM, A.; New Palladium (II) complexes of 5-Nitrothiophene-2-carboxaldehyde thiosemicarbazones: Synthesis, spectral studies and In vitro antiamoebic activity; Bioorg. Med. Chem. 2003, 11: 2923. BOCEDI, A.; GRADONI, L.; MENEGATTI, E.; ASCENZI, P. Kinetics of parasite cysteine proteinase inactivation by NO-donors. Biochem. Bioph. Res. Co. 2004, 315: 710. BOGERT, R. & ELDER, T. Synthesis of 6-hydroxypiperonylic acid and incidentcompounds; Jour. Am. Chem. 1929, 51: 532. 142 BONNEFOY, M.; DRAI, J.; KOSTKA, T. Antioxidants to slow aging, facts and perspectives. Presse Med. 2002, 31: 1174. BOUCHER, J. L.; MOALI, C.; TENU, J. P. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol Life Sci. 1999, 55: 1015. BRAGA, M. V.; URBINA, J. A.; DE SOUZA, W. Effects of squalene synthase inhibitors on the growth and ultrastructure of Trypanosoma cruzi. Int. J. Antimicrob. Agents, 2004, 24: 72. BREIDBACH, t.; SCORY, S.; KRAUTH-SIEGEL, R. L.; STEVERDING, D. Growth inhibition of bloodstream forms of Trypanosoma brucei by the iron chelator deferoxamine. Int. J. Parasitol. 2002, 32: 473. BRICKS, L. L. Ferro e infecções: atualização. Pediat. 1994, 16: 34. BRUN, R.; BUHLER, Y.; SANMAIER, U.; KAMINSKY, R.; BACHI, C. J.; RATTENDI, D.; LANE, S.; CROFT, S.; SNOWDON, D.; YARDLEY, V.; CARAVATTI, G.; FREI, J.; STANEK, J.; METT, H. In vitro trypanocidal activities of new S-adenosylmetionine decarboxylase anhibitors. Antimicrob. Agents Chemother. 1996, 40: 1442. CABRAL, L M. & BARREIRO, E. J. The synthesis and analgesic properties of new spiroisochromanyl acid derivatives synthesized from natural safrole. J. Heterocycl. Chem. 1995, 32: 959. CAMPBELL, K. N.; HOPPER, P. F. & CAMPBELL, B. K. University of Notre Dame. The Preparation of Methylenedioxy-Methoxybenzaldehydes. 1951. CALLAHAN, H. L.; KELLEY, C.; PERREIRA, T.; GROGL, M. Microtubule inhibitors: structure-activity analysis suggest rational models to identify potenctially active compounds. Antimicrob. Agents Chemother. 1996, 40: 947. 143 CAREY, F. A.; SUNDEBERG, R. J. Advanced Organic Chemistry, Partes A e B, 5th ed. New York: Plenum Publishers, 2007. 2521 p. CARVALHO, A. S.; MENNA-BARRETO, R. F.; ROMEIRO, N. C.; DE CASTRO, S. L.; BOECHAT, N. Design, synthesis and activity against Trypanosoma cruzi of azaheterocyclic analogs of megazol. Med. Chem., 2007, 3: 460. CASAS, J. S.; ARGÜELLES-RODRIGUEZ, M. C.; RUSSO, U.; SÁNCHEZ, A.; SORDO, J.; LÓPEZ-VÁZQUEZ, A.; PINELLI, S.; LUNGHI, P.; BONATI, A.; ALBERTINI, R.; Diorganotin(IV) complexes of pyridoxal thiosemicarbazone: Synthesis, spectroscopic properties and biological activity; J. Inorg. Biochem. 1998, 69: 283. CASERO, R. A.; KLAYMAN, D. L.; CHILDS, G. E.; SCOVILL, J. P.; DESJARDINS, R. E.; Activity of 2-acetylpyridine thiosemicarbazones against Trypanosoma rhodesiense in vitro; Antimicrob. Agents Chemother. 1980, 18: 317. CHAI, Y.; YAN, S.; WONG, I. L. K.; CHOW, L. M. C.; SUN, H. Complexation of antimony Sb (V) with guanosine 5'-monophosphate and guanosine 5'-diphospho-D-mannose: formation of both mono- and bis-adducts. J. Inorg. Biochem. 2005, 99: 2257. CHAMPOUX, J. J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 2001, 70: 369. CHAN-BACAB, M. J. & PENA-RODRIGUES, L. M. Plant natural products with leismanicidal activity. Nat. Prod. Rep. 2001, 18: 674. CHIYANZU, I.; HANSELL, E.; GUT, J.; ROSENTHAL, P. J.; MCKERROW, J. H.; CHIBALE, K.;Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain. Bioorg. Med. Chem. Lett. 2003, 13: 3527. 144 CONTRERAS. V. T.; ARAÚJO-JORGE, T. C.; BONALDO, M. C.; BARBOSA, T. H. S.; MEIRELLES, M. N. S. L.; GOLDENBERG, S. Biological aspects of the DM28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem. Inst. Oswaldo Cruz. 1988, 83: 123. COOK, J. D.; BAYNES, R. D.; SKIKNE, U. S. Iron deficiency and the measurement of iron status. Nutr. Res. 1992, 5: 189. CORDEIRO, A. T.; FELICIANO, P. R.; NONATO, M. C. Crystallization and preliminary X-ray diffraction analysis of Leishmania major dihydroorotate dehydrogenase. Acta Crystallogr. Structural Biology Crystallization Communica. 2006, 62: 1049. COREY, E. J. & SUGGS, W. Pyridinium chlorochromate, an efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds; Tetrahedron Lett., 1975, 31: 2647. COSTA, P.; PILLI, R.; PINHEIRO, S.; VASCONCELLOS, M. Substâncias carboniladas e seus derivados, 1° ed. Porto Alegre: Bookman, 2003. 