Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9230
Full metadata record
DC FieldValueLanguage
dc.creatorSilva, Daniel Rosa da
dc.date.accessioned2023-11-19T20:11:28Z-
dc.date.available2023-11-19T20:11:28Z-
dc.date.issued2014-05-21
dc.identifier.citationSILVA, Daniel Rosa da. Desenvolvimento de modelos empíricos de predição da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o método semi-empírico. 2014. 113 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2014.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9230-
dc.description.abstractAcetylcholinesterase (AChE) is an enzyme essential for the central and peripheral cholinergic transmission. AChE inhibitors can be applied as medicines and they are the principal compounds used nowadays for the treatment of Alzheimer’s disease (AD). AD is a neurodegenerative disorder, which presents an important socio-economic impact, responsible for 50-60% of the total number of dementia cases among people above 65-years old. Although irreversible AChE inhibitors are not commonly used as medicines for humans, their use is common for the control of disease vectors, especially diseases transmitted by mosquitos, such as dengue fever. The World Health Organization (WHO) estimates that 50-100 million people are infected by the dengue virus annually in 100 countries. The objective of the present work is the development of empirical models for prediction of the activities of synthetic compounds as inhibitors of AChE. The models were based on activity data for the inhibition of Torpedo californica AChE by mesoionic compounds and harmane derivatives, synthesized by research groups from UFRRJ, and bivalent β-carbolines, obtained from the literature. The same procedure was applied to the development of an empirical model for the prediction of bivalent β-carbolines inhibition data of Aedes aegypti AChE. The complete procedure involved the use of the molecular docking procedure for the generation of ligands/enzyme complexes, followed by calculations of the interaction enthalpies in the gas phase by semi-empirical methods. For the study with the Aedes aegypti AChE, it was necessary the previous construction of a comparative model of the enzyme’s 3D structure. The interaction enthalpy data were combined with data from the ligands solvation free energies or solvation enthalpies together with estimative data of the ligands entropic losses associated to the interaction with the enzyme in order to propose empirical equations for prediction of activities data through regressive fit by multiple correlation with available activity data. For the T. californica AChE, it was possible to develop three equations with good correlations for the three classes of compounds evaluated, which could be successfully applied for the prediction of inhibition data from calculated energy descriptors. Based on the analysis of the obtained structures for the mesoionic compounds and the corresponding empirical equation, we proposed the structures of xix two prototypes and determined their predicted activities. Both molecules were predicted as more active AChE inhibitors when compared to the compounds from which the new compounds were designed. For the Ae. aegypti AChE, it was possible to find an equation for the calculation of β-carbolines activities, which presented a good correlation with the experimental data. It was also proposed a prototype for the β-carbolines, based on the conformational restriction concept. Its AChE inhibition activity was calculated and the molecule was predicted as more active the compound from which the new compounds was designed.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectSemi-empírico, ,,por
dc.subjectAcetilcolinesterasepor
dc.subjectT. californicapor
dc.subjectA. aegyptipor
dc.subjectSemi-empirical, , ,.eng
dc.subjectAcetylcholinesteraseeng
dc.subjectT. californicaeng
dc.subjectAe. aegyptieng
