Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9236
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Franco, Daiana de Fatima Portella | |
dc.date.accessioned | 2023-11-19T20:11:33Z | - |
dc.date.available | 2023-11-19T20:11:33Z | - |
dc.date.issued | 2020-03-13 | |
dc.identifier.citation | FRANCO, Daiana de Fatima Portella. Síntese e avaliação farmacológica de novos 3-amino-1,2,4-triazóis como inibidores de enzimas envolvidas na doença de Alzheimer. 2020. 260 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9236 | - |
dc.description.abstract | Alzheimer's DIsease is a chronic neurodegenerative disorder, capable of provoking progressive loss of memory and other functions. It is a complex disease, multifactorial and with an unknown origin. Characterized by decrease of cholinergic neuronal activity; deposition of anomalous protein aggregates; neuroinflammation; disfunction of metallic homeostasis; and oxidative stress. Currently, the treatment is based on symptomatic control, mainly with cholinesterase inhibitors. Due the unsuccessful clinical results of most of the drug been being very relevant in this context. Therefore, the objective of this paper is synthesis and pharmacological evaluation of a hybrid series of 1,3-amino-1,2,4-triazoles as multitarget for -classic isosteric exchange of triazines for 3-amino-1,2,4-triazoles; and molecular hybridization with the classic drug donepezil. The compounds containing 1,3-amino-1,2,4-triazoles nucleus were obtained through the regioselective synthesis from N-acyl-2-methyl-isothiourea N-Boc using microwave irradiation (Y= 45% - 88%). Followed by alkylation reactions (37% - 79%); amination (35% - 66%); and deprotection of Boc group (85% - 96%), obtaining the final products, which were characterized by RMN 1H and 13C. The amino-1,2,4-triazoles carrier R1= NO2 (AChE; IC50 = 0,386; IS= 5,86) and R1= Bz (BChE; IC50 = 0,416, IS= 3,66) presented the highest inhibitory activities to the cholinesterases AChE and BuChE respectively, in addition, presented mixed inhibition profile in the assays of enzymatic kinetics. Furthermore, the molecular docking has showed the mainly interactions between the 1,3-amino-1,2,4-triazoles with the residue W86, W286 and Y124 of AChE active site. However, the 1,3-amino-1,2,4-triazoles have not showed antioxidant activities in DPPH assay. In the end, spectroscopic results of fluorescent emission indicate the formation of the triazole complex containing R1: H; R1: 2-OH; e R1: 2-piridine with metallic ions, Zn2+, Cu2+, Al3+, Fe3+. The results were promising, because were obtained more active compounds than the prototype, including the capacity of complexing with metallic ions, important properties to defeat Alzheimer. As a perspective, the series of amino-1,2,4-triazoles will be send to assays of βA aggregation inhibition and neurotoxicity; and the exploration of new series varying substituents in benzylpiperazine group. | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Alzheimer | por |
dc.subject | colinesterase | por |
dc.subject | multialvos | por |
dc.subject | 1,2,4-triazóis | por |
dc.subject | microondas | por |
dc.subject | cholinesterase | eng |
dc.subject | multitargets | eng |
dc.subject | 1,2,4-triazole | eng |
dc.subject | microwave | eng |
dc.title | Síntese e avaliação farmacológica de novos 3-amino-1,2,4-triazóis como inibidores de enzimas envolvidas na doença de Alzheimer | por |
dc.type | Tese | por |
dc.contributor.advisor1 | Kümmerle, Arthur Eugen | |
dc.contributor.advisor1ID | 053.978.487-78 | por |
dc.contributor.referee1 | Kümmerle, Arthur Eugen | |
dc.contributor.referee2 | Lima, Áurea Echevarria Aznar Neves | |
dc.contributor.referee3 | Forezi, Luana da Silva Magalhães | |
dc.contributor.referee4 | Pinho, Vagner Dantas | |
dc.contributor.referee5 | Pinheiro, Sérgio | |
dc.creator.ID | 117.681.667-57 | por |
dc.creator.Lattes | http://lattes.cnpq.br/5896760499734407 | por |
dc.description.resumo | A Doença de Alzheimer é um distúrbio neurodegenerativo crônico, capaz de provocar perda progressiva de memória e outras funções. Trata-se de uma doença complexa, de natureza multifatorial e origem indeterminada. Caracteriza-se pela diminuição de atividade colinérgica neuronal; deposição de agregados proteicos anômalos; neuroinflamação; disfunção na homeostase metálica; e estresse oxidativo. Atualmente, o tratamento baseia-se no controle sintomático, principalmente com o uso de inibidores colinesterásicos. Devido aos insucessos dos resultados clínicos da maioria dos candidatos a fármacos anti-Alzheimer, a estratégia baseada no uso de compostos multi-alvos, tem ganhado bastante relevância neste campo. Assim, o objetivo deste trabalho é a síntese e avaliação farmacológica de séries híbrida de 1,3-amino-1,2,4-triazóis como multialvos para o tratamento da doença de Alzheimer, baseada na troca isostérica não-clássica da triazinas pelo 3-amino-1,2,4-triazois; e hibridação molecular com o fármaco clássico donepezil. Os compotos contendo o núcelo 1,3-amino-1,2,4-triazóis foram obtido através da síntese regiosseletiva a partir de N-acil-2-metil-isotiuréia N-Boc usando irradiação por microondas (R = 45 a 88%). Seguida das etapas de alquilação (37% - 79%); aminação (35% - 66%); e desproteção do grupo Boc (85% - 96%) para se obter os produtos finais, os quais foram todos caracterizados por RMN 1H e 13C. Os amino-1,2,4-triazóis portadores do subtituinte R1=NO2 (AChE; CI50 = 0,386; IS= 5,86) e R1= Bz (BChE; CI50 = 0,416, IS= 3,66) apresentaram as maiores atividades inibitórias frente às colinesterases AChE e BuChE respectivamente, além de apresentarem inibição mista nos ensaios de cinética enzimática. Ademais, o estudo de ancoramento molecular mostrou as principais interações entre compostos amino-1,2,4-triazóis como os resíduos W86, W286 e Y124 do sítio ativo da AChE. Entretanto, os amino-1,2,4-triazóis não mostraram atividades e antioxidantes no ensaio de DPPH. Por fim, resultados espectroscópicos de emissão de fluorescências indicaram a formação do complexo entre os amino-1,2,4-triazóis contendo R1: H; R1: 2-OH; e R1: 2-piridina com íons metálicos, Zn2+, Cu2+, Al3+, Fe3+. Os resultados foram promissores, visto que foram obtidos compostos mais ativos e seletivos que o protótipo, e com capacidade de complexar com íons metálicos, propriedades importantes para o emprego como compostos anti-Alzheimer. Como perspectiva, a série de amino-1,2,4-triazóis será submetidos a ensaios inibição de agregação Aβ e neurotoxidade; e exploração de novas séries variando substituintes no grupo benzilpiperazina. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Química | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | ADI. Alzheimer’s Disease International. World Alzheimer Report 2015: The Global Impact of Dementia. An analysis of prevalence, incidence, cost trends. Disponível em: https://www.alz.co.uk/research/world-report-2015. Acesso em: 10 de dezembro de 2019. AKIYAMA, H.; BARGER, S.; BARNUM, S.; BRADT, B.; BAUER, J.; COLE, G. M; FINCH, C. E. Inflammation and Alzheimer’s disease. Neurobiology of aging, v. 21, n. 3, p. 383-421, 2000. ALAM, J. J. Selective Brain-Targeted Antagonism of p38 MAPKα Reduces Hippocampal IL- 1β Levels and Improves Morris Water Maze Performance in Aged Rats. Journal Alzheimer's Disiase, v. 48, n. 1, p. 219–227, 2015. ALKAM, T., NITTA, A., MIZOGUCHI, H., SAITO, K., SESHIMA, M., ITOH, A., YAMADA, K. NABESHIMA, T. Restraining tumor necrosis factor-alpha by thalidomide prevents the Abeta-induced impairment of recognition memory in mice. Behav. Brain Res., v. 189, p.100-106, 2008. ALVAREZ-BUILLA, J.; VAQUERO, J. J.; BARLUENGA, J.. Modern Heterocyclic Chemistry, v. 4. John Wiley & Sons, 2011. ALZ. Alzheimer’s Association 2011 Alzheimer’s Disease Facts and Figures. Disponível em < http://www.alz.org/downloads/Facts_Figures_2011. Acesso em: 10 de dezembro de 2019. ALZ. Alzheimer’s Association 2016 Alzheimer’s Disease Facts and Figures. Disponível em < https://www.who.int/health-topics/dementia#tab=tab_1. Acesso em: 10 de dezembro de 2019. ALZ. Alzheimer’s Association: Diagnosis. Disponível em < https://www.alz.co.uk/info/diagnosis. Acesso em: 10 de dezembro de 2019. ALZ. Alzheimer’s Association: Risk factors. Disponível em < https://www.alz.co.uk/info/risk-factors. Acesso em: 10 de dezembro de 2019. AlZFORUM.Therapeutics. Disponível