412 p. COSTA, P. R. R. Safrol e eugenol: estudo da reatividade química e uso em síntese de produtos naturais biologicamente ativos e seus derivados. Quim. Nova, 2000, 2: 3. COURA, J. R. & De CASTRO, S. L.; A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz. 2002, 9: 3. COUTINHO, E. S. Síntese de 1,4,5-benzotriazocina e 4,1,5-benzoxadiazocina e seus derivados a partir do piperonal. Dissertação de mestrado. IME, 1981. CREMASCO, M. A. & BRAGA, N. P.; Isomerização do óleo essencial de pimenta-longa (Piper hispidinervium C. DC) para a obtenção de isosafrol. Acta Amazônica, 2010, 40: 737. CRICH, D. & KRISHNAMURTHY, V. Radical dearomatization of benzene leading to phenanthridine and phenanthridinone derivatives related to (+_)-pancrastistatin; Tetrahedron, 2006, 62: 6830. 145 CUNHA, A. C.; PAIXÃO, F. M.; SOUZA, M. C. B. V.; FERREIRA, V. F. Cloreto isocianúrico e cloreto cianúrico: aspectos gerais e aplicações em síntese orgânica; Quim. Nova, 2006, 29: 520. CUNHA-JÚNIOR, E. F.; PACINZA-LIMA, W.; RIBEIRO, G. A.; NETO, C. D.; CANTO- CAVALHEIRO, M. M.; SILVA, A. J. M.; COSTA, P. R. R.; ROSSI-BERGMENN, B.; TORRES-SANTOS, E. C. Effectiveness of the local or oral delivery of the novel naphthopterocarpanquinone LQB-118 against cutaneous leishmaniasis. J. Antimicrob. Chemother. 2011. 66: 1555. Da SILVA, E. R.; Da SILVA, M. F. L.; FISCHER, H.; MORTARA, R. A.; MAYER, M. G.; FRAMESQUI, K.; SILBER, A. M.; FLOETER-WINTER, L. M. Biochemical and biophysical properties of a highly active recombinant arginase from Leishmania (Leishmania) amazonensis and subcellular localization of native enzyme. Mol. Biochem. Parasit. 2008, 159: 104. DAVIES, D. R.; MUSHTAQ, A.; INTERTHAL, H.; CHAMPOUX, J. J.; HOL, W.G. The structure of the transition state of the heterodimeric topoisomerase I of Leishmania donovani as a vanadate complex with nicked DNA. J. Mol. Biol. 2006, 357: 1202. DAX, C.; DUFFIEUX, F.; CHABOT, N.; COINCON, M.; SYGUSCH, J.; MICHELS, P. A. M.; BLONSKI, P. A. M. Selective irreversible Inhibition of fructose 1,6-bisphosphate aldolase from Trypanosoma brucei. J. Med. Chem. 2006, 49: 14499. DECHANT, K. L. & CLISSOLD, S. P. Paroxetine: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs, 1991, 41: 225. De SOUZA, W. & MOTTA, M. C. Endosymbiosis in protozoa of the Trypanosomatidae family. FEMS Microbiol. Lett. 1999, 173: 1. DELLACHER, F. & BERNABEI, D. Derivate des methylendioxybenzols, 22. mitt.1: Über die Synthese von Indolderivaten der Methylendioxybenzolreihe. Monatsh Chem. 1967, 98: 785. 146 DEMICHELI, C.; OCHOA, R.; DA SILVA, J. B. B.; FALCÃO, C. A. B.; ROSSI-BERGMANN, B.; DE MELO, A.; SINISTERRA, R. D.; FRÉZARD, F. Oral delivery of meglumine antimoniate-beta-cyclodextrin complex for treatment of leishmaniasis. Antimicrob. Agents Chemother. 2004, 48: 100. Di COSTANZO, L.; MOULIN, M.; HAERTLEIN, M.; MEILLEUR, F.; CHRISTIANSON, D. W. Expression, purification, assay, and crystal structure of perdeuterated human arginase I. Arch. Biochem. Biophys. 2007, 465: 82. DIAS, L. C.; DESSOY, M. A.; SILVA, J. J. N.; THIEMANN, O. H.; OLIVA, G.; ANDRICOPULO, A. D. Quimioterapia da doença de Chagas: estado da arte e perspectivas no desenvolvimento de novos fármacos; Quím. Nova, 2009, 32: 9. DIAS, J. P. C. & SCHOFIELD, C. J. The southern cone initiative against Chagas disease. Adv. Parasitol. 1998, 42: 1. DNDi – DRUGS FOR NEGLETED DISEASES initiative - DNDi (2008) Drugs for Neglected Diseases Initiative. http://www.dndi.org/cms/public_html/insidecategory-Listing.asp?CategoryId=89. Acesso: 23 abril 2012. Do CAMPO, R.; Recent developments in the chemotherapy of Chagas disease. Faseb J. 1986, 45: 2471. Do CAMPO, R. & MORENO, S. N. Free radical metabolism of antiparasitic agents. Fed. Proc. 1886, 45: 2471. DODD, R. H.; OUANNÉS, C.; GÉRO, M. R.; POTIER, P. Hybrid molecules: growth inhibition of L. donovani promastigotes by thiosemicarbazones of 3-carboxy-β-carbolines. J. Med. Chem. 1989, 32: 1272. DOWNING, K. H. & NOGALES, E. Tubulin structure: insights into microtubule properties and functions. Curr. Opin. Struc. Biol. 1998, 8: 785. 147 DU, X.; GOU, C.; HANSELL, E.; DOYLE, P. S.; CAFFREY, C. R.; HOLLER, T. P.; MCKERROW, J. H.; COHEN, F. E.; Synthesis and structure-activity relationship study of potent trypanocidal thiosemicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem. 2002, 45: 2695. DU, K. K. & LIU, S. X. Influence of pH values on the self-assembly in three trinuclear nickel complexes with bridging ligand N-salicylyl-4-phenyl-thiosemicarbazide. J. Mol. Struct. 