dc.titleDesenvolvimento de modelos empíricos de predição da atividade de inibidores da enzima acetilcolinesterase de Torpedo californica e de Aedes aegypti utilizando o método semi-empíricopor
dc.title.alternativeDevelopment of empirical models to predict activity of inhibitors of the enzyme Torpedo californica acetylcholinesterase and Aedes aegypti using the semi-empirical methodpor
dc.typeTesepor
dc.contributor.advisor1Sant´Anna, Carlos Mauricio Rabello de
dc.contributor.advisor1ID82723222772por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2087099684752643por
dc.contributor.referee1Albuquerque, Magaly Girão
dc.contributor.referee2Amorim, Mauro Barbosa de
dc.contributor.referee3Lima, Marco Edilson Ferreira
dc.contributor.referee4Silva, Clarissa Oliveira da
dc.contributor.referee5Nascimento Junior, Nailton Monteiro do
dc.creator.ID09618394735por
dc.creator.Latteshttp://lattes.cnpq.br/1777801134014169por
dc.description.resumoA acetilcolinesterase (AChE) desempenha papéis importantes na neurotransmissão colinergética central e periférica. Os inibidores da AChE (IAChE) têm aplicação como fármacos e são as principais substâncias hoje licenciadas para o tratamento específico da doença de Alzheimer (DA). A DA é uma desordem neurodegenerativa, de grande impacto sócio-econômico, responsável por 50-60% do número total de casos de demência entre pessoas acima de 65 anos. Embora IAChE irreversíveis em geral não sejam usados com fins medicinais em seres humanos, é comum o seu uso no controle de vetores de doenças, especialmente as transmitidas por mosquitos, com é o caso da dengue. A dengue é um dos principais problemas de saúde pública no mundo. A Organização Mundial da Saúde (OMS) estima que 50-100 milhões de pessoas se infectem anualmente, em 100 países. O objetivo deste estudo foi o desenvolvimento de modelos empíricos de previsão da atividade de séries de compostos sintéticos na inibição da AChE. Para isso foram utilizados dados de atividade de inibição da AChE de Torpedo californica por compostos mesoiônicos e derivados da harmana, sintetizados por grupos de pesquisa da UFRRJ, e por β-carbolinas bivalentes, obtidos da literatura. O mesmo procedimento foi aplicado para o desenvolvimento de um modelo empírico aplicável para a previsão da atividade de β-carbolinas bivalentes na inibição da AChE de Aedes aegypti. O procedimento geral envolveu o uso de método de docking molecular para a geração das estruturas dos complexos entre os ligantes e as enzimas, seguido de cálculos de entalpias de interação em fase gasosa por métodos quânticos semi-empíricos. Para a AChE de Aedes aegypti foi necessária a construção prévia de um modelo comparativo da estrutura 3D desta enzima. Os dados de entalpia de interação foram combinados com determinações da energia livre ou da entalpia de solvatação dos ligantes e com estimativas das perdas entrópicas dos ligantes no processo de interação com a enzima para a proposição de equações empíricas de previsão das atividades por ajuste por correlação múltipla aos dados experimentais disponíveis. Em relação à AChE de T. californica, foi possível encontrar três equações com boas correlações uma para cada classe de compostos, que puderam de forma adequada determinar a inibição através dos descritores de energia. A partir da análise das estruturas dos complexos obtidos com os mesoiônicos e das equações de previsão de xvii atividade correspondentes, foram propostos dois protótipos neste trabalho e suas atividades foram previstas. As duas moléculas foram previstas como mais ativas que as moléculas anteriores (que deram origem aos protótipos), indicando que as modificações foram adequadas. Para a AChE de Ae. aegypti também foi possível encontrar uma equação com uma boa correlação com as atividades das β-carbolinas bivalentes, que pode de forma adequada determinar a inibição através dos descritores de energia. Foi proposto um protótipo da β-carbolina bivalente neste trabalho, aplicando-se o conceito de restrição conformacional, e sua atividade foi prevista. A molécula proposta foi prevista como mais ativa que a molécula que deu origem ao protótipo.