Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9194
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Nadur, Nathalia Fonseca | |
dc.