2008, 874: 138. DUARTE, C. D.; TRIBUTINO, J. L. M.; LACERDA, D. I.; MARTINS, M. V.; ALEXANDRE-MOREIRA, M. S.; DUTRA, F.; BECHARA, E. J. H.; De PAULA, F. S.; GOULART, M. O. F.; FERREIRA, J.; CALIXTO, J. B.; NUNES, M. P.; BERTHO, A. L.; MIRANDA, A. L. P.; BARREIRO, E. J.; FRAGA, C. A. M. Synthesis, pharmacological evaluation and electrochemical studies of novel 6-nitro-3,4-methyllenedioxyphenyl-N-acylhydrazone derivates: Discovery of LASSBio-881, a new ligand of cannabinoid receptors. Bioorgan. Med. Chem. 2007, 15: 2421. ENGEL, J. C.; CAZZULO, B. M. F.; STOPPANI, A. O. M.; CANNATA, J. J. B.; CAZZULO, J. J. Aerobic glucose fermentation by Trypanosoma cruzi axenic culture amastigote-like forms during growth and differentiation to epimastigotes. Mol. Biochem. Parasit. 1987, 26: 1. FARIAS, F. M. C.; BARREIRO, E. J.; COELHO, F. A. S.; COSTA, P. R. R. Análogos das prostaglandinas. A síntese de novos Prostanoides aromáticos de Natural Safrol. Quím. Nova, 1984, 7: 111. FANG, F. C. Antimicrobioal reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev Microbiol. 2004, 2: 820. FAIRMAMB, A. H. & CERAMI, A. Identification of a novel, thiol-containing co-fator essential for glutathione reductase enzyme activity in trypanosomatids. Mol. Biochem. Parasitol. 1985, 2: 187. FERREIRA, C.; SOARES, D. C.; BARRETO-JÚNIOR, C. B.; NASCIMENTO, M. T.; LIMA, L. F.; DELORENZI, J. C.; LIMA, M. E. F.; ATELLA, G. C.; FOLLY, E.; CARVALHO, T. M. 148 U.; SARAIVA, E. M.; SILVA, L. H. P. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochem. 2011, 72: 2155. FERREIRA, R. S.; SIMEONOV, A.; JADHAV, A.; EIDAM, O.; MOTT, B. T.; KEISER, M. J.; McKERROW, J. H.; MALONEY, D. J.; IRWIN, J. J.; SHOICHET, B. K. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J. Med. Chem. 2010, 53: 4891. FEUN, L.; MODIANO, M.; LEE, K.; MAO, J.; MARINI, A.; SAVARAJ, N.; PLEZIA, P.; ALMASSIAN, B.; COLACINO, E.; FISCHER, J.; MACDONALD, S.; Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule. Cancer Chemoth. Pharm. 2002, 50: 223. FLOHE, L.; JAEGER, T.; PILAWA, S.; SZTAJER, H. Thiol-dependent peroxidases care little about homology-based assignments of function. Redox Rep. 2003, 8: 256. FRANCISCO, A. F.; VIEIRA, P. M. A.; ARANTES, J. M.; PEDROSA, M. L.; MARTINS, H. R.; SILVA, M.; VELOSO, V. M.; LANA, M.; BAHIA, M. T.; TAFURI, W. L.; CARNEIRO, C. M. Trypanosoma cruzi: effect of benznidazole therapy combined with the iron chelator desferroxamine in infected mice. Exp. Parasitol. 2008, 120: 314. FRAGA, C. A. M. & BARREIRO, E. J. New insights for multifactorial disease therapy: The challenger of the symbiotic drugs. Quimioter, 2008, 3: 1. FRENCH, L. G. The sassafras tree and designer drugs: from herbal tea to ecstasy. J. Chem. Ed. 1995, 72: 484. FREYMANN, D. M.; WENCK, M. A.; ENGEL, J. C.; FENG, J.; FOCIA, P. J.; EAKIN, A. E.; CRAIG, S. P. Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi. Chem. Biol. 2000, 7: 957. FRIDOVICH, I. The biology of oxygen radicals. Science. 1978, 201: 875. 149 GANGJEE, A.; JAIN, H. D.; KURUP, S. Recent advances in classical and non-classical antifolates as antitumor and antiopportunistic infection agents: part I. Anticancer Agents Med. Chem., 2007, 7: 524. GARNIER, T. & CROFT, S. L. Topical treatment for cutaneous leishmaniasis. Curr. Opin. Invest. Drugs. 2002, 3: 538. GELB, A. I. & HOL, W. G. J. Parasitology: drugs to combat tropical protozoan parasites. Science, 2002, 297: 343. GENESTRA, M.; GUEDES-SILVA, D.; SOUZA, W. J. S.; CYSNE-FINKESLTEIN, L.; SOARES-BEZERRA, R. J.; MONTEIRO, F. P.; LEON, L. L. Nitric oxide synthase (NOS) characterization in Leishmania amazonensis axenic amastigotes. Arch. Med. Res. 2006, 37: 238. GERMANO, R. M. Disponibilidade de ferro na presença do β-caroteno e o efeito dos interferentes em combinações de alimentos. USP. 2002. GETACHEW, F. & GENADU, I. Leishamania donovani from superoxide dismutase a is targeted to the mithocondria by its N-terminal positively charged amino acids. Mol. Biochem. Parasitol., 2007, 154: 62. GLASS, R. S.; DEARDOFF, D. R.; HEBEGAR, K. Highly stereoselective reductions of α-alkoxy-β-keto esters. Aspects of the mechanism of sodium borohydride reduction of ketones in 2-propanol. Tetrahedron Lett. 1980, 21: 2467. GONTIJO, B & CARVALHO, M. L. R. Leishmaniose tegumentar americana. Rev Soc. Bra. Med. Trop. 2003, 36: 71 GUASCH, A.; ALORIA, K.; PEREZ, R.; AVILA, J.; ZABALA, J. C.; COLL, M. Three-dimensional structure of human tubulin chaperone cofactor A. J. Mol. Biol. 2002, 318: 1139. GULL, K. The cytoskeleton of trypanosomatid parasites. Annu. Rev. Microbiol. 