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAJAY; MURCKO, M. A. Computational Methods to Predict Binding Free Energy in Ligand-Receptor Complexes. Journal of Medicinal Chemistry. v. 38, pp.4953-4967, 1995. ATKINS, P. W. & PAULA, J. Físico-Química. 7ªed, Vol. 2. Rio de Janeiro: editor, LTC 2004, 620p. ARNOLD, K. The Swiss-model workspace: a web-based environment for protein structure homology modelling. Struct. Bioinf., v.22, pp.195-201, 2006. BARON, R.L. Carbamate Insecticides. In: Hayes, W.R., Laws, E.R.. Handbook of Pesticide Toxicology. San Diego, California, USA. Academic Press, Inc. v. 3, pp.1125-1190, 1991. BENKERT, P.; BIASINI, M.; SCHWEDER, T. “Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics., v. 27, pp. 343-350, 2011. BERG, J. M.; TYMOCZKO, J. L.; STRYVER, L. Bioquímica. 6° Edição. Guanabara Koogan, 2008. ISBN: 8527713691. BIRKS, J.; HARVEY, R. J. Donepezil for dementia due to Alzheimer's disease. Cochrane Database of Systematic Reviews. v. 1, pp. 1190, 2006. BORDOLI, L. Protein structure homology modeling using Swiss-model workspace. Nat. Protoc. v. 4, pp.1-13, 2009. BROOIJMENS N. & KUNTZ I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., v. 32, pp.335-373, 2003. BROOKS, C. L. et al. A theoretical perspective of dynamics, structure, and thermodynamics. Advances in chemical physics; John Wiley: New York, 1988; v. LXXI. CACABELOS, R.; TAKEDA, M.; WINBLAD, B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimers disease. International Journal of Geriatric Psychiatry. v. 14, pp. 3-47, 1999. CAMPOS, L.S. Entender a Bioquímica. 2° Edição. Lisboa: Escolar Editora, 1999. ISBN: 972-592-108-9. 106 CARAMELLI, P.; CHAVES, M. L. F.; Engelhardt E, et al. Effects of galantamine on attention and memory in Alzheimers disease measured by computerized neuropsychological tests: results of the Brasilian Multi-Center galantamine study (GALBRA-01). Arquivos de Neuro-Psiquiatria. v. 62, pp. 379-384, 2004. CARLIER, P. R.; HAN, Y. F.; CHOW, E. S.; LI, C. P.; WANG, H.; LIEU, T. X.; WONG, H. S.; PANG, Y. P. Evaluation of short-tether bis-THA AChE inhibitors. A further test of the dual binding site hypothesis. Bioorg. Med. Chem. v. 7, pp. 351-357, 1999. CARLSON, H. A. Protein flexibility and drug desing: how to hit a moving target. Corrent Opinion in Chemical Biology. vol. 6. pp. 447-452, 2002. CARLSON, H. A. & McCAMMON, J. A. Accommodating protein flexibility in computacional drug desing. Molecular Pharmacology. v. 57. pp. 213-218, 2000. CASIDA, J. E. e QUISTAD, G. B. Serine hydrolase targets of organophosphorus toxicants. Chemico-Biological Interactions, U.S.A, v. 157–158, pp. 277–283, 2005. CASTRO, A. T. Estudo por modelagem molecular da reativação da acetilcolinesterase inibida por agentes químicos neurológicos. 121 f. Dissertação ( mestrado em área envolvida ) – IME, Rio de Janeiro, 2002. CHOTIA, C. & LESK, A. M. The relation between the divergence of sequence and structure in proteins. The EMBO Journal. v. 5, pp. 823-826, 1986. COSTA FILHO, P. A. da & POPPI, R. J. Algoritmo genético em química. Química Nova. v. 3, pp. 405-411, 1999. CYGLER, M.; SCHRAG, I.D.; SUSSMAN, J.L.; HAREL, M., SILMAN, I.; GENTRY, M.K.; DOSTOR, B.P. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science. v. 2, pp. 366-382, 1993. Dewar, M. J. S.; Thiel, W. Ground state of molecules. 38. The MNDO Method. Approximations and Parameters. J. Am. Chemical Soc. v. 99, pp. 4899-4907, 1997-a. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. AM1: A new general purpose quantum mechanical model. J. Am Chem Soc. v. 107, pp. 3902 – 3909, 1985. DEWAR, M. J. S.; JIE, C. & YU, J. SAM1; The first of a new series of general purpose quantum mechanical molecular models. Tetrahedron. v. 49, pp. 5003-5038, 1993. DOWNEY, D. Pharmacologic management of Alzheimer Diseases. Journal of Neuroscience Nursing. v. 40, n.1, pp. 55-59, 2008. ELDRIDGE, M. D.; MURRAY, C. W. J.; AUTON, T. R.; PAOLINI, G.V. & MEL, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function 107 to estimate the binding affinity of ligands in receptor complexos. Journal of computer-aided molecular design. v. 11, pp. 425-445, 1997. ELHANANY, E.; ORDENTLICH, A.; DGANY, O.; KAPLAN, D.; SEGALL,Y.; BARAK, R.; VELLAN, B.; SHAFFERMAN, A. Resolving pathways of interaction of covalent inhibitors with the active site of acetylcholinesterases: MALDI-TOF/MS analysis of various nerve agent phosphyl adducts. Chemical Research in Toxicology. v. 14, pp. 912-918, 2001. FAN, P.; HAY, A.; MARSTON, A.; HOSTETTMANN, K., Acetycholinesterase-Inhibitory Acivity of Linarin from Buddleja davidii, Structure-Activity Relationships of Related Flavonoids, and Chemical Investigation of Buddeja nitida. Pharmaceutical Biology. v. 46, pp. 596-601, 2008. FARLOW, M. R. Effective pharmacologic management of Alzheimer’s disease. American Journal of Medicine. v. 120, pp. 388-397, 2007. FORD, M. Insecticides and Pesticides. In Viccellio, P. Handbook of Medical Toxicology, 1a ed. USA. Little, Brown and Company. p. 303-314, 1993. FORLENZA, O.V. Tratamento farmacológico da doença de alzheimer. Rev. Psiq. Clin. v. 32 , pp. 137-148, 2005. GIACOBINE, E. In: Giacobin, E. (ed.), Cholinesterases and cholinesterase inhibitors. pp. 181-226, 2000. GOHLKE, H.; & KEBLE, G. Approaches to description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angewandte chemie International edition. v. 41, pp. 2644-2676, 2002. GOODFORD, P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. Journal of medicinal chemistry. v. 28, pp. 849-847, 1985. GOODMAN, J. L.; PAGEL, M. D. & STONE, M. J. Reletionships between favorable protein structure and dynamis from a database of NMR-derived backbone order parameters. Journal of molecular biology. v. 265, pp. 963-978, 2000. GREIG, N. H.; UTSUKI, T.; INGRAM, D. K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proceedings of the national academy of sciences of the united states of America. v. 102, pp. 17413-17418, 2005. GROOT, B. L.; GRUBMULLER, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GLPF. Science. v. 294, pp. 2353-2357, 2001. VAN GUNSTEREN, W.; BILLETER, S.; EISING, A.; HUNENBERG, P.; KRUGER, P.; MARK, A.; SCOTT, W.; TIRONI, I. Biomolecular simulayions: the cromos manual and user guide. VDF Hochschulverlag ETH, Zurich, 1994. 108 HAASS, C.; SCHLOSSMACHER, M. G.; HUNG, A. Y.; VIGO, C. P.; MELLON, A.;Ostaszewski, B. L.; Lieberburg, I.; Koo, E. H.; Schenk, D.; Teplow, D. B.; Selkoe, D. J. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature. v. 359, pp. 322-325, 1992. HANSSON, T.; MARELIUS, J. & ÅQVIST, J. Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design. v. 12, pp. 27–35, 1998. HALPERIN, I.; MA, B.; WOLISON, H.; NUSSINOV, R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Protein: Structure, function and genetics. v. 47, pp. 409-443, 2002. HARDY, J.; ALLSOP, D. Amyloid deposition as the central event in the aetiology ofAlzheimer's disease. Trends in Pharmacological Sciences. v. 12, pp. 383-388, 1991. HAREL, M.; SCHALK, I.; EHRET-SABATIER, L.; BOUET, F.; GOELDNER, M.; HIRTH, C.; AXELSEN, P.; SILMAN, I.; SUSSMAN, J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl Acad. Sci. U.S.A. v. 90, p. 9031-9035, 1993. HARTMANN, J.; KIEWERT, C.; DUYSEN, E. G. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. Journal of Neurochemistry. v. 100, pp. 1421-1429, 2007. HEHRE, W.J.; JIANGUO, Y.; KLUNZINGER, P.E.; LIANG, L. A brief guide to molecular mechanism and quantum chemical calculations. Wavefunction, Inc Editora, LTC, 1998. JEYARATNAM, J.; MARONI, M. Organophosphorous Componds. Toxicology. v. 91, pp. 15-27, 1994. JENSEN, F. Introduction to computational chemistry. Chichester: John Wiley & Sons, pp. 429, 1999. Jones, G., Willett, P.; Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. v. 254, pp. 43-53, 1995. Jones, G., Willett, P., Glen, R. C., Leach, A. R., Taylor R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. v. 267, pp. 727-748, 1997. JUNOR, C. V.; BOLZONI, V. S.; FUREAN, M.; FRANCO, C. A. M.; BARRETO, E. J. Química nova. v. 27, pp. 655-660, 2004. KATALINIC, M.; KUSAK, G.; DOMACINOVIC, J.; SINKO, G.; JELIC, D.; ANTOLOVIC, R.; DOVARIK, Z. Strutuctural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry. v. 45, pp. 186-192, 2010. KITCHEN, D. B.; DECORNEZ, H.; FURR, J. R.; BAJORATH, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews in drug discovery. v. 3, pp. 935-949, 2004. 109 KOLLMAN, P. Free Energy Calculations: Applications to Chemical and Biochemical Phenomena. American Chemical Society. v. 93, pp. 2395-2417,1993. KUNTZ, I. D.; BLANEY, J. M.; OATLEY, S. J.; LANGRIDGE, R.; FERRIN, T. E. A geometic approach to macromolecule-ligand interactions. Journal of Molecular biology. v. 161, pp. 269-288, 1982. LEACH, A. R. Molecular Modeling Principles and Applications. 2. ed. Pearson Education, England, 2001. LEVIN, E. D., SIMON, B. B. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology. v. 138, pp. 217-230, 1998. LIMA, J.S.; PEREIRA, R.H.B. Intoxicação por organofosforados: Análise crítica e considerações especiais. Rev. Bras. de Ter. Int. v. 8 , pp. 100-101, 1996. MACHEMER, L. H.; PICKEL, M. Carbamates insecticides. Toxicology. v. 91, pp. 29-36, 1994. MASSOULIÉ, J.; PEZZEMENTE, L.; BON, S.; KREJCI, S.; VALLETTE, F. M. Molecular and cellular biology of cholinesterases. Progress in Neurobiology. v. 41, pp. 31-91, 1993. MESULAM, M.M.; GUILLOZET, A.; SHAW, P. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. v. 110, pp. 627-639, 2002. McCONKEY, B. J.; SOBOLEV, V.; EDELMAN, M. The performance or corrent methods in ligand-protein docking. Corrent science. v. 83, pp.845-856, 2002. MIDIO, A. F.; SILVA, E.S. Inseticidas-Acaricidas – Organofosforados e Carbamatos. São Paulo, Ed. Roca Ltda, 1995. MILLARD, C. B. and BROOMFIELD, C. A. A Computer Model of Glycosylated Human Butyrylcholinesterase. Biochemical and Biophysical Research Communications. v. 189, pp. 1280-1286, 1992. MUDHER, A.; LOVESTONE, S. Alzheimer’s disease – do tauists and baptists finally shake hands? Trends in Neurosciences. v. 25, pp. 22-25, 2002. NACHMANSOHN, D.; ROTHENBERG, M. A. Studies on cholinesterase .1. On thespecificity of the enzyme in nerve tissue. Journal of Biological Chemistry. v. 158, pp. 653-666, 1945. NELSON, D. L.; COX, M. M. ; Lehninger Princípios de Bioquímica. 3º Edição. Editora Ltda, Brasil. 2002. NOREL, R. WOLFSON, H.; NUSSINOV, R. Small molecular recognition: Solid angles surface representation and shape complementarity combinatorial chemistry and high throughput screening. Bioorg. Med. Chem. v. 2, pp. 177-191, 1999. 110 OLIVEIRA, F. G. Molecular docking study and development of na empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorg. Med. Chem. v.14, pp.6001-6011, 2006. OLIVEIRA, F. G. Estudo do perfil de interação de fosfodiesterase 4 com seus inibidores. Dissertação de mestrado, IQ/UFRJ, 2005. ORHAN, I.; KARTAL, M.; TOSUN, F.; SENER, B. Screening of Various Phenolic Acids and Flavonoid Derivatives for Their Anticholinesterase Potential. Zeitschrift für Naturforschung. v. 62, pp. 829-832, 2007. PANG, Y.-P.; KOZIKOWSKI, A. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies. J. Computaided Mol. Des. v. 8, pp. 669-681, 1994. PANG, Y.-P.; QUIRAM, P.; JELACIC, T.; HONG, F.; BRIMIJOIN, S. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase. J. Biol. Chem. v. 271, pp. 23646-23649, 1996. PANG, Y. P.; KOLLMEYER, T. M. ; HONG, F. ; LEE, J-C.; MAMMOND, P. I.; HAUGALO, K. S.; BRIMJOIN, S. Rational design of alkylene-linked bispyridiniumalidoximes as improved acetylcholinesterase reactivators. Chemistry & Biology. v.10, pp. 491-502, 2003. PENG, L. F. Acetylcholinesterase inhibition by territrem B derivatives. Journal Natural Products. v. 58, pp. 857-862, 1995. PEOPLE, J. A.; SANTRY, D. P.; SEGAL, G. A. Approximate self-consistent molecular orbital theory. I. Invariant procedures. Journal of chemical physics. v. 43, pp. 129- 135, 1965. PEOPLE, J. A.; SEGAL, G. A. Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap. Journal of chemical physics. v. 43, pp. 136- 149, 1965. PIAZZI, L.; CAVALLI, A.; BELLUTI, F.; BISI, A.; GOBBI, S.; BARTOLINI, M.; ANDRISANO, V.; RACANATINI, M.; RAMPA, A. Extensive SAR and omputational Studies of 3-{4-[(Benzylmethylamino)methyl]phenyl}-6,7-dimethoxy-2H-2-hromenone (AP2238) Derivatives. Journal of Medicinal Chemistry. v. 50, pp. 4250-4254, 2007. Pontes, R. J. S.; Regazzi, A. C.F.; Lima, J.W.O.; Kerr-Pontes, L.R.S. Efeito residual de presentações comerciais dos larvicidas temefos e Bacillus thuringiensis israelensis sobre larvas de Aedes aegypti em recipientes com renovação de água. Revista da Sociedade Brasileira de Medicina Tropical. v. 38, pp. 316-321, 2005. Ramachandran, G. N.; Sasiskeharan, V.. Conformation of polypeptides and proteins. Advances in Protein Chemistry. v. 23, pp. 283-256, 1968. RAUX, B. In computational biochemistry and biophisics. Eds. Becker. New York, 2001. ROCHA, G. B. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Compt. Chem. v.27, pp.1101-1111, 2006. 111 ROGERS, S. L.; DOODY, R. S.; MOHS, R. C. Friedhoff LT and the Donepezil Study Group. Donepezil improves cognition and global function in Alzheimer disease: a 15-week, doubleblind doubleblind, placebo-controlled study. Archives of Internal Medicine. v. 158, pp. 1021-1031, 1998. ROGERS, S.L.; Farlow M. R.; Mohs, R. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology. v. 50, pp.136-145, 1998. ROOK, Y.; WINKELER, T.; SCHMIDTKE, K.; GAUBE, F.; SCHEPMANN, F.; WUNSCH, B.; HEILMANN, J.; LEHMANN, J. Bivalent β-carbolines as potencial multitarget Anti-Alzeimer agents. J. medicinal chemistry. v. 53, pp. 3611-3617, 2010. ROST, B. Twilight zone of protein sequence alignments. Protein engineering. v. 12, pp. 85- 94, 1999. Rydberg, E.H.; Brummstein, B.; Greenblatt, H.M.;Wong, D.M.; Shaya, D.; Williams, L.D.; Carlier, P.R.; Pang, Y-P.; Silman, I.; Sussman, J.L.Complexes of Alkylene-Linked Tacrine Dimers with Torpedo californica Acetylcholinesterase: Binding of Bis(5)-tacrineProduces a Dramatic Rearrangement in the Active-Site Gorge. Journal of medicinal Chemistry. v. 49 pp. 5491-5500, 2006. SANTOS FILHO, O. A. & ALENCASTRO, R. B. Modelagem de Proteínas por Homologia. Quim. Nova. v. 26, pp. 253-259, 2003. SANTOS, V. M. R.; DONNICI, C. L.; DACOSTA, J.B.N.; CAXEIRO, J.M.R. Compostos Oroganofosforados Pentavalentes: Histórico, métodos sintéticos de preparação e aplicações como inseticidas e agentes antitumorais. Quím. Nova. v.30, pp. 159-179, 2007. SAYLE, R. A.; Milner-White, E. J.. Rasmol: biomolecular graphics for all. Trends in biochemical sciences. v. 20, pp. 374-376, 1995. SCHWEDE, T. Swiss-model: an automated protein homology-modeling server. Nucleic Acids Research. v.31, pp.3381-3385, 2003. SEARLE, M. S. Partitioning of free energy contributions in the estimations of binding constants: residual motions and consequence for amide-amide hydrogen bond strengths. J. Am. Chem. Soc. v.114, pp.10697-10704, 1992. SEARLE, M. S. WILLIAMS D. H. The cost ofconformational order: entropy changes in molecular associations. J. Am. Chem. Soc. v.114, pp.10690-10697, 1992. SHIMIZU, K. Estudo do método de equalização da eletronegatividade no cálculo de energias livres de solvatação – GBEEM – ELR. 2005. Tese de doutorado – USP, São Paulo, 2005. SILVA, G. R. Estudo da reativação da acetilcolinesterase inibida por organofosforados: análise conformacional da molécula de HI-6 e simulação da reação de desfosforilação. 