em < https://www.alzforum.org/therapeutics/search. Acesso em: 28 de dezembro de 2019. AMANI, M.; SHOKOUHI, G.; SALARI, A. A. Minocycline prevents the development of depression-like behavior and hippocampal inflammation in a rat model of Alzheimer’s disease. Psychopharmacology, v. 236, n. 4, p. 1281-1292 , 2018. ANAND, P.; SINGH, B.A review on cholinesterase inhibitors for Alzheimer’s disease. Archives of pharmacal research, v. 36, n. 4, p. 375-399, 2013. ANAND, P; SINGH, B. Synthesis and evaluation of novel 4-[(3H, 3aH, 6aH)-3-phenyl)-4, 6- dioxo-2-phenyldihydro-2H-pyrrolo [3, 4-d] isoxazol-5 (3H, 6H, 6aH)-yl] benzoic acid derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents. Bioorganic & medicinal chemistry, v. 20, n. 1, p. 521-530, 2012. ANSARI, M. A.; ABDUL, M.; JOSHI, G.; OPII, W.; BUTTERFIELD, A. Protective effect of quercetin in primary neurons against Aβ (1–42): relevance to Alzheimer's disease. The Journal of nutritional biochemistry, v. 20, n. 4, p. 269-275, 2009. ARAÚJO, C. R. M.; SANTOS, V. L. DOS A.; GONSALVES A. A. Acetilcolinesterase - AChE: Uma Enzima de Interesse Farmacológico. Revista Virtual de Quimica, v. 8, n. 6, p. 1818-1834, 2016. BAI, X.; ZHOU, C.; MI, J. Research and application of triazoles. Chemical Research and Application, v. 19, n. 7, p. 721, 2007. BAKULSKI, K. M.; ROZEK, L. S.; DOLINOY, D. C.; PAULSON, H. L.; HU, H. Alzheimer's Disease and Environmental Exposure to Lead: The Epidemiologic Evidence and Potential Role of Epigenetics. Currunte Alzheimer Research, v. 9, n. 5, p. 563-573, 2012. BAREGGI, S. R.; CORNELLI, U. Clioquinol: review of its mechanisms of action andclinical uses in neurodegenerative disorders. CNS neuroscience & therapeutics, v. 18, n. 1, p.41-46, 2012. BARNES, D. E.; YAFFE, K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. The Lancet Neurology, v. 10, n. 9, p. 819-828, 2011. BARNHAM, K. J.; MASTERS, C. L.; BUSH, A. I. Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, v. 3, p. 205–214, 2004. BARNHAM, KEVIN J.; MASTERS, COLIN L.; BUSH, ASHLEY I. Neurodegenerative diseases and oxidative stress. Nature reviews Drug discovery, v. 3, n. 3, p. 205-214, 2004. BARREIRO, E. J.; FRAGA, C. A. M.. Química Medicinal: As bases moleculares da ação dos fármacos. Artmed Editora, 2014. BARTOLUCCI, C.; PEROLA, E.; PILGER, C.; FELS, G.; LAMBA, D. Three‐dimensional structure of a complex of galanthamine (Nivalin®) with acetylcholinesterase from Torpedo californica: Implications for the design of new anti‐Alzheimer drugs. Proteins: structure, function, and bioinformatics, v. 42, n. 2, p. 182-191, 2001. BAYER, A. J.; BULLOCK, R.; JONES, R. W.; WILKINSON, D.; PATERSON, K. R.; JENKINS, L.; MILLAIS, S. B. Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology, v. 64, n. 1, p. 94-101, 2005. BELAIDI, A. A.; BUSH, A. I. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: Targets for therapeutics. Journal of Neurochemistry, v.139, 179–197, 2016. BENEVENTO, C. E. Disfunção mitocondrial induzida por peptídeos beta-amilóide. 2011. BERG, J. M.; TYMOCZKO, J. L.; STRVER, L. Bioquímica. 6a Ed. Rio de Janeiro: Guanabara Koogan, 2008. BIASINI, M.; BIENERT, S.; WATERHOUSE, A.; ARNOLD, K.; STUDER, G.; SCHMIDT, T.; SCHWEDE, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research, v. 42, n. W1, p. W252-W258, 2014. BIRKS, J.; GRIMLEY, E. V.; VAN DONGEN, M. Ginkgo biloba for cognitive impairment and dementia (Cochrane Review). The Cochrane Library, n. 4, p. 1-19, 2002. BIRKS, J; EVANS, J. G. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database of Systematic Reviews, v. 1, p. CD003120, 2007. BLENNOW, K.; DE LEON, M. J.; ZETTERBERG, H. Alzheimer's disease. Lancet, v. v. 368, n. 9533, p. 387-403, 2006. BLENNOW, K.; ZETTERBERG, H. Semagacestat’s fall: where next for AD therapies. Nat Med, v. 19, n. 10, p. 1214-1215, 2013. BLOOM, G. S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA neurology, v. 71, n. 4, p. 505-508, 2014. BOEGLIN, D.; CANTEL, S.; HEITZ, A.; MARTINEZ, J.; FAHRENTZ, J. A. Solution and solid-supported synthesis of 3, 4, 5-trisubstituted 1, 2, 4-triazole-based peptidomimetics. Organic letters, v. 5, n. 23, p. 4465-4468, 2003. BOFF, M. S.; SEKYIA, F. S.; DE CAMPOS B., CÁSSIO M.. Revisão sistemática sobre prevalência de demência entre a população brasileira. Revista de Medicina, v. 94, n. 3, p. 154-161, 2015. BOLOGNIN, S.; MESSORI, L.; ZATTA, P. Metal ion physiopathology in neurodegenerative disorders. Neuromolecular medicine, v. 11, n. 4, p. 223-238, 2009. BOND, M.; ROGERS, G.; PETERS, J.; ANDERSON, R.; HOYLE, M.; MINERS, A.; MOXHAM, T.; DAVIS, S.; THOLAKA, P.; WAILOO, A. The effectiveness and costeffectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health technology assessment (Winchester, England), v. 16, n. 21, p. 1-470, 2012. BONDA, D. J.; LEE, H. G.; BLAIR, J. A.; ZHU, X.; PERRY, G.; SMITH, M. A. Role of metal dyshomeostasis in Alzheimer's disease. Metallomics, v. 3, n. 3, p. 267-270, 2011. BONDY, S. C. The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology, v. 31, n. 5, p. 575-581, 2010. BOURNE, Y.; GRASSI, J.; BOUGIS, P. E.; MARCHOT, P. Conformational flexibility of the acetylcholinesterase tetramer suggested by x-ray crystallography. Journal of Biological Chemistry, v. 274, n. 43, p. 30370-30376, 1999. BOZO, E.; SZILÁGYI, G.; JANÁKY, J.1, 2, 4-triazoles, III: new 1, 5-diaryl-3-(substituted amino)-1H-1, 2, 4-triazoles as anti-inflammatory agents. Archiv der Pharmazie, v. 322, n. 10, p. 583-587, 1989. BRAAK, E.; GRIFFING, K.; ARAI, K.; BOHL, J.; BRATZKE, H.; BRAAK, H. Neuropathology of Alzheimer’s disease: what is new since A. Alzheimer?. European archives of psychiatry and clinical neuroscience, v. 249, n. 3, p. S14-S22, 1999. BRAAK, H.; BRAAK, E. Evolution of the neuropathology of Alzheimer's disease. Acta Neurologica Scandinavica, v. 94, n. S165, p. 3-12, 1996. BRUS, B.; URBAN, K.; TURK, S.; PISLAR, A.; COQUELLE, N.; KOS, J.; STOJAN, J.; COLLETIER, J.P.; GOBEC, S. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. Journal of medicinal chemistry, v. 57, n. 19, p. 8167-8179, 2014. BUDNI, J.; GARCEZ, M.; DE MEDEIROS, J.; CASSARO, E.; BELLETINE-SANTOS, T.; MINA, F.; QUEVEDO, J. The anti-inflammatory role of minocycline in Alzheimer s disease. Current Alzheimer Research, v. 13, n. 12, p. 1319-1329, 2016. BUÉE, L.; BUSSIÉRE, T.; BUÉE-SCHERRER, V.; DELACOURTE, A; HOF, P. R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews, v. 33, n. 1, p. 95-130, 2000. BULLOCK, R.. Efficacy and safety of memantine in moderate-to-severe Alzheimer disease: the evidence to date. Alzheimer Disease & Associated Disorders, v. 20, n. 1, p. 23-29, 2006. BUSH, A. I. Drug development based on the metals hypothesis of Alzheimer's disease. Journal of Alzheimer's disease, v. 15, n. 2, p. 223-240, 2008. BUSH, A. I.; TANZI, R. E. Therapeutics for Alzheimer's disease based on the metal hypothesis. Neurotherapeutics, v. 5, n. 3, p. 421-432, 2008. BUTCHART, J.; BROOK, L.; HOPKINS, V.; TEELING, J.; PÜNTENER, U.; CULLIFORD, D.; SHARPLES, R.; SHARIF, S.; MCFARLANE, B.; RAYBOULD, R.; THOMAS, R.; PASSMORE, P.. Etanercept in Alzheimer disease: a randomized, placebo-controlled, doubleblind, phase 2 trial. Neurology, v. 84, n. 21, p. 2161-2168, 2015. BUTTERFIELD, D. A.; LAUDERBACK, C. M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptideassociated free radical oxidative stress. Free Radical Biology and Medicine, v. 32, n. 11, p. 1050-1060, 2002. CAMPOS, L.S. Entender a Bioquímica. 2a E. Lisboa: Escolar Editora, 1999. CAREY, F. A. Organic chemistry. 4a ed. New York: Mc Graw Hill, 2000. CASTRO, A.; MARTINEZ, A.Peripheral and dual binding site acetylcholinesterase inhibitors: implications in treatment of Alzheimer's disease. Mini reviews in medicinal chemistry, v. 1, n. 3, p. 267-272, 2001.. CAVALLI, A.; BOLOGNESI, M.; MINARINI, A.; ROSINI, M.; TUMIATTI, V. Multitarget- directed ligands to combat neurodegenerative diseases. Journal of medicinal chemistry, v. 51, n. 3, p. 347-372, 2008. CHANG, J. J.; WANG, Y.; ZHANG, H. Z.; ZHOU, C. H.; GENG, R. X.; JI, Q. G. Recent advances in researches of triazole-based supramolecular chemistry and medicinal drugs. Chemical Journal of Chinese Universities, v. 32, n. 9, p. 1970-1985, 2011. CHAVES, M. L.; CAMOZZATO, A. L.; GODINHO, C.; PIAZENSKI, I.L; KAYE, J. Incidence of mild cognitive impairment and Alzheimer disease in Southern Brazil. Journal of Geriatric Psychiatry and Neurology, v. 22, n. 3, p. 181-187, 2009. CHEIGNON, C.; TOMAS, M.; BONNEFONT-ROUSSELOT, D.; FALLER, P.; HUREAU, C.; COLLIN, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox biology, v. 14, p. 450-464, 2018. CHEN, C.; DAGNINO, R.; HUANG, C. Q.; MCCARTHY, J. R. 1-Alkyl-3-amino-5-aryl-1H-[1, 2, 4] triazoles: novel synthesis via cyclization of N-Acyl-S-methylisothioureas with alkylhydrazines and their potent corticotropin-Releasing factor-1 (CRF1) receptor antagonist activities. Bioorganic & medicinal chemistry letters, v. 11, n. 24, p. 3165-3168, 2001. CHERNY, R. A.; ATWOOD, C.; XILINAS, M.; GRAY, D.; JONES, W.; MCLEAN, C.; BARNHAM, K.; VOLITAKIS, I.. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, v. 30, n. 3, p. 665-676, 2001. CHERNYSHEV, V. M.; CHERNYSHEVA, A. V. Recyclization of 2-(2, 5-dioxopyrrolidin-1- yl)-guanidine under the action of aliphatic amines. a novel method for the synthesis of 3-(5- amino-1h-1, 2, 4-triazol-3-yl) propanoic acid amides. Chemistry of heterocyclic compounds, v. 46, n. 5, p. 627-628, 2010. CHERNYSHEV, V. M.; CHERNYSHEVA, A. V.; STARIKOVA, Z. A. Rearrangement of 2- (2, 5-Dioxopyrrolidin-1-yl) guanidine: An Efficient Synthesis and Structure of 3-(5-Amino- 1H-1, 2, 4-triazol-3-yl) propanoic Acid and Derivatives. Heterocycles, v. 81, n. 10, p. 2291, 2010. CHERNYSHEV, V. M.; CHERNYSHEVA, A. V.; TARANUSHICH, V. A. Optimization of the Synthesis of 5-Amino-1, 2, 4-triazol-3-ylacetic acid and bis (5-amino-1, 2, 4-triazol-3-yl) methane. Russian Journal of Applied Chemistry, v. 82, n. 2, p. 276-281, 2009. CHEUNG, J.; RUDOLPH, M. J.; BURSHTEYN, F.; CASSIDY, M. S.; GARY, E. N.; LOVE, J.; HEIGHT, J. J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of medicinal chemistry, v. 55, n. 22, p. 10282-10286, 2012. CHURCHILL, D. G. Chemical structure and accidental explosion risk in the research laboratory. Journal of Chemical Education, v. 83, n. 12, p. 1798, 2006. CLAYDEN, J.; GREEVES, N.; WARREN, S.; WOTHERS, P. Organic chemistry. New York: Oxford, 2001. ÇOKUĞRAŞ, A. N.; TURK, J. Butyrylcholinesterase: Structure and Physiological Importance. Biochemistry, v. 28, n. 2, p. 54- 61, 2003. COREY, J.; BLOOM, J. E.; ANAND, R.; VEACH, J. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer's disease for the ENA 713 B352 Study Group. 1998. CORIC, V.; VAN DYCK, C. H.; SALLOWAY, S.; ANDREASEN, N.; BRODY, M.; RICHTER, R. W.; SOININEN, H.; THEIN, S.; SHIOVITZ, T.; PILCHER, G.; COLBY, S.; ROLLIN, L.; DOCKENS, R.; PACHAI, C.; PORTELIUS, E.; ANDREASSON, U.; BLENNOW, K.; SOARES, H.; ALBRIGHT, C.; FELDMAN, H. H.; BERMAN R. M. Safety and Tolerability of the γ-Secretase Inhibitor Avagacestat in a Phase 2 Study of Mild to Moderate Alzheimer Disease. Archives of Neurology, v. 69, n. 11, p. 1430–1440, 2009. CRAIG, L. A.; HONG, N. S.; MCDONALD, R. J. Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neuroscience & Biobehavioral Reviews, v. 35, n. 6, p. 1397-1409, 2011. CROUCH, P. J.; SAVVA, M.; HUNG, L.; DONELLY, P.; MOT, A.; PARKER, S.; GREENOUGH, M.; VOLITAKIS, I.; ADLARD, P.. The Alzheimer’s therapeutic PBT2 promotes amyloid‐β degradation and GSK3 phosphorylation via a metal chaperone activity. Journal of neurochemistry, v. 119, n. 1, p. 220-230, 2011. CUMMINGS, J. Drug development in Alzheimer’s disease: the path to 2025. Alzheimer's research & therapy, v. 8, n. 1, p. 39, 2016. CUMMINGS, J. L.; MORSTORF, T.; ZHONG, K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer's Research & Therapy, v. 6, n. 4, 2014. CURTIS, A. D. M.; JENNINGS, N. Metalation of Azoles and Related Five-Membered Ring Heterocycles. In: Name Reactions. 3 Ed. Berlin: Springer, 2006. DEDEOGLU, A.; CORMIER, K.; PAYTON, S.; TSEITLIN, K.; KREMSKY, J.; LAI, L.; LI, X.; MOIR, R.; TANZI, R.; BUSH, A.; KOWALL, N.; ROGERS, J. Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis. Experimental Gerontology, v. 39, n. 11-12, p. 1641-1649, 2004. DENG, X.; WANG, J.; ZHANG, J.; SIM, T.; KIM, N.; SASAKI, T.; LUTHER, W. Discovery of 3, 5-diamino-1, 2, 4-triazole ureas as potent anaplastic lymphoma kinase inhibitors. ACS medicinal chemistry letters, v. 2, n. 5, p. 379-384, 2011. DEWEERDT, S.. Prevention: activity is the best medicine. Nature, v. 475, n. 7355, p. S16-S17, 2011. DIAS, K. S. T.; DE PAULA, C. T.; RIQUIEL, M. M.; LAGO, S. T.; COSTA, K. C. M.; VAZ, S. M.; MACHADO, R. P.; LIMA, L. M. S.; VIEGAS JUNIOR, C. Aplicações Recentes da Abordagem de Fármacos Multialvo para o Tratamento da Doença de Alzheimer. Revista Virtual de Química, v. 7, n. 2, 609-648, 2015. DOLAN, P. J.; JOHNSON, G. V. W. The role of tau kinases in Alzheimer’s disease. Current opinion in drug discovery & development, v. 13, n. 5, p. 595, 2010. DOLZHENKO, A. V.; PASTORIN, G.; DOLZHENKO, A. V.; CHUI, W. K. An aqueous medium synthesis and tautomerism study of 3 (5)-amino-1, 2, 4-triazoles. Tetrahedron Letters, v. 50, n. 18, p. 2124-2128, 2009. DOMÍNGUEZ, J. M.; FUERTES, A.; OROZCO, L.; MONTE-MILLÁN, M.; DELGADO, E.; MEDINA, M. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. Journal of Biological Chemistry, v. 287, n. 2, p. 893-904, 2012. DONG, J.; ATWOOD, C. S.; ANDERSON, V. E.; SIEDLAK, S. L.; SMITH, M. A.; PERRY, G.; CAREY, P. R. Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence. Biochemistry, v. 42, n. 10, p. 2768-2773, 2003. DOODY, R. S.; VELLAS, B.; JOFFE, S; KIEBURTZ, K.; HE, F.; SUN, X; THOMAS, R. G. Alzheimer’s Disease Cooperative Study Steering Committee, Siemers E, Sethuraman G, Mohs R, Semagacestat Study Group. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med, v. 369, n. 4, p. 341-50, 2013.. DORAISWAMY, P. M.; FINEFROCK, A. E. Metals in Our Minds: Therapeutic Implications for Neurodegenerative Disorders. The Lancet Neurology, v. 3, n. 7, p. 431-434, 2004. DOS SANTOS, P.; OZELA, P.; BRITO, M.; PINHEIRO, A.; PADILHA, E.; BRAGA, F.; DE PAULA DA S., C.; DOS SANTOS, C.; ROSA, J.; HAGE-MELIM, L. Alzheimer's disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Current medicinal chemistry, v. 25, n. 26, p. 3141-3159, 2018.4 K. G. Mawuenyega, Science, 2010, 330, 1774. DREW, L. An age-old story of dementia. Nature, v. 559, n. 7715, p. S2–S3, 2018. DU, X.; WANG, X.; GENG, M. Alzheimer’s disease hypothesis and related therapies Translational Neurodegeneration v. 7, n. 22, p. 2018. DXLINE. Tau Protein. Disponível em: http://dxline.info/diseases/tau-protein. Acesso em: 16 de dezembro de 2019. EGAN, M. F.; KOST, J.; TARIOT, P.; AISEN, P.; CUMMINGS, J.; VELLAS, B.; SUR, C.; MUKAI, Y.; VOSS, T.; FURTEK, C.; MAHONEY, E.; MOZLEY, L. H.; V., Rik; MO, Yi; MICHELSON, D. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. New England Journal of Medicine, v. 378, n. 18, p. 1691-1703, 2018. ELLMAN, G. L.; COURTNEY, K. D.; ANDRES JR, V.; FEATHERSTONE, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, v. 7, n. 2, p. 88-95, 1961. ENGELHARDT, E.; BERTOLUCCI, P.; BRITO-MARQUES, P. Efficacy of rivastigmine in the cognitive performance of patients ENGELHARDT, E.; BRUCKI, S. M.; CAVALCANTI, J. L.; FORLENZA, O. V.; LAKS, J.; VALE, F. A. Treatment of Alzheimer's disease: recommendations and suggestions of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Arquivos de neuro-psiquiatria, v. 63, n. 4, p. 1104-1112, 2005. FARINA, M.; AVILA, D. S.; DA ROCHA, J. B.; ASCHNER, M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochemistry international, v. 62, n. 5, p. 575-594, 2013. FAUCHERE, J. L.; ORTUNO, J. C.; DUHAULT, J.; BOUTIN, J. A.; LEVENS, N. European Patent EP 1044970, 2000. In: Chem. Abstr. 2000. p. 309-895. FAUX, N. G.; RITCHIE, C.; GUNN, A.; REMBACH, A.; TSATSANIS, A.; BEDO, J.; HARRISON, J.; LANNFELT, L.. PBT2 rapidly improves cognition in Alzheimer's Disease: additional phase II analyses. Journal of Alzheimer's Disease, v. 20, n. 2, p. 509-516, 2010. FERN NDE -BACHILLER, M. I.; PÉREZ, C.; MONJAS, L.. Novel tacrine− 8- hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. Journal of medicinal chemistry, v. 53, n. 13, p. 4927-4937, 2010. FERN NDE -BACHILLER, M. I.; PÉREZ, C.; MONJAS, L.; RADEMANN, J.; RODRÍGUEZ-FRANCO, M. I.New Tacrine–4-Oxo-4 H-chromene hybrids as multifunctional agents for the treatment of alzheimer’s disease, with cholinergic, antioxidant, and β-amyloidreducing properties. Journal of medicinal chemistry, v. 55, n. 3, p. 1303-1317, 2012. FETTELSCHOSS, A.; ZABEL, F.; BACHMANN, M. F. Vaccination Against Alzheimer Disease: An Update on Future Strategies. Human Vaccines & Immunotherapeutics, v.10, n. 4, p. 847–851, 2014. FINEFROCK, A. E.; BUSH, A. I.; DORAISWAMY, P. M. Current status of metals as therapeutic targets in Alzheimer's disease. Journal of the American Geriatrics Society, v. 51,n. 8, p. 1143-1148, 2003. FISH, P. V.; STEADMAN, D.; BAYLE, E.; WHITING, P. New approaches for the treatment of Alzheimer’s disease. Bioorganic & medicinal chemistry letters, v. 29, n. 2, p. 125-133, 2019. FRANCO, D. F. P. Síntese de compostos cumarínicos-1,2,3-triazóis análogos ao Novobiocin planejados como inibidores da HSP-90. Dissertação (Mestrado em Ciências) – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2015. FRANJESEVIC, A. J.; SILLART, S. B.; BECK, J. M.; VYAS, S.; CALLAM, C. S.; HADAD, C. M. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chemistry, v. 25, p. 1 – 36, 2019 FROST, B.; JACKS, R. L.; DIAMOND, M. I. Propagation of tau misfolding from the outside to the inside of a cell. Journal of Biological Chemistry, v. 284, n. 19, p. 12845-12852, 2009. GAUTHIER, S.; FELDMAN, H.; SCHNEIDER, L.; WILCOCK, G.; FRISONI, G.; HARDLUND, J.; MOEBIUS, H.. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. The Lancet, v. 388, n. 10062, p. 2873-2884, 2016. GH POPESCU, B. F.; NICHOL, H. Mapping brain metals to evaluate therapies for neurodegenerative disease. CNS neuroscience & therapeutics, v. 17, n. 4, p. 256-268, 2011. Gh POPESCU, B. F.; NICHOL, H. Mapping brain metals to evaluate therapies for neurodegenerative disease. CNS Neuroscience & Therapeutics, v. 17, n. 4, p. 256-268, 2011. GIBSON, G. L.; ALLSOP, D.; AUSTEN, B. M. Induction of Cellular Oxidative Stress by the β-amyloid Peptide Involved in Alzheimer's disease. Protein and peptide letters, v. 11, n. 3, p. 257-270, 2004. GILMAN, S.; KOLLER, M; BLACK, R. S.; JENKINS, L.; GRIFFITH, S. G. AN1792 (QS- 21)-201 Study Team. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, v. 64, n. 9, p. 1553-1562, 2005. GOLDE, T. E. Open questions for Alzheimer’s disease immunotherapy. Alzheimer's research & therapy, v. 6, n. 1, p. 3, 2014. GOODMAN, L. S.; BRUNTON, L.; LAZO, J.; PARKER, K.. Goodman and Gilman's the pharmacological basis of therapeutics. New York: McGraw-Hill, 1996. GREENOUGH, M. A.; CAMAKARIS, J.; BUSH, A. I. Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochemistry international, v. 62, n. 5, p. 540-555, 2013. GREIG, N. H.; UTSUKI, T.; YU, Q.; ZHU, Xiaoxiang; HOLLOWAY, Harold; PERRY, TracyAnn; LEE, Bong; INGRAM, Donald; LAHIRI, Debomoy. A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase. Current medical research and opinion, v. 17, n. 3, p. 159-165, 2001. GROSSMAN, H.; MARZLOFF, G.; LUO, X.; LEROITH, D.; SANO, M.; PASINETTI, G. NIC5-15 as a treatment for Alzheimer's: safety, pharmacokinetics and clinical variables. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, v. 5, n. 4, p. P259, 2009. GUSTAFSON, D.; ROTHENBERG, E.; BLENNOW, K.; STEEN, B.; SKOOG, I. An 18- year follow-up of overweight and risk of Alzheimer disease. Archives of internal medicine, v. 163, n. 13, p. 1524-1528, 2003. HALLIDAY, G.; ROBINSON, S. R.; SHEPHERD, C.; KRIL, J. Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clinical and Experimental Pharmacology and Physiology, v. 27, n. 1‐2, p. 1-8, 2000. HANGER, D. P.; ANDERTON, B. H.; NOBLE, W.. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends in molecular medicine, v. 15, n. 3, p. 112-119, 2009. HARB, T. B.; TORRES, P. B.; PIRES, J. S.; SANTOS, D. Y. A. C.; CHOW, F. Ensaio em microplaca do potencial antioxidante através do sistema quelante de metais para extratos de algas. Instituto de Biociências, Universidade de São Paulo, v. 1, n. 1, p. 2-6, 2016. HARDMAN, J. G.; LIMBIRD, L. E.; GILMAN, A. G.; GOODMAN, L. S.; GILMAN, A. Goodman & Gilman’s the pharmacological basis of therapeutics, 5ª Ed., New York: McGraw-Hill, 1996. HARDY, J.; ALLSOP, D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends in pharmacological sciences, v. 12, p. 383-388, 1991. HARDY, J.; SELKOE, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, v. 297, n. 5580, p. 353-356, 2002. HASHIMOTO, T.; ISHIBASHI, A.; HAGIWARA, H.; MURATA, Y.; TAKENAKA, O.; MIYAGAWA, T. E2012: A novel gamma-secretase modulator-pharmacology part. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, v. 6, n. 4, p. S242, 2010. HE, Q. L.; JIA, X. Y.; TANG, M. C.; TIAN, Z. H.; TANG, G. L.; LIU, W. Dissection of two acyl‐transfer reactions centered on acyl‐S‐carrier protein intermediates for incorporating 5‐chloro‐6‐methyl‐O‐methylsalicyclic acid into chlorothricin. ChemBioChem, v. 10, n. 5, p. 813-819, 2009. HENEKA, M. T.; CARSON, M. J.; EL KHOURY, J.; LANDRETH, G. E.; BROSSERON, F.; FEINSTEIN, D. L.; HERRUP, K. Neuroinflammation in Alzheimer's disease. The Lancet Neurology, v. 14, n. 4, p. 388-405, 2015. HENLEY, D. B.; MAY, P.; DEAN, R.; SIEMERS, E. Development of semagacestat (LY450139), a functional γ-secretase inhibitor, for the treatment of Alzheimer's disease. Expert opinion on pharmacotherapy, v. 10, n. 10, p. 1657-1664, 2009. HEO, H. J.; LEE, C. Y. Protective effects of quercetin and vitamin C against oxidative stressinduced neurodegeneration. Journal of Agricultural and Food Chemistry, v. 52, n. 25, p. 7514-7517, 2004. HERRERA JR, E.; CARAMELLI, P.; SILVEIRA, A. S. B. NITRINI, Ricardo. Epidemiologic survey of dementia in a community-dwelling Brazilian population. Alzheimer Disease & Associated Disorders, v. 16, n. 2, p. 103-108, 2002. HICKEY, S. M.; KHOSA, S. K; ROBSON, R. N.; WHITE, J.M.; LI, J.; HUANG, J. X. Synthesis and evaluation of cationic norbornanes as peptidomimetic antibacterial agents. Organic & biomolecular chemistry, v. 13, n. 22, p. 6225-6241, 2015. HOLMES, C. Systemic inflammation and Alzheimer's disease. Neuropathology and applied neurobiology, v. 39, n. 1, p. 51-68, 2013. HOLMES, C.; BOCHE, D.; WILONSON, D.; YADEGARFAR; G.; HOPKINS, V.; BAYER, A.; JONES, R.; BULLOCK, R. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. The Lancet, v. 372, n. 9634, p. 216-223, 2008. HOLMES, C.; CUNNINGHAM, C.; ZOTOVA, E.; CULLIFORD, D.; PERRY, V. H. Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology, v. 77, n. 3, p. 212-218, 2011. HOPKINS, C. R. ACS chemical neuroscience molecule spotlight on begacestat (GSI-953). ACS Chemical Neuroscience, v. 3, n.1, p. 3-4, 2012. HORI, Y.; TAKEDA, S.; CHO, H.; WEGMANN, S.; SHOUP, T.; TAKAHASHI, K.; IRIMIA, D.; ELMALEH, D.; HYMAN, B.; HUDRY, E. A Food and Drug Administrationapproved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease. Journal of Biological Chemistry, v. 290, n. 4, p. 1966-1978, 2015. HUANG, W.; WEI, W.; SHEN, Z.. Drug-like chelating agents: a potential lead for Alzheimer's disease. RSC Advances, v. 4, n. 94, p. 52088-52099, 2014. INESTROSA, N. C.; ALVAREZ, A.; PÉREZ, C.; MORENO, R.; VICENTE, M.; LINKER, C.; CASANUEVA, O.; SOTO, C.; GARRIDO, J. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron, v. 16, n. 4, p. 881-891, 1996. INESTROSA, N. C.; FERRARI, G.; GARRIDO, J.; ALVAREZ, A.; OLIVARES, G.; BARRÍA, M.; BRONFMAN, M.; CHACÓN, M. Wnt signaling involvement in β-amyloiddependent neurodegeneration. Neurochemistry international, v. 41, n. 5, p. 341-344, 2002. IQBAL, K.; LIU, F.; GONG, C. X.; GRUNDKE-IQBAL, I. Tau in Alzheimer disease and related tauopathies. Current Alzheimer Research, v. 7, n. 8, p. 656-664, 2010. IRIZARRY, M. C.; GUROL, M. E.; RAJU, S.; DIAZ-ARRASTIA, R.; LOCASCIO, J. J.; TENNIS M.; HYMAN, B. T.; GROWDON, J. H.; GREENBERG, S. M.; BOTTIGLIERI, T. Association of homocysteine with plasma amyloid β protein in aging and neurodegenerative disease. Neurology, v. 65, n. 9, p. 1402-1408, 2005. ISAAC, M. G.; QUINN, R.; TABET, N. Vitamin E for Alzheimer di¬sease and mild cognitive impairment. Cochrane Database of Systematic Reviews, v. 3, p. CD002854, 2008. JAKOB‐ROETNE, R.; JACOBSEN, H. Alzheimer's disease: from pathology to therapeutic approaches. Angewandte Chemie International Edition, v. 48, n. 17, p. 3030-3059, 2009. JIANG, XY.; CHEN, TK.; ZHOU, JT.; HE, SY.; YANG, HY.; CHEN, Y. Dual GSK- 3β/AChE inhibitors as a new strategy for multitargeting anti-Alzheimer’s disease drug discovery. ACS medicinal chemistry letters, v. 9, n. 3, p. 171-176, 2018. JOMOVA, K.; VONDRAKOVA, D.; LAWSON, M.; VALKO, M. Metals, oxidative stress and neurodegenerative disorders. Molecular and cellular biochemistry, v. 345, n. 1-2, p. 91-104, 2010. JORM, A. F. Cross-national comparisons of the occurrence of Alzheimer's and vascular dementias. European archives of psychiatry and clinical neuroscience, v. 240, n. 4-5, p. 218-222, 1991. JOULE, J. A.; MILLS, K. Heterocyclic Chemistry. 