1999, 53: 629. . 150 GUTTERIDGE, J. M. & HALLIWELL, B. Free radicals and antioxidants in the year 2000: A historical look to the future. Annu. New York Acad. Sci. 2000, 899: 136. HARAGUCHI, S. K. Síntese e avaliação anti-tripanassômica e citotóxica de benzaldeido tiossemicarbazonas derivadas do ácido caurênico. Dissertação de mestrado, UEM, 2008. HEBY, O.; PERSSON, L. & RENTALA, M. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis. Amino Acids, 2007, 33: 359. HINES, J. C. & RAY, D. S. Periodic synthesis of kinetoplast DNA topoisomerase II during the cell cycle. Mol. Biochem. Parasitol. 1997, 88: 249. HOUSSOU, R. F.; FERNAND G.; KPOVIESSI S.; BERO B.; HANNAERT. V.;QUETIN-LECLERCQ. J.; POUPAERT. J.; MOUDACHIROU M.; ACCROMBESSI, G. C. Synthesis, characterization and trypanocidal activity of some aromatic thiosemicarbazones and their 1,3,4-thiadiazolines derivatives. Afr. J. Pure Appl. Chem. 2011, 5: 59. HURTADO-GUERRERO R.; PENA-DIAZ, J; MONTALVETTI, A.; RUIZ-PEREZ, L.M.; GONZÁLEZ-PACANOWSKA, D. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase. FEBS Lett. 2002, 510: 141. INIESTA V.; GOMEZ-NIETO, L. C. & CORRALIZA, I. The inhibition of arginase by Nω-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. J. Exp. Med. 2001, 193: 777. ILLANA, V. O.; MONTFORT, R. P.; CALAHORRA, F. L. COSTAS, M.; ROMERO, A. R.; PUYOU, M. T. G. Structural differences in triosephosphate isomerase from different species and discovery of a multitrypanosomatid inhibitor. Biochemistry-US. 2006, 45: 2556. 151 JONES, M. M.; SINGH, P. K.; PISTA, J. E.; RODRIGUES, R. R.; NESSET, A.; SUAREZ, C. C.; BOGITSH, B. J.; CARTER, C. E. Inhibition of Trypanosoma cruzi epimastigotes in vitro by iron chelating agents. Arzneimittelforschung, 1996, 46: 1158. JOUAD, E. M. ; RIOU, A.; ALLAIN, M.; KHAN, M A.; BOUET, G. M.; Synthesis, structural, and spectral studies of 5-methyl 2-furaldehyde thiosemicarbazone, and its Co, Ni, Cu, and Cd complexes. Polyhedron, 2001, 20: 67. JUNIOR, J. D. I.; CROUCH, S. R.; Spectrochemical Analysis. New Jersey: Prentice-Hall, Inc., 1988, cap. 13. KAMINSKY, R. Miltefosine zentaris, Curr. Opin Invest. Drugs, 2002, 3: 550. KARAH, N.; Synthesis and primary cytotoxicity evaluation of new 5-nitroindole-2,3-dione derivatives Eur. J. Med. Chem. 2002, 37: 909. KASUGA, N. C.; SEKINO, K.; ISHIKAWA, M.; HONDA, A.; YOKOYAMA, M.; NAKANO, S.; SHIMADA, N.; KOUMO, C.; NOMIYA, K. Synthesis, structural characterization and antimicrobial activities of 12 zinc (II) complexes with four thiosemicarbazone and two semicarbazone ligands. J. Inorg. Biochem, 2003, 96: 298. KELLER-JÚSLEN, C.; KUHN, M.; Von WARTBURG, A.; STAHELIN, H. Synthesis and antimicotic activity of glycoside ligand derivatives related to posophyllotoxin. J. Med. Chem. 1971, 14: 936. KONSTANTINOVIC, S. S.; RADOVANOVIĆ, B. C.; TODOROVIĆ Z. B.; ILIĆ, S. B.; KONSTANTINOVIĆ´C. B. C. Spectroscopic and thermodynamic studies of complexation of some divalent metal ions with isatin-β-thiosemicarbazone. Chem. Papers, 2007, 61: 485. LAGES, A. S.; SILVA, K. C. M.; MIRANDA, A. L. P.; BARREIRO, E. J. Synthesis and pharmacological evaluation of new flosulide analogues, synthesized from natural safrole. Biorg. Med. Chem. Lett. 1998, 8: 183. 152 LAMBIE, D. G. & JOHNSON, R. H. Drugs and folate metabolism. Drugs. 1985, 30: 145. LANNES-VIEIRA, J., ARAÚJO-JORGE, TÂNIA C. DE, SOEIRO, MARIA N. C.; GADELHA, PAULO; CORRÊA-OLIVEIRA, RODRIGO. The centennial of the discovery of Chagas disease: Facing the current challenges. PLoS Negl. Trop. Dis. 2010, 4: e645. LAZARDI, K.; URBINA, J. A.; DE SOUZA, W. Ultrastructural alterations induced by two ergosterol biosynthesis inhibitors, ketoconazole and terbinafine, on epimastogotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob. Agents Chem. 1990, 34: 2097. LE T. N., SEONG G. G. & CHO WON-JEA. A facile synthesis of benzo[c]phenanthridine alkaloids: oxynitine and axysanguinarine using lithiated toluamide-benzonitrile cycloaddition; Tetrahedron Lett. 2004, 45: 2763. LE, T. N. & CHO WON-JEA. Total synthesis of oxyfagaronine, phenolic benzo[c]phenan-thridine and general synthetic way of 2,3,7,8-and 2,3,8,9-tetrasubstituted benzo[c]phenanthridine alkaloids; Chem. Pharm. Bull. 2006, 54: 476. LEHNINGER, A. L.; NELSON, D. L. & COX, M. M.; Principles of biochemistry: 4ª ed. Rio de Janeiro: Guanabara Koogan, 2005, 456 p. LEID, R. W.; SUQUET, C. M.; TANIGOSHI, L. Oxygen detoxifying enzymes in parasites: a review. Act. Leidens. 