2005. Dissertação ( mestrado em área envolvida ) – IME, Rio de Janeiro, 2005. SOREQ, H.; BEN-AZIZ, R.; PRODY, C.A.; SEIDMAN, S.; GNATT, A.; NEVILLE, L.; LIEMAN-HURWITZ, J.; LEV-LEHMAN, E.; GINZBERG, D.; LIPIDOT-LIFSON, 112 Y. Molecular cloning and construction of the coding region for human acetylcholineterase reveals a G + C-rich attenuating structure. Proceedings of the Nacional Academy of Science. v. 87, pp. 9688-9692, 1990. SRINIVASAN, J. Continuum solvent studies of the stability of DNA, RNA, and hosphoramidate—DNAhelices. J. Am. Chem. Soc. v.120, pp.9401-9409, 1998. Stewart, J.J.P. Optimisation of parameters for semi-empirical methodsI. method. J Comput. Chem. v. 10, pp. 209-220, 1989-a. Stewart, J.J.P. Optimisation of parameters for semi-empirical methods II. Aplications. J Comput. Chem. v. 10, pp. 221-264, 1989-b. Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. v. 13, pp.1173–1213, 2007. SCHUMACHER, M.; CAMP, S.; MAULET, Y.; NEWTON, M.; MACPHEEQUIGLEY, K.; TAYLOR, S.S.; FRIEDMAN, T.; TAYLOR, P. Primary structures of Torpedo-californica acetylcholinesterase deduced from its cDNA sequence. Nature. Vol. 319, p. 407-409, 1986. Thiel, W.; Voityuk, A.A. Extension of MNDO to d orbitals: Parameters and results for Silicon. J Molecular Structure (Theochem). v. 313, pp. 141-154,1994. TOMASI, J.; MENNUCCI, B. & CAMMI, R. Quantum mechanical continuum solvation models. Chemical reviews. v 105, pp. 2999-3094, 2005. TORRES, J. M.; LIRA, A, F.; SILVA, D. R.; GUSSO, L. M.; SANT’ANNA, C. M. R.; KUMMERLE, A. E.; RUMJANEK, V. M. Structure insights into cholinesterases inhibition by harmane beta-carbolinium derivatives: A kinetics molecular modeling approach. Phytochemistry. v. 81, pp. 24-30, 2012. TORRES, J. M. Estudo cinético da atividade anticolinesterásica de derivados β-carbonílicos do produto natural harmana. Dissertação de mestrado UFRRJ, 2011. RUHLAR, D. G.; STORER, J. W.; GIESEN, D. J.; CRAMER, C. J. J. comput. Aided mol. Des. v. 9, pp. 87-110, 1995. VIEGAS, C. J.; DA SILVA, V. B.; FURLAN, M.; ALBERTO, C. M. F.; BARREIRO, E. J. Produtos Naturais como canditados a fármacos úteis no tratamento do Mal de Alzheimer. Química Nova. v. 27, p. 655-660, 2004. VERDONK, M. L.; COLE, J. C.; HARTSHOM, M. J.; MURRAY, C. W. & TAYLOR, R. D. Improved protein-ligand docking using GOLD Portein. v. 52, pp. 609-623, 2003. WALDEMAR, G.; DUBOIS, B.; EMER, M. The Category Cued Recall test in very mild Alzheimer's disease: discriminative validity and correlation with semantic memory functions. European Journal of Neurology. v. 14, pp. 102-108, 2007. WANG, S.; MILNE, G. W. A.; NICKLAUS, M. C.; MARQUEZ, V. E.; LEE, J.; BLUMBERG, P. M. Protein kinase C modeling of the binding site and predisction of binding constants. Journal of medicinal chemistry. v. 37, pp. 1326-1338, 1994. 113 WILLIAMS, D. H. WESTWELL, M. S. Aspects of weak interactions. Chemical Society Reviews. v. 27, pp. 57-63, 1998.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/11517/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/16964/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/23286/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/29664/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/36038/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/42434/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/48812/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/55264/2014%20-%20Daniel%20Rosa%20da%20Silva.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3110
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2019-11-25T13:49:15Z No. of bitstreams: 1 2014 - Daniel Rosa da Silva.pdf: 5145444 bytes, checksum: 79c4a13e9a737ac69fe6ceb4381c234e (MD5)eng
dc.originais.provenanceMade available in DSpace on 2019-11-25T13:49:16Z (GMT). No. of bitstreams: 1 2014 - Daniel Rosa da Silva.pdf: 5145444 bytes, checksum: 79c4a13e9a737ac69fe6ceb4381c234e (MD5) Previous issue date: 2014-05-21eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2014 - Daniel Rosa da Silva.pdfDaniel Rosa da Silva5.02 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.