5ª Ed., United Kingdom: John Wiley & Sons, 2010. KAKWANI, M. D.; LELE, A. C.; RAY, M.; RAJAN, M. G. R.; DEGANI, M. S. Synthesis and preliminary biological evaluation of novel N-(3-aryl-1, 2, 4-triazol-5-yl) cinnamamide derivatives as potential antimycobacterial agents: An operational Topliss Tree approach. Bioorganic & medicinal chemistry letters, v. 21, n. 21, p. 6523-6526, 2011. KÁSA, P.; RAKONCZAY, Z.; GULYA, K. The cholinergic system in Alzheimer's disease. Progress in neurobiology, v. 52, n. 6, p. 511-535, 1997. KATRITZKY, A. R.; RAMSDEN, C. A.; JOULE, J. A.; ZHDANKIN, V. V. Handbook of heterocyclic chemistry. 3aEd. New York: Elsevier, 2010. KATRITZKY, A. R.; ROGOVOY, B.; VVENDESKY, V.; KOVALENKO, K.; STEEL, P.; MARKOV, V.; FOROOD, B. Synthesis of N, N-disubstituted 3-amino-1, 2, 4- triazoles. Synthesis, v. 2001, n. 06, p. 0897-0903, 2001. KAWAHARA, M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. Journal of Alzheimer's Disease, v. 8, n. 2, p. 171-182, 2005. KRAUS, A.; GHORAI, P.; BIRNKAMMER, T.; SCHNELL, D.; ELZ, S.; SEIFERT, R.; BUSCHAUER, A. NG‐Acylated Aminothiazolylpropylguanidines as Potent and Selective Histamine H2 Receptor Agonists. ChemMedChem: Chemistry Enabling Drug Discovery, v. 4, n. 2, p. 232-240, 2009. KRAUS, G. A.; TASCHNER, M. J. Model studies for the synthesis of quassinoids. 1. Construction of the BCE ring system. The Journal of Organic Chemistry, v. 45, n. 6, p. 1175-1176, 1980. KURTI, L.; CZAKO B. Strategic Applications of Named Reactions in Organic Synthesis. 1a Ed. Academic Press, 2005. KUTZ, C. J.; HOLSHOUSER, S. L.; MARROW, E. A.; WOSTER, P. M. 3, 5-Diamino-1, 2, 4-triazoles as a novel scaffold for potent, reversible LSD1 (KDM1A) inhibitors. MedChemComm, v. 5, n. 12, p. 1863-1870, 2014. LAHIRI, D. K.; ROGERS, J. T.; GREIG, N. H.; SAMBAMURTI, K. Rationale for the development of cholinesterase inhibitors as anti-Alzheimer agents. Current pharmaceutical design, v. 10, n. 25, p. 3111-3119, 2004. LANSDALL, C. J. An effective treatment for Alzheimer's disease must consider both amyloid and tau. Bioscience Horizons: The International Journal of Student Research, v. 7, 2014. LAUNER, L.; ROSS, W.; PETROVITCH, H.; MASAKI, K.; FOLEY, D.; WHITE, L.; HAVLIK, R. Midlife blood pressure and dementia: the Honolulu–Asia aging study☆. Neurobiology of aging, v. 21, n. 1, p. 49-55, 2000. LEVY-LAHAD, E.; WASCO, W.; POORKAJ, P; ROMANO, D. M.; OSHIMA, J.; PETTINGELL, W. H.; YU, C. E.; JONDRO, P. D.; SCHMIDT, S. D.; WANG, K. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science, v. 269, n. 5226, p. 973-977, 1995. LI, J. J. VILSMEIER MECHANISM FOR ACID CHLORIDE FORMATION. IN: NAME REACTIONS. 3 ED, P. 605-607. Springer, Berlin, Heidelberg, 2006. LIMA, M. L. BARREIRO, E. J. Bioisosterism: A Useful Strategy for molecular Modification and Drug Design. Current Medicinal Chemistry, v. 12, p. 23-49, 2005. LINDEBOOM, Jaap; WEINSTEIN, H. Neuropsicologia do envelhecimento cognitivo, comprometimento cognitivo mínimo, doença de Alzheimer e comprometimento cognitivo vascular. European journal of pharmacology , v. 490, n. 1-3, p. 83-86, 2004. LINDGREN, B. O.; NILSSON, T. Preparation of carboxylic acids from aldehydes (including hydroxylated benzaldehydes) by oxidation with chlorite. Acta Chemica Scandinavica, v. 27, p. 888-890, 1973. LINDSAY, J.; LAURIN, D.; VERREAULT, R.; HÉBERT, R.; HELLIWELL, B.; HILL, G.; MCDOWELL, I. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. American journal of epidemiology, v. 156, n. 5, p. 445-453, 2002. LIPTON, S. A.; ROSENBERG, P. A. Excitatory amino acids as a final common pathway for neurologic disorders. New England Journal of Medicine, v. 330, n. 9, p. 613-622, 1994. LIU, J.; LIU, Z.; ZHANG, Y.; YIN, F. A novel antagonistic role of natural compound icariin on neurotoxicity of amyloid β peptide. The Indian journal of medical research, v. 142, n. 2, p. 190, 2015. LIU, P.-P.; XIE, Y.; MENG, X.-Y.; KANG, J.-S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal transduction and targeted therapy, v. 4, n. 29, 2019. LIU, SL.; WANG, C.; JIANG, T.; TAN, L.; XING, A.; YU, J. T. The role of Cdk5 in Alzheimer’s disease. Molecular neurobiology, v. 53, n. 7, p. 4328-4342, 2016. LIU, Z.; ZHANG, A.; SUN, H.; HAN, Y.; KONG, L.; WANG, X. Two decades of new drug discovery and development for Alzheimer's disease. RSC advances, v. 7, n. 10, p. 6046-6058, 2017. LOEF, M.; MENDOZA, L. F.; WALACH, H. Lead (Pb) and the risk of Alzheimer’s disease or cognitive decline: a systematic review. Toxin Reviews, v. 30, n. 4, p. 103-114, 2011. LOVELL, M. A.; ROBERTSON, J. D.; TEESDALE, W. J.; CAMPBELL, J. L.; MARKESBERRY, W. R. Copper, iron and zinc in Alzheimer's disease senile plaques. Journal of the neurological sciences, v. 158, n. 1, p. 47-52, 1998. LUO, Y.; SMITH, J.; PARAMASIVAM, V.; BURDICK, A.; CURRY, K.; BUFORD, J.; KHAN, I.; NETZER, W., XU, H.; BUTKO, Peter. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proceedings of the National Academy of Sciences, v. 99, n. 19, p. 12197-12202, 2002. LUO, Z.; LU, C.; YAN, J.; LIU, A.; LUO, H.; LI, X. Synthesis and evaluation of multi-targetdirected ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen. Journal of medicinal chemistry, v. 56, n. 22, p. 9089-9099, 2013. LYKETSOS, C. G.; BREITNER, J. C. S.; GREEN, R. C.; MARTIN, B. K.; C. MEINERT,; PIANTADOSI, S.; SABBAGH, M. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology, v. 68, n. 21, p. 1800–1808, 2007. MACCIONI, R. B.; FARÍAS, G.; MORALES, I.; NAVARRETE, L. The Revitalized Tau Hypothesis on Alzheimer's Disease. Archives of medical research, v. 41, n. 3, p. 226–231, 2010. MACK, A.; ROBITZKI, A. The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5'butyrylcholinesterase-DNA study, Progress in Neurobiology. v. 60, p. 607e628, 2000. MALINOW, R. New developments on the role of NMDA receptors in Alzheimer's disease. Current opinion in neurobiology, v. 22, n. 3, p. 559-563, 2012. MARINO, J. P.; FISHER, P.; HOFFMANN, G.; KIRKPATRICK, R.; JANSON, C.; JOHNSON, R.; MA, C. Highly potent inhibitors of methionine aminopeptidase-2 based on a 1, 2, 4-triazole pharmacophore. Journal of medicinal chemistry, v. 50, n. 16, p. 3777-3785, 2007. MARTONE, R; L.; ZHOU, H.; ATCHISON, K.; COMERY, T.; XU, J.; HUANG, X.; GONG, X.; JIN, M.; KREFT, A.; HARRISON, B.; MAYER, S.; GONZALES, C. Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein γ- secretase for the treatment of Alzheimer's disease. Journal of Pharmacology and Experimental Therapeutics, v. 331, n. 2, p. 598-608, 2009. MASSOULIÉ, J.; PEZZEMENTI, L.; SUZANNE, B., KREJCI, E.; VALETTE, FM. Molecular and cellular biology of cholinesterases. Progress in neurobiology, v. 41, n. 1, p. 31-91, 1993. MATTSON, M. P. Pathways towards and away from Alzheimer's disease. Nature, v. 430, n. 7000, p. 631-639, 2004. MAURER, K.; VOLK, S.; GERBALDO, H. Auguste D and Alzheimer's disease. The Lancet, v. 349, n. 9064, p. 1546-1549, 1997. MAWUENYEGA, K. G.; SIGURDSON, W.; OVOD, V.; MUNSELL, L.; KASTEN, T.; MORRIS, J. C.; YARASHESKI, K. E.; BATEMAN, R. J. Decreased Clearance of CNS β- Amyloid in Alzheimer’s Disease. Science, v. 330 n. 6012, p.1774, 2010. MAYEUX, R.. Epidemiology of neurodegeneration. Annual review of neuroscience, v. 26, n. 1, p. 81-104, 2003. MAZUR, M.; OLCZAK, J.; KORALEWSKI, R.; CZESTOWSKI, W.; JERDRZEJCKZAK, A.; GOLAB, J.; DZWONEK, K. Targeting acidic mammalian chitinase is effective in animal model of asthma. Journal of medicinal chemistry, v. 61, n. 3, p. 695-710, 2018. MCGEER, E. G.; MCGEER, P. L. Neuroinflammation in Alzheimer's disease and mild cognitive impairment: a field in its infancy. Journal of Alzheimer's disease, v. 19, n. 1, p. 355-361, 2010. MCGEER, P. L.; ITAGAKI, S.; MCGEER, E. G. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta neuropathologica, v. 76, n. 6, p. 550-557, 1988. MCKHANN, G.; DRACHMAN, D.; FOLSTEIN, M.; KALTZMAN, R.; PRICE, D.; STADIAN, E. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, v. 34, n. 7, p. 939-939, 1984. MESULAM, M.; GUILLOZET, A.; SHAW, P.; QUINN, B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiology of Disease, v. 9, n. 1, p. 88e93, 2002. MI, J. L.; WU, J.; ZHOU, C. H. Progress in anti-tumor agents: triazoles. West China J. Pharm. Sci, v. 23, p. 84-86, 2008. MI, J. L.; ZHOU, C. H.; BAI, X. Advances in triazole antimicrobial agents. Chin J Antibiotics, v. 32, n. 10, p. 587-593, 2007. MIGUEL-HIDALGO, J. J.; ALVAREZ, X. A.; CACABELOS, R.; QUACK, G. Neuroprotection by memantine against neurodegeneration induced by β-amyloid (1– 40). Brain research, v. 958, n. 1, p. 210-221, 2002. MILLAN, M. J. Dual-and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics, v. 6, n. 1, p. 53-77, 2009. MILLER, E. R. 3RD; PASTOR-BARRIUSO, R; DALAL, D.; RIEMERSMA, R. A.; APPEL, L. J.; GUALLAR, E. Meta-analysis: high dosage vitamin E supplemention may increase allcause mortality. Annals of Internal Medicine, v. 142, n. 1, p. 37-46, 2005. MIN, J.; GUO, K.; SURYADEVARA, P.; ZHU, F.; HOLBROOK, G.; CHEN, Y.; FEAU, C.; YOUNG, B.. Optimization of a novel series of ataxia-telangiectasia mutated kinase inhibitors as potential radiosensitizing agents. Journal of medicinal chemistry, v. 59, n. 2, p. 559-577, 2016. MIU, A. C.; BENGA, O. J. Aluminum and Alzheimer's disease: A new lookAlzheimer's Dis. 2006, 10, 179. Journal of Alzheimer's Disease, v. 10, no. 2-3, pp. 179-201, 2006. MIU, A. C.; BENGA, O. J. Aluminum and Alzheimer's disease: A new look. Alzheimer's Disease, v. 10, n. 2-3, p. 179-201, 2006. MOHMMAD ABDUL, H.; SULTANA, R.; KELLER, J.; ST. CLAIR, D. Mutations in amyloid precursor protein and presenilin‐1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid β‐peptide (1–42), H2O2 and kainic acid: implications for Alzheimer's disease. Journal of neurochemistry, v. 96, n. 5, p. 1322-1335, 2006. MOHSENZADEGAN, M.; MIRSHAFIEY, A. The immunopathogenic role of reactive oxygen species in Alzheimer disease. Iranian Journal of Allergy, Asthma and Immunology, p. 203-216, 2012. MONCZOR, M. Diagnosis and treatment of Alzheimer's disease. Current Medicinal Chemistry-Central Nervous System Agents, v. 5, n. 1, p. 5-13, 2005. MORPHY, R.; RANKOVIC, Z.. Designing multiple ligands-medicinal chemistry strategies and challenges. Current pharmaceutical design, v. 15, n. 6, p. 587-600, 2009. MORRIS, M. C. The role of nutrition in Alzheimer’s disease: epidemiological evidence. European Journal of Neurology, v. 16, p. 1-7, 2009. MORRIS, M. C.; Evans, D. A.; Bienias, J. L.; Tangney, C. C.; Wilson, R. S. Vitamin E and cognitive decline in older persons. Archives of neurology, v. 59, n. 7, p. 1125-1132, 2002. MORRIS, M. S. Homocysteine and Alzheimer's disease. The Lancet Neurology, v. 2, n. 7, p. 425-428, 2003. MOULIN, A.; BIBIAN, M.; BLAYO, AL.; HABNOUNI, S.; MARTINEZ, J. Synthesis of 3, 4, 5-Trisubstituted-1, 2, 4-triazoles. Chemical reviews, v. 110, n. 4, p. 1809-1827, 2010. MUHOBERAC, B. B.; VIDAL, R. Abnormal iron homeostasis and neurodegeneration. Frontiers in aging neuroscience, v. 5, p. 32, 2013. MUÑOZ-TORRERO, D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer's disease. Current medicinal chemistry, v. 15, n. 24, p. 2433-2455, 2008. MUSHTAQ, G.; NIGEL, G.; JALALUDDIN, K.; MAHAMMAD, K. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease and type 2 diabetes mellitus. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets- CNS & Neurological Disorders), v. 13, n. 8, p. 1432-1439, 2014. MUTTER, J.; CURTH, A.; NAUMANN, J.; DETH, R.; WALACH, H.. Does inorganic mercury play a role in Alzheimer's disease? A systematic review and an integrated molecular mechanism. Journal of Alzheimer's Disease, v. 22, n. 2, p. 357-374, 2010. NAEINI, AM Alavi; ELMADFA, I; DJAZAYERY, A.; BAREKATAIN, M.; GHAZVINI, M. R. A.; DJALALI, M.; FEIZI, A. The effect of antioxidant vitamins E and C on cognitive performance of the elderly with mild cognitive impairment in Isfahan, Iran: a double-blind, randomized, placebo-controlled trial. European journal of nutrition, v. 53, n. 5, p. 1255-1262, 2014. NAITO, Y.; AKANOSHI, F.; TAKEDA, S.; OKADA, T.; KAJII, M.; NISHIMURA, H.; SUGIURA, M.; FUKAYA, C.; KAGITANI, Y. Synthesis and pharmacological activity of triazole derivatives inhibiting eosinophilia. Journal of medicinal chemistry, v. 39, n. 15, p. 3019-3029, 1996. NELSON, D. L.; COX, M. M. Princípios de Bioquímica de Lehninger. 7a ed. Porto Alegre: Artmed Editora, 2018. NERI, L.; HEWITT, D.Aluminium, Alzheimer's disease, and drinking water. The Lancet, v. 338, n. 8763, p. 390, 1991. NITRINI, R.; CARAMELLI, P.; HERRERA JR, E.; BAHIA, V.S.; CAIXETA, L.F.; RADANOVIC, M.; ANGHINAH, R.; CHARCHAT-FICHMAN, H.; PORTO, C.S.; CHARTHERY, M.T.; HARTMANN, A.P. J.; HUANG, N.; SMID, J.; LIMA, E.P.; TAKADA, L.T.; TAKAHASHI, D,Y. Incidence of dementia in a community-dwelling Brazilian population. Alzheimer Disease & Associated Disorders, v. 18, n. 4, p. 241-246, 2004. NOTKOLA, IL.; SULKAVA, R.; PEKKANEN, J.; ERKINJUNTTI, T.; EHNHOLM, C.; KIVINEN, P.; TUOMILEHTO, J.; NISSINEN, A. Serum total cholesterol, apolipoprotein E {FC12} e4 allele, and Alzheimer’s disease. Neuroepidemiology, v. 17, n. 1, p. 14-20, 1998. NUNOMURA, A.; CASTELLANI, R. J.; ZHU, X.; MOREIRA, P. I.; PERRY, G.; SMITH, M. A. Involvement of oxidative stress in Alzheimer disease. Journal of neuropathology & experimental neurology, v. 65, n. 7, p. 631-641, 2006. OTT, P. A. Immunotherapy: Immune-modified Response Criteria - An Iterative Learning Process? Nature Reviews Clinical Oncology, v. 15, n. 5, p. 267–268 2018. PANEK, D.; WICHUR, T.; GODYN, J.; PASIEKA, A.; MALAWSKA, B.. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors. Future medicinal chemistry, v. 9, n. 15, p. 1835-1854, 2017. PANZA, F.; SOLFRIZZI, V.; SERIPA, D.; IMBIMBO, B.; LOZUPONE, M.; SANTAMATO, A.; ZECCA, C.; BARULLI, M.; BELLOMO, A.; PILOTTO, A.; DANIELE, A.; GRECO, A.. Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. BioMed research international, v. 2016, 2016. PARDRIDGE, W. M. Alzheimer's disease drug development and the problem of the Blood Brain Barrier. Alzheimer's and dementia, v. 5, n. 5, p. 427-432, 2009. PATTERSON, C., FEIGHTNER, J. W., GARCIA, A., HSIUNG, G.-Y. R., MACKNIGHT, C., SADOVNICK, A. D. Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease Canadian Medical Association Journal, v. 178, n. 5, p. 548-56, 2008. PENDERGRASS, J. C.; HALEY, B. E.; VIMY, M. J. Tubulin in Rat Brain: Similarity to a Molecular Lesion in Alzheimer Diseased Brain. Neurotoxicology, v. 18, n. 2, p. 315-324, 1997. PENG, XM.; CAI, GX.; ZHOU, CH. Recent developments in azole compounds as antibacterial and antifungal agents. Current topics in medicinal chemistry, v. 13, n. 16, p. 1963-2010, 2013. PEREIRA, T. M. Síntese e avaliação farmacológica de novos derivados cumarínicos híbridos planejados como protótipos de teranósticos para doença de Alzheimer. Dissertação (Mestrado em Ciências) – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; KUMMERLE, A. E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Curr. Top. Med. Chem., v. 18, p. 124-148, 2018. PERRY, V. H.; HOLMES, C. Microglial Priming in Neurodegenerative Disease. Nature Reviews. Neurology, v. 10, n. 4, p. 217-224, 2014. PERSSON, T.; POPESCU, B. O.; CEDAZO-MINGUEZ, A. Oxidative stress in Alzheimer's disease: why did antioxidant therapy fail? Oxidative medicine and cellular longevity, v. 2014, 2014. PETERSON, Q. P.; HSU, D. C.; GOODE, D. R.; NOVOTNY, C. J.; TOTTEN, R. K.; HERGENROTHER, P. J. Procaspase-3 activation as an anti-cancer strategy: Structure− activity relationship of procaspase-activating compound 1 (PAC-1) and Its cellular co166 localization with caspase-3. Journal of medicinal chemistry, v. 52, n. 18, p. 5721-5731, 2009. PETRIKKOS, G.; SKIADA, A. Recent advances in antifungal chemotherapy. International journal of antimicrobial agents, v. 30, n. 2, p. 108-117, 2007. PEZZEMENTI, L.; NACHON, F.; CHATONNET, A. Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the Medaka Oryzias latipes. PLoS One, v. 6, n. 2, 2011. PHIEL, C. J.; WILSON, C. A.; LEE, V. M. Y.; KLEIN, P. S. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature, v. 423, n. 6938, p. 435-439, 2003. PHILLIPS, E. C., CROFT, C. L., KURBATSKAYA, K., O’NEILL, M. J., HUTTON, M. L., HANGER, D. P., GARWOOD, C. J. NOBLE, W. Astrocytes and neuroinflammation in Alzheimer’s disease. Biochemical Society Transactions, v. 42, n. 5, p. 1321–1325, 2014. PHILPOTEDUCATION. Applications and skills. Disponível em: https://www.philpoteducation.com/mod/book/view.php?id=832&chapterid=2869#/. Acesso em: 18 de dezembro de 2019. POCERNICH, C. B.; BUTTERFIELD, D. A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, v. 1822, n. 5, p. 625-630, 2012. QUINN, D. M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chemical Reviews, v. 87, n.5, p. 955–979, 1987. QUON, D.; WANG, Y.; CATALANO, R.; SCARDINA, J. M.; MURAKAMI, K.; CORDELL, B. Formation of β-amyloid protein deposits in brains of transgenic mice. Nature, v. 352, n. 6332, p. 239-241, 1991. RAJASEKHAR, K.; GOVINDARAJU, T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer's disease. RSC advances, v. 8, n. 42, p. 23780-23804, 2018. RANG, R.; DALE, M. M.; RITTER, J. M.; FLOWER, R. J.; HENDERSON, G. Farmacologia. Elsevier Brasil, 2015. RASKIND, M. A.; BARNES, ROBERT F. Alzheimer’s disease: Treatment of noncognitive behavioral abnormalities. Psychopharmacology: The fourth generation of progress, p. 1427-1435, 1995. RASKIND, M. A.; PESKIND, E. R.; WESSEL, T.; YUAN, W. Galantamine in AD: a 6- month randomized, placebo-controlled trial with a 6-month extension. Neurology, v. 54, n. 12, p. 2261-2268, 2000. RAUK, A. The chemistry of Alzheimer’s disease. Chemical Society Reviews, v. 38, n. 9, p. 2698-2715, 2009. RAVES, M. L.; GILES, K.; SCHURAG, J. D.; SCHMID, M. F.; PHILIPS, G. N.; CHIU, W.; SUSSMAN, J. L. Quaternary structure of tetrameric acetylcholinesterase. In: Structure and function of cholinesterases and related proteins. Springer, Boston, MA, 1998. p. 351-356. REGE, S. D.; GEETHA, T.; BRODERICK, T. L.; BABU, J. R. Resveratrol Protects β Amyloid-Induced Oxidative Damage and Memory Associated Proteins in H19-7 Hippocampal Neuronal Cells. Current Alzheimer Research, v. 12, n. 2, p.147-156, 2015. REITZ, C.; DEN HEIJER, T.; VAN DUJIN, C.; HOFMAN A.; BRETELER, M. M. B.. Relation between smoking and risk of dementia and Alzheimer disease: the Rotterdam Study. Neurology, v. 69, n. 10, p. 998-1005, 2007. RICHARD, T.; PAWLUS, A. D.; IGLÉSIAS, M. L.; PEDROT, E.; WAFFO-TEGUO, P.; MÉRILLON, J. M.; MONTI, J. P. Neuroprotective Properties of Resveratrol and Derivatives. Annals of the New York Academy of Sciences, v. 1215, v. 1, p. 103 -108, 2011. RICHARD, T.; WAFFLO-TEGUO, P.; MÉRILLON, J. M.; MONTI, J. P.; PEDROT, E. Neuroprotective properties of resveratrol and derivatives. Annals of the New York Academy of Sciences, v. 1215, n. 1, p. 103, 2011. ROCKENSTEIN, E.; TORRANCE, M.; ADAME, A.. MANTE, M.; BAR-ON, P.; ROSE, J.; CREWS, L.; MASLIAH, E. Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation. Journal of Neuroscience, v. 27, n. 8, p. 1981-1991, 2007. ROSENBERRY, T. L.; BRAZZOLOTTO, X.; MACDONALD, I. R.; WANDHAMMER, M.; TROVASLET-LEROY, M.; DARVESH, S.; NACHON, F. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules, v. 22, n. 2098, 2017. ROSS, M. F.; PRIME, T.; ABAKUMOVA, I.; JAMES, A.; PORTEUS, C.; SMITH, R. Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochemical Journal, v. 411, n. 3, p. 633-645, 2008. ROY, S. M.; GRUM-TOKARS, V.; SCHAVOCKY, J.; SAEED, F.; STANISZEWSKI, A.; TEICH, A.. Targeting human central nervous system protein kinases: An isoform selective p38αMAPK inhibitor that attenuates disease progression in Alzheimer’s disease mouse models. ACS chemical neuroscience, v. 6, n. 4, p. 666-680, 2015. SALGUEIRO, F. B.; CASTRO, R. N. Comparação entre a composição química e capacidade antioxidante de diferentes extratos de própolis verde. Química Nova, v. 39, n. 10, p. 1192-1199, 2016. SANG, Z.; LI, Yang; QIANG, X.; XIAO, G.; LIU, Q.; TAN, Z.; DENG, Y. Multifunctional scutellarin–rivastigmine hybrids with cholinergic, antioxidant, biometal chelating and neuroprotective properties for the treatment of Alzheimer’s disease. Bioorganic & medicinal chemistry, v. 23, n. 4, p. 668-680, 2015. SANTOS, L. E.; BECKMAN, D.; FERREIRA, S. T. Microglial dysfunction connects depression and Alzheimer’s disease. Brain, behavior, and immunity, v. 55, p. 151-165, 2016. SANTOS, S. N.; DE SOUZA, G. A.; PEREIRA, T. M.; FRANCO D. P.; DEL CISTIA, C. DE N.; SANT'ANNA, C. M. R.; LACERDA, R. B.; K¨UMMERLE A. E.; Regioselective microwave synthesis and derivatization of 1,5-diaryl-3-amino-1,2,4-triazoles and a study of their cholinesterase inhibition properties. RSC Advances, v. 9, n. 35, p. 20356-20369, 2019. SAVELIEFF, M. G.; LEE, S.; LIU, Y.; LIM, M. H. Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS chemical biology, v. 8, n. 5, p. 856-865, 2013. SAYKIN, A.; SHEN, L.; YAO, X.; KIM, S.; NHO, K.; RISACHER, S.; RAMANAN, V. Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimer's & Dementia, v. 11, n. 7, p. 792-814, 2015. SCHILT, A. A.; MCBRIDE, L.; LONG, J. R. Perchloric acid and perchlorates. Columbus, OH: GF Smith Chemical Company, 1979. SCHMITT, B.; BERNHARDT, T.; MOELLER, H. J.; HEUSER, I; FRÖLICH, L. Combination therapy in Alzheimer’s disease. CNS drugs, v. 18, n. 13, p. 827-844, 2004. SCHNEIDER, L. S. GEFFEN, Y. RABINOWITZ, J. THOMAS, R. G. SCHMIDT R, ROPELE S.; WEINSTOCK M. Ladostigil Study Group.Low-dose ladostigil for mild cognitive impairment: A phase 2 placebo-controlled clinical trial. Neurology, v 93, p. e1474-e1484, 2019 SCHWAB, C.; MCGEER, P. L. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. Journal of Alzheimer's Disease, v. 13, n. 4, p. 359-369, 2008. SELKOE, D. J.; HARDY, J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO molecular medicine, v. 8, n. 6, p. 595-608, 2016. SERENIKI, A.; VITAL, M. A. B. F. A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Revista de psiquiatria do Rio Grande do Sul, v. 30, n. 1, p. 0-0, 2008. SERIPA, D.; SOLFRIZZI, V.; IMBIMBO, B.; DANIELE, A.; SANTAMATO, A.; LOZUPONE, M.. Tau-directed approaches for the treatment of Alzheimer’s disease: focus on leuco-methylthioninium. Expert review of neurotherapeutics, v. 16, n. 3, p. 259-277, 2016. SERRANO-POZO, A.; FROSCH, M. P.; MASLIAH, E.; HYMAN, B. T. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medice, v. 1, n. 1, p. a006189, 2011. SHARP, E. S.; GATZ, M. The relationship between education and dementia an updated systematic review. Alzheimer disease and associated disorders, v. 25, n. 4, p. 289, 2011. SHEN, J.; WONG, B.; ZHANG, H. Negishi Approach to 1, 5-Disubstituted 3-Amino-1 H-1, 2, 4-triazoles. Organic letters, v. 17, n. 19, p. 4678-4681, 2015. SHIDORE, M.; MACHHI, J.; SHINGALA, K.; MURUMKAR, P.; SHARMA, M. K.; AGRAWAL, N.; TRIPATHI, A.; PARIKH, Z.; PILLAI, P.; YADAV M. R. Benzylpiperidine-linked diarylthiazoles as potential anti-Alzheimer’s agents-synthesis and biological evaluation. Journal of Medicinal Chemistry, v. 59, n. 12, p. 5823-5846, 2016. SHUTTERSTOCK. Disponível em: https://www.shutterstock.com/pt/imagevector/ alzheimers-disease-change-tau-protein-that-581982592 Acesso em: 16 de dezembro de 2019. SILVA, P. Farmacologia, 6ª Ed., Rio de Janeiro: Guanabara, 2002. SINGH, M.; KAUR, M.; CHADHA, N.; SILAKARI, O. Hybrids: a new paradigm to treat Alzheimer’s disease. Molecular diversity, v. 20, n. 1, p. 271-297, 2016. SINHA , A.; TAMBOLI, R. S.; SETH, B.; KANHED, A. M.; TIWARI, S. K.; AGARWAL, S.; NAIR, S.; GIRIDHAR, R.; CHATURVEDI, R. K.; YADAV, M. R. Neuroprotective Role of Novel Triazine Derivatives by Activating Wnt/β Catenin Signaling Pathway in Rodent Models of Alzheimer’s Disease. Molecular Neurobiology, v. 52, n. 1, p. 638-52, 2015. SKOOG, D. A.; WEST, Donald M.; HOLLER, F. James. Fundamentos da química analítica. 8ª ed, Editora Thomson. 2006. SMALL, G.; RABINS, P.; BARRY, P.; BUCKHOLTZ, N.; DEKOSKY, S.; FERRIS, S.; FINKEL, S.; GWYTHER, L.; KHACHATURIAN, Z.; LEBOWITZ, B.; MCRAE, Thomas; MORRIS, J.; OAKLEY, F.; SCHNEIDER, L.; STREIM, J.; SUNDERLAND, T.; TERI, L.; TUNE, L.. Diagnosis and treatment of Alzheimer disease and related disorders: consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer's Association, and the American Geriatrics Society. Jama, v. 278, n. 16, p. 1363-1371, 1997. SOARES, H. D., SPARKS, D. L. Beyond Cholesterol: Statin Benefits in Alzheimer’s Disease. In: Lau L. F.; Brodney M. A. (eds) Alzheimer's Disease. Topics in Medicinal Chemistry, v. 2, p. 53–80, Springer, Berlin, Heidelberg, 2008. SONG, MX.; DENG, XQ. Recent developments on triazole nucleus in anticonvulsant compounds: a review. Journal of enzyme inhibition and medicinal chemistry, v. 33, n. 1, p. 453-478, 2018. STEWART, J. JP. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. Journal of Molecular modeling, v. 13, n. 12, p. 1173-1213, 2007. SU, B.; WANG, X.; NUNOMURA, A.; MOREIRA, P.; LEE, G.; PERRY, G.; SMITH, A.; ZHU, X.. Oxidative stress signaling in Alzheimer's disease. Current Alzheimer Research, v. 5, n. 6, p. 525-532, 2008. SUGIMOTO, H.; OGURA, H.; ARAI, Y.; IIMURA, Y.; YAMANASHI, Y.Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. The Japanese journal of pharmacology, v. 89, n. 1, p. 7-20, 2002. SULTANA, R.; BUTTERFIELD, D. A. Redox proteomics studies of in vivo amyloid beta‐peptide animal models of Alzheimer's disease: Insight into the role of oxidative stress. PROTEOMICS–Clinical Applications, v. 2, n. 5, p. 685-696, 2008. TAEPAVARAPRUK, P.; SONG, C. Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin‐1β administrations: effects of omega‐3 fatty acid EPA treatment. Journal of neurochemistry, v. 112, n. 4, p. 1054-1064, 2010. TAYLOR, P.; RADIC, Z. The cholinesterases: from genes to proteins. Annual review of pharmacology and toxicology, v. 34, n. 1, p. 281-320, 1994. TEIXEIRA J.; SILVA, T.; ANDRADE, P. B.; BORGES, F. Alzheimer's disease and antioxidant therapy: how long how far? Current Medicinal Chemistry, v. 20, n. 24, p. 2939–2952, 2013. TIMMERS, M.; STREFFER, J.; TOMINAGA, Y.; SHIMIZU, H.; SHIRAISHI, A.; TATIKOLA, K.; SMEKENS, P.; BORJESSON-HANSON, A.; ANDREASEN, N.; BAQUERO, M.. Pharmacodynamics of atabecestat (JNJ-54861911), an oral BACE1 inhibitor in patients with early Alzheimer’s disease: randomized, double-blind, placebo-controlled study. Alzheimer's research & therapy, v. 10, n. 1, p. 85, 2018. TOMLJENOVIC, L.. Aluminum and Alzheimer's disease: after a century of controversy, is there a plausible link?. Journal of Alzheimer's Disease, v. 23, n. 4, p. 567-598, 2011. TOWN, T.; NIKOLIC, V.; TAN, J. The microglial" activation" continuum: from innate to adaptive responses. Journal of neuroinflammation, v. 2, n. 1, p. 24, 2005. TRIPATHI, P. N.; SRIVASTAVA, P.; SHARMA, P.; TRIPATHI, M. K.; SETH, A.; TRIPATHI, A.; RAI, S. N.; SINGH, S. P.; SHRIVASTAVA, S. K. Biphenyl-3-oxo-1,2,4- triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorganic Chemistry, v. 85 p. 82–96, 2019. TUPPO, E. E.; ARIAS, H. R. The role of inflammation in Alzheimer's disease. The international journal of biochemistry & cell biology, v. 37, n. 2, p. 289-305, 2005. VALENZUELA, M.; BRAYNE, C.; SACHDEV, P.; WILCOCK, G. Medical Research Council Cognitive Function and Ageing Study. Cognitive lifestyle and long-term risk of dementia and survival after diagnosis in a multicenter population-based cohort. Am J Epidemiol, v. 173, n. 9, p. 1004-12, 2011. VALKO, M.; LEIBTFRITZ, D.; MONCOL, J.; CRONIN, M. T.; MAZUR, M.; TELSER, J. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, v. 39, n. 1, p. 44-84, 2007. VERHEIJEN, J. C.; RICHARD, D. J.; CURRAN, K.; KAPLAN, J. LEFEVER, M.; NOWAK, P.; LUCAS, J. Discovery of 4-morpholino-6-aryl-1 H-pyrazolo [3, 4-d] pyrimidines as highly potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR): optimization of the 6-aryl substituent. Journal of medicinal chemistry, v. 52, n. 24, p. 8010-8024, 2009. VILSMEIER, A.; HAACK A. Über die Einwirkung von Halogenphosphor auf Alkyl‐formanilide. Eine neue Methode zur Darstellung sekundärer und tertiärer p‐Alkylamino‐benzaldehyde. Berichte der Deutschen Chemischen Gesellschaft, v. 60, p. 119-122, 1927. VOET, D.; VOET, J. G.; PRATT, C. W. Fundamentals of biochemistry: life at the molecular level. 5a ed. John Wiley & Sons2013. WALTON, J. R. Aluminum involvement in the progression of Alzheimer's disease. Journal of Alzheimer's Disease, v. 35, n. 1, p. 7-43, 2013. WHITMER, R.; GUNDERSON, E.; QUESENBERRY, C.; ZHOU, J.; YAFFE, K. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Current Alzheimer Research, v. 4, n. 2, p. 103-109, 2007. WHO. Dementia: Key facts. Disponível em: https://www.who.int/news-room/factsheets/ detail/dementia. Acesso em: 10 de dezembro de 2019. WINTERER, G.; GALLINAT, J.; BRINKMEYER, J.; MUSSO, F.; KORNHUBER, J.; THUERAUF, N.; RUJESCU, D.; FAVIS, R.; SUN, Y.; FRANC, M.; TIMMERS, M. Allosteric alpha-7 nicotinic receptor modulation and P50 sensory gating in schizophrenia: a proof-of-mechanism study. Neuropharmacology, v. 64, p. 197-204, 2013. WISCHIK, C. M.; STAFF, R.; WISCHIK, D.; BENTHAM, P.; MURRAY, A.; STOREY, J.; KARIN, K.; HARRINGTON, C. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer's disease. Journal of Alzheimer's Disease, v. 44, n. 2, p. 705-720, 2015. WOLFE, M. S. Inhibition and modulation of γ-secretase for Alzheimer’s disease. Neurotherapeutics, v. 5, n. 3, p. 391-398, 2008. WOLLMER, M. A. Cholesterol-related genes in Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, v. 1801, n. 8, p. 762-773, 2010. WRACKMEYER, B.; KATRITSKY, A. R.; RAMSDEN, C. A.; SCRIVEN, E. F. V.; Comprehensive heterocyclic chemistry III. Elsevier: Oxford, p. 1181-1223, 2008. YAN, J.; LIU, A.; HE, L.; LI, X.; WEI, H. Design, synthesis, and evaluation of multitargetdirected ligands against Alzheimer’s disease based on the fusion of donepezil and curcumin. Bioorganic & Medicinal Chemistry, v. 25, n. 12, p. 2946-2955, 2017. YEN, WP.; KUNG, FC.; WONG, F. F. 1, 3‐Dipolar Cycloaddition of Carbodiimides and Nitrilimines: Synthesis and Mechanistic Study of 5‐Amino‐1, 2, 4‐triazoles. European Journal of Organic Chemistry, v. 2016, n. 13, p. 2328-2335, 2016. YIN, P.; MA, W. B.; CHEN, Y.; DENG, Y.; HE, L. Highly efficient cyanoimidation of aldehydes. Organic letters, v. 11, n. 23, p. 5482-5485, 2009.; YOUDIM, M. BH. The path from anti Parkinson drug selegiline and rasagiline to multifunctional neuroprotective anti Alzheimer drugs ladostigil and m30. Current Alzheimer Research, v. 3, n. 5, p. 541-550, 2006. YU, Y.; OSTRESH, J. M.; HOUGHTEN, R. A. Solid-phase synthesis of 3-amino-1, 2, 4- triazoles. Tetrahedron letters, v. 44, n. 42, p. 7841-7843, 2003 YUAN, W.; SHANG, Z.; QIANG, X.; TAN, Z.; DENG, Y. Synthesis of pterostilbene and resveratrol carbamate derivatives as potential dual cholinesterase inhibitors and neuroprotective agents. Research on Chemical Intermediates, v. 40, n. 2, p. 787-800, 2014. ZAKUT, H.; LIEMAN-HURWITZ, J.; ZAMIR, R.; SINDELL, L.; GINZBERG, D.; SOREQ, H. Chorionic villus cDNA library displays expression of butyrylcholinesterase: putative genetic disposition for ecological danger. Prenatal Diagnosis, v. 11, n.8, p. 597e6071991. ZARGUIL, A.; BOUKHRIS, S.; ELFRIT, M. L.; SOUIZI, A.; ESSASSI, E. M. Easy access to triazoles, triazolopyrimidines, benzimidazoles and imidazoles from imidates. Tetrahedron Letters, v. 49, n. 41, p. 5883-5886, 2008. ZHA, X.; LAMBA, D.; ZHANG, L.; LOU, Y.; XU, C.; KANG, D.; CHEN, L.. Novel tacrine–benzofuran hybrids as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: design, synthesis, biological evaluation, and X-ray crystallography. Journal of medicinal chemistry, v. 59, n. 1, p. 114-131, 2016. HANG, HY. One‐compound‐multiple‐targets strategy to combat Alzheimer's disease. FEBS letters, v. 579, n. 24, p. 5260-5264, 2005. ZHANG, P.; XU, S.; ZHU, Z.; XU, J. Multi-target design strategies for the improved treatment of Alzheimer's disease. European journal of medicinal chemistry, v. 176, p. 228- 247, 2019.ZHENG, W.; MONNOT, A. D. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacology & therapeutics, v. 133, n. 2, p. 177-188, 2012. ZHOU, C. H.; WANG, Y. Recent researches in triazole compounds as medicinal drugs. Current medicinal chemistry, v. 19, n. 2, p. 239-280, 2012. ZHU, X.; SU, B.; WANG, X.; SMITH, M. A.; PERRY, G. Causes of oxidative stress in Alzheimer disease. Cellular and molecular life sciences, v. 64, n. 17, p. 2202-2210, 2007. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/69894/2020%20-%20Daiana%20de%20Fatima%20Portella%20Franco.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5795 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-07-12T17:12:38Z No. of bitstreams: 1 2020 - Daiana de Fatima Portella Franco.pdf: 12754396 bytes, checksum: fe008271da494b6dcf979547de97fc93 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-07-12T17:12:38Z (GMT). No. of bitstreams: 1 2020 - Daiana de Fatima Portella Franco.pdf: 12754396 bytes, checksum: fe008271da494b6dcf979547de97fc93 (MD5) Previous issue date: 2020-03-13 | eng |
Appears in Collections: | Doutorado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2020 - Daiana de Fatima Portella Franco.pdf | 12.46 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.