1989, 57: 107. LEMKE, T. L.; SHEK, T. W.; CATES, L. A.; SMITH, L. K.; Synthesis of 5,6-dihydro-8(7H)-quinolinone thiosemicarbazones as potential antitumor agents. J. Med. Chem. 1977, 20: 1351. LEPESHEVA, G. I.; HARGROVE, T. Y.; ANDERSON, S.; KLESHCHENKO, Y.; FURTAK, V.; WAWRZAK, Z.; VILLALTA, F.; WATERMAN, M. Sterol 14alpha-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth. Chem. Biol. 2007, 14: 1283. 153 Le TRANT, N.; MESHNICK, D. R.; KITCHENER, K.; EATON, J. W.; CERAMI, A. Iron-containing superoxide dismutase from Crithidia fasciculata. Purification, characterization, and similarity to leishmanial and trypanosomal enzymes. J. Biol. Chem. 1983, 258: 125. LI, J.; CHEN, S.; LI, X.; NIU, C.; DOYLE, T. W. Synthesis of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP). Tetrahedron. 1998, 54: 393. LIBUSOVÁ, L.; SULIMENKO, T.; SULIMENKO, V.; HOZÁK, O.; DRABER, P. gamma-Tubulin in Leishmania: cell cycle-dependent changes in subcellular localization and heterogeneity of its isoforms. Exp. Cell. Res. 2004, 295: 375. LIM, T. Y.; LIM, Y. Y.; YULE, C. M. Evaluation of antioxidant, antibacterial and anti- tyrosinase activities of four Macaranga species. Food Chem. 2009, 114: 594. LIN, W. O. & COUTINHO, E. S. 8,9-Methylenedioxy-3,4-dihydro-1,4,5-benzotriazocin-2(1H)-ones Monatsh. Chem, 1983, 11: 1231. LOVEJOY, D. B. & RICHARDSON, D. R. Novel “hybrid” iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells. Blood, 2002, 100: 666. LUDWIG, M. L. METZGER, A. L.; PATTRIDGE, K. A.; STALLINGS, W. C. Manganese superoxide dismutase from Thermus thremophilus. A structural model refined at 1.8 A resolution. J. Mol. Biol. 1991, 219: 335. LUO, M.; MA, H. Z.; SU, Q. D. & LI, Q. R. Synthesis and crystal structure of 6-bromo-piperonal-dimethyl-acetal. Chin. J. Struct. Chem. 2002, 21: 538. LUQUETTI, A. O. Etiological treatment for Chagas disease. Parasitol. Today. 1997, 13: 127 LUTZ, W. B.; McNAMARA, C. R.; OLINGER, M. R.; SCHMIDT, D. E.; FIEDLER, M. D. Synthesis of 5,6-carbonyldioxyindole; J. Heterocycl. Chem. 1984, 21: 1182. 154 MACCARI, G.; JAEGER, T.; MORACA, F.; BIAVA, M.; FLOHÉ, L.; BOTTA, M. A fast virtual screening approach to identify structurally diverse inhibitors of trypanothione reductase. Biorg. Med. Chem. Lett. 2011, 21: 5255. MAGARACI, F.; JIMENEZ, C. J.; RODRIGUES, J. C.; BRAGA, M. V.; YARDLEY, V.; de LUCA-FRADLEY, K.; CROFT, S. L.; de SOUZA, W.; RUIZ-PEREZ, L. M.; URBINA, J.; GONZALEZ, P. D.; GILBERT, I. H. Azasterol as inhibitors of 24-methyltransferase in Leishmania sp. and Trypanosoma cruzi. J. Med. Chem. 2003, 46: 4714. MAHAN, L. K. & ESCORT-STUMP, S. Krause: alimentos, nutrição e dietoterapia. Roca: São Paulo. 1998. p 1178-1180. MAHINDROO, N.; AHMED, Z.; BHAGAT, A.; BEDI, K. L.; KHAJURIA, R. K; KAPOOR, V. K.; DHAR, K. L. Synthesis and structure-activity relationships of vasicine analogues as bronchodilatory agents. Med. Chem. Res. 2006, 14: 347. MALAFAIA, G. Captação de ferro pelos parasitos do gênero Leishmania. Rev. Bioc. UNITAU, 2008, 14: 41. MALAFAIA, G.; MARCON, L. D.; PEREIRA, L. D.; PEDROSA, M. L.; REZENDE, S. A. Leishmania chagasi: effect of the iron deficiency on the infection in BALB/c mice. Exp Parasitol., 2010, 127: 719. MANO, E. B, & SEABRA, A. P. Práticas de Química Orgânica. Editora Edgard Blüche Ltda: 3ª ed. São Paulo, 1987. p 38. MAUEL, J.; DENNY, W.; GAMAGE, S.; RANSIJN, A.; WOJCIK, S.; FIGGITT. D.; RALPH, R. 9-Anilinoacridines as potential antileishmanial agents. Antimicrob. Agents Chemother. 1993, 37: 991. MAYRINK, K & MAGALHÃES, P. A. Leishmaniose: Uma experiência de trinta e quatro anos com uma vacina anti-leishmaniose tegumentar americana. Minas Gerais. p. 3-6. 1999. 155 MENDONÇA, G. F. & MATTOS, M. C. S. Uma metodologia simples e eficiente para a cloração de compostos aromáticos ativados utilizando o ácido tricloro-isocianúrico. Quím. Nova. 2008, 31: 798. MERSCHJOHANN, K. & STEVERDING D. In vitro growth inhibition of bloodstream forms of Trypanosoma brucei and Trypanosoma congolense by iron chalators. Kinetopl. Biol Dis. 2006, 5: 3. MORAIS, A. A.; BRAZ-FILHO, R.; FRAIZ, S. V. Synthesis of three natural 1,3-diarylpropanes: Two revised structures. Phytochem. 1988, 28: 239. MOREAU, A. A new approach to isoindoloisoquinolinones. A simple synthesis of nuevamime. Tetrahedron. 2004, 60: 6169. MORI, M. & T. GOTOH, Regulation of nitric oxide production by arginine metabolic enzymes. Biochem. Bioph. Res. Co. 2000, 275: 715. MORRIS, S. M. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 2002, 22: 87. MOYERSOEN, J.; CHOE, J.; FAN, E.; HOL, W. J. M. G. J; MICHELS, P. A. M. FEMS Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. Microbiol. Rev. 2004, 28: 603. NEVES, D. P. Parasitologia Humana. 8ª Ed. Rio de Janeiro: Livraria Atheneu Editora, 1991, p. 28-72. MURRAY, H. W. & DELPH-ETIENNE, S. Visceral leishnanicidal activity of hexadecylphosphocholine (Miltefosine) in mice deficient in T cells and activated macrophage microbicidal mechanism. 2000. Disponível em: http://oxfordjournals.org. Acesso em 20 julho de 2012. 156 NYASSE, B.; NONO, J.; SONKE, B.; DENIER, C.; FONTAINE, C. Trypanocidal activity of bergenin, the major constituent of Flueggea virosa, on Trypanosoma brucei. Pharmazie, 2004, 59: 492. OPPERDOES, F. R. Biochemical peculiarities of trypanosomes, African and South American. Brit. Med. Bull. 1985, 41: 130. OPPERDOES, F. R. Compartmentation of Carbohydrate Metabolism in Trypanosomes Annu. Rev. Microbiol. 1987, 41: 127. PARAMCHUK, W. J. Cloning, characterization and over-expression of two iron superoxide dismutase cDNAs from Leishmania chagasi role in pathogenesis. Mol. Biochem. Parasitol. 1997, 90: 202. PENA-DIAZ, J.; MONTALVETTI, A.; FLORES, C. L.; CONSTAN, A.; HURTADO-GUERRERO, R.; DE S. W.; GANCEDO, C.; RUIZ-PEREZ, L. M.; GONZÁLEZ-PACANOWSKA, D. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae. Mol. Biol. Cell. 2004, 15: 1356 PLEWES, K. A.; BARR, S. D.; GENADU, I. Iron superoxide dismutase targeted to the glycosomes of Leishmania chagasi sre important for survival. Infect. Immun., 2003, 71: 5910. POLAK, A. & RICHELE, R. Mode of action of 2-nitroimidazole derivative benzonidazole. Annu. Trop. Med. Parasit. 1978, 72: 45. RASSI, A. J.; RASSI, A.; REZENDE, J. M. American Trypanosomiasis (Chagas Disease). Infect. Dis. Clin. N. Am. 2012, 26: 275. RAYCHAUDRURY, B.; BANERJEE, S.; GUPTA, S.; SINGH, R.V.; DATTA, S. C. Antiparasitic activity of a triphenyl tin complex against Leishmania donovani. Acta Trop. 2005, 95: 1. RILLIET, A. & KREITMANN, L. Sur le 6-aminopipéronal et ses dérivés. Helv. Chim. Acta, 1921, 4: 588. 157 RODRIGUES, J. C. F.; ATTIAS, M.; RODRIGUES, C.; URBINA, J.; DE SOUZA, W. Ultrastructural and biochemical alterations induced by 22,26-azasterol, a delta (24(25)-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis. Antimicrob. Agents Chemother. 2001, 46: 487. SACKETT, D. L. Podophyllotoxin, steganacin and combretastatin: Natural products that bind at the colchicine site of tubulin. Pharmacol. Therapeut. 1993, 59: 163. SARAIVA, J. Avaliação de rotas metabólicas como mecanísmo de ação da atividade tripanocida de lignano-lactonas. Tese de Doutorado, USP. 2007. SENKOVICH, O., SCHOMANN, N., CHATTOPADHYAY, D. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate. Acta Crystallogr. Sect. D., 2009, 65: 704. SHAILENDRA, BHARTI, N.; NAQVI, F.; AZAM, A.; Synthesis, characterization and in vitro antiamoebic activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones and their palladium (II) and ruthenium (II) complexes. Eur. J. Med. Chem. 2004, 39: 459. SHAPIRO, T. A.; SHOWALTER, A. F. In vivo inhibition of trypanosome mitochondrial topoisomerase II: effects on kinetoplast DNA maxicircles. Mol. Cell. Biol. 1994, 14: 5891 . SHAPIRO, T. A.; ENGLUND, P. T. The structure and replication of kinetoplast DNA. Annu. Rev. Microbiol. 1995, 49: 117. SHAZIA N. A. STEVENSON, P. C. PHYTHIAN S. VEITCH, N. C. & HALL, D. R. Synthesis of cicerfuran (Ia), an antifungal benzofuran, and some related analogues. Tetrahedron , 2006, 62: 4214. SHIGEMITSU T., ABE H., TAKEUCHI Y. , HARAYAMA T. Intramolecular biaryl coupling reaction of benzyl benzoate and phenyl benzoate derivatives, and its application to the formal synthesis of (-)-steganone. Tetrahedron, 2007, 63: 396. 158 SHIMIZU, H.; PARK, S. Y.; SHIRO, Y.; ADACHI, S. X-ray structure of nitric oxide reductase (cytochrome P450nor) at atomic resolution. Acta Crystallogr. Sect. D. Biol Crystallogr. 2002, 58: 81. SILVA-JARDIN, I.; HORTA, M. F.; RAMALHO-PINTO, F. J. The Leishmania chagasi proteasome: role in promastigotes growth and amastigotes survival within murine macrophages. Acta Trop. 2004, 91: 121. SILVA, M.; SILVA, C. H. T. P.; IULEK, J.; OLIVA, G.; THIEMANN, O. H. Crystal structure of adenine phosphoribosyltransferase from Leishmania tarentolae: potential implications for APRT catalytic mechanism. Biochim. Biophys. Acta, 2004, 1696: 31. SILVA, C. H. T. P., FERREIRA, M. M. C., GARRATT, R. C. A molecular modeling and QSAR study of suppressors of live growth of Trypanosoma cruzi epimastigotes. J. Graph. Model. 2004, 23: 89. SIMPSON, L.; THIEMANN, O. H.; SAVILL, N. J.; ALFONZO, J. D.; MASLOV, D. A. Evolution of RNA editing in Trypanosome mitochondria. Proc. Nati. Acad. Sci. U.S.A. 2000, 13: 6986. SLUNT, K. M.; GRACE, J. M.; MACDONALD, T. L. & PEARSON, R. D. Effect of mitonafide analogs. Braz. J. Pharm. Sci. 2004, 40:140. SMITH, T. K. & BÜTIKOFER, P. Lipid metabolism in Trypanosome brucei. Mol Biochem. Parasitol. 2010, 172: 66. SOARES-BEZERRA, R. J.; LEON L.; GENESTRA M. Recentes avanços da quimioterapia das leishmanioses: moléculas intracelulares como alvos de fármacos. Bras. J. Pharm. Sci., 2004, 40:140. 159 SOARES-BEZERRA, R. J.; DA SILVA, E. F.; ECHEVARRIA, A.; DA SILVA, L. G.; CYSNE-FINKELSTEIN, L.; MONTEIRO, F. P.; LEON, L. L. GENESTRA, M. Effect of mesoionic 4-phenyl-5-(cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivative salts on the activities of the nitric oxide synthase and arginase of Leishmania amazonensis. J. Enzym. Inhib. Med. Chem. 2008, 23: 328. SOLOMONS, G.; FRYHLE, C.; Química orgânica: 7ª Ed. Rio de Janeiro: LTC – Livros Técnicos Científicos Ed. S.A., 2002, vol 2. p 548. STEERT, K.; BERG, M.; MOTTRAM, J. C.; WESTROP, G. D.; COOMBS, G. H.; COS, P.; MAES, L.; JOOSSENS, J.; VAN DER VEKEN, P.; HAEMERS, A.; AUGUSTYNS, K. Alfa-ketoheterocycles as inhibitors of Leishmania mexicana cysteine protease CPB. Chem. Med. Chem. 2010, 53: 1734. STIJLEMANS, B.; VANKRUNKELSVEN, A.; BRYS, L.; MAGEZ, S.; De BAETSELIER, P. Role of iron homeostasis in trypanosomiasis-associated anemia. Immunobiology. 2008, 213: 823. SURESH, S.; BRESSI, J. C.; KENNEDY, K. J.; VERLINDE, C. L.; GELB, M. H.; HOL, W. G. Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed inhibitors. J. Mol. Biol,. 2001, 309: 423. SUZUKI, Y.; KAMENO, D.; TOMODA, S. Theoretical Study on the Mechanism and Diastereoselectivity of NaBH4 Reduction. J. Phys. Chem. 2009, 113: 2578. TARASCONI, P.; CAPACHI, S.; PELOSI, G.; CORNIA, M.; ALBERTINI, R.; BONATI, A.; DALL’AGLIO, P. P.; LUNGHI, P.; PINELLI, S.; Synthesis, spectroscopic characterization and Biological properties of new natural aldehydes thiosemicarbazones. Bioorg. Med. Chem., 2000, 8: 157. TAYLOR, M. C & KELLY, J. M. Iron metabolism in trypanosomatids, and its crucial role in infection. Parasitol. 2010, 137: 899. 160 TEITZ, Y.; RONEN, D.; VANSOVER, A.; STEMATSKY, T.; RIGGS, J. L.; Inhibition of human immunodeficiency virus by N-methylisatin-beta 4':4'-diethylthiosemicarbazone and N-allylisatin-beta-4':4'-diallythiosemicarbazone. Antiviral Res. 1994, 24: 305. TENÓRIO, P. R.; GÓES, A. J. S.; LIMA, J. G.; FARIA, A. R.; ALVES, A. J.; AQUINO, T. M.. Tiossemicarbazonas: métodos de obtenção, aplicações sintéticas e importância biológica. Quím. Nova. 2005, 28: 1030. TEMPERINI, M. L. A.; SANTOS, M. R.; MONTEIRO, V. R. P. Spectroscopic study of the isomerization of Z to E pyridine-2-formyl thiosemicarbazone. Spectrochim Acta A-M. 1995, 51: 1517. TORANZO, E. G. D.; CASTRO, J. A.; De CAZZULO, B. M. F. & CAZZULO, J. J. Interaction of benznidazole reactive metabolites with nuclear and kinetoplastic DNA, proteins and lipids from Trypanosoma cruzi. Experientia, 1988, 44: 880. TURRENS, J. F. Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol. Aspects Med. 2004, 25: 211. UNGER, C.; DAMENZ, W.; FLEER, E. A.; KIM, D. J.; BREISER, A.; HILGARD, P.; ENGEL, J.; NAGEL, G. & EIBL, H. Hexadecylphosphocholine, a new ether lipid analougue. Studies on the antineoplastic activity in vitro and in vivo. Acta Oncol. 1989, 28: 213. URBINA, J. A. Ergosterol biosynthesis and drug development for Chagas disease. Mem. Inst. Oswaldo Cruz. 2009, 104: 311. URBINA, J. A. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches; Acta Trop. 2010, 115: 55. VASCONCELLOS, M. L. A. A. & LIMA JUNIOR, C. G. Cloração do anisol, tolueno e nitrobenzeno com ácido tricloroisocianúrico (ATCI): aspectos computacionais sobre a reatividade e regiosseletividade. Quím. Nova. 2009, 32: 244. 161 VERLINDE, C. L. M. J.; HANNAERT, V.; BLONSKI, C.; WILLSON, M.; PÉRIÉ, J. J.; FOTHERGILL-GILMORE, L. A.; OPPERDOES, F. R.; GELB, M. H.; HOL, W. G. .J.; MICCHELS, P. A. Glycolysis as a target for the design of new anti-trypanosome drugs. Drugs Resist. Up. 2001, 4: 50. VERONESI, R. Doenças Infecciosas e Parasitárias: 8ª ed. Rio de Janeiro: Guanabara Koogan, 1991, p. 674-705 e 706-717. VIEGAS JÚNIOR, C.; DANUELO, A.; VANDERLAN, S. B.; BARREIRO, E. J.; FRAGA, D. A. M. Molecular hibridization: a useful tool in the design of new drug prototypes. Curr. Med. Chem. 2007, 14: 1829 VOGEL, A. I. Química Orgânica – Análise Orgânica Qualitativa: 2ªed. Rio de Janeiro: Ao Livro Técnico S.A., 1971. 387 p. ZACCHINO, A. S. Estratégias para a descoberta de novos agentes antifúngicos. Em: Yunes, R. A.; Calixto, J. B.; Plantas medicinais sob a ótica da moderna química medicinal. Chapecó: Argos. 2001. p. 436-473. ZUCOTTO, F.; BRUN, R.; PACANOWSKA, G. D.; PEREZ, R. L. M.; GILBERT, I. H. The structure-based design and synthesis of selective inhibitors of Trypanosoma cruzi dihydrofolate reductase. Bioorg. Med. Chem. Lett. 1999, 9: 1463. WANG, J. C. DNA topoisomerases. Annu. Rev. Biochem. 1996, 65: 523. WALCOURT, A.; LOYEVSKY, M.; LOVEJOY, D. B.; GORDEUK, V. R.; RICHARDSON, D. R.;Int. J. Biochem. Cell. Biol. 2003, 36: 401. WERBOVETZ, K. A.; BRENDLE, J. J.; SACKETT, D. L. Purification, characterization, and drug susceptibility of tubulin from Leishmania. Mol. Biochem. Parasitol. 1999, 98: 53. WESSFING-RESNICK, M. Iron Transport. Annu. Rev. Nutrit. 2000, 20: 129. 162 WIGFIELD, D. C. & GOWLAMD, F. W. Stereochemistry and mechanism of ketone reduction by hydride reagents, Tetrahedron. 1979, 35: 449. WILLIAN, L. R.; WALTER, J. M.; PETRIE, M. R. Characterization of the antimonial antileishmanial agent meglumine antimonate (Glucantime). Antimicrob. Agents Chemother. 1998, 42: 1076. WILSON, M. E. & BRITIGAN, B. E. Iron acquisition by parasitic protozoa. Parasitol. Today. 1998, 14: 348. WOLKMER, P.; Da SILVA, A. S.; CARGNELUTTI, J. F.; COSTA, M. M.; TRAESEL, C. K.; LOPES, S. T. A.; MONTEIRO, S. C. Resposta eritropoética de ratos em diferentes graus de parasitemia por Tripanossoma evansi. Cienc. Rural. 2007, 37: 1682. WHO 2007, Report on chagas’ disease, TDR special programme for research and training in tropical diseases, world health organization. Disponível em: http://apps.who.int/tdr/svc/pu-blications/tdr-reserardh-publications/reporteenfermedad-chagas. Acesso em: 20 janeiro 2011. WHO/Leishmaniasis: epidemiology and access to medicines. Disponível no site http://who.int/leishmaniasis/resources/leishmaniasis_epidemiology_access_to_medicine/en/index.html. Acesso em: 30 junho 2012. WU Y., ZHANG H., ZHAO Y., ZHAO J. CHEN J. & LI L. A new and efficient strategy for the synthesis of podophyllotoxin and its analogues; Org. Lett. 2007, 7: 1199. YADAV, G. D. & GOEL, P. K. Selective synthesis of perfumery grade cyclohexyl esters from cyclohexene and carboxylic acids over ion exchange resins: an example of 100% atom economy. Green Chem. 2000, 2: 71. YINGMING, W.; HONGBIN, Z.; YUANHONG, Z.; JINGFENG, Z.; JINGBO, C. & LIANG, L.; Enantioselective sequential conjugate addition−allylation reactions: A concise total synthesis of (+)-podophyllotoxin. Org. Lett. 2008, 11: 597. 163 ZHAO, Y.; LI, D.; ZHAO, L.; ZHANG, J. A practical synthesis of 2-aroylindoles from N-(2-formylphenyl)trifluoroacetamides in PEG-400. Synthesis. 2011, 6: 873.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/15570/2012%20-%20Jorge%20Luiz%20Ribeiro%20de%20Melos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/21828/2012%20-%20Jorge%20Luiz%20Ribeiro%20de%20Melos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/28250/2012%20-%20Jorge%20Luiz%20Ribeiro%20de%20Melos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/34600/2012%20-%20Jorge%20Luiz%20Ribeiro%20de%20Melos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/41096/2012%20-%20Jorge%20Luiz%20Ribeiro%20de%20Melos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/47410/2012%20-%20Jorge%20Luiz%20Ribeiro%20de%20Melos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/53798/2012%20-%20Jorge%20Luiz%20Ribeiro%20de%20Melos.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3513
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-05-12T11:57:27Z No. of bitstreams: 1 2012 - Jorge Luiz Ribeiro de Melos.pdf: 16059282 bytes, checksum: 307f2c58fbfa8e31636dafaed876b728 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-05-12T11:57:27Z (GMT). No. of bitstreams: 1 2012 - Jorge Luiz Ribeiro de Melos.pdf: 16059282 bytes, checksum: 307f2c58fbfa8e31636dafaed876b728 (MD5) Previous issue date: 2012-09-24eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2012 - Jorge Luiz Ribeiro de Melos.pdf2012 - Jorge Luiz Ribeiro de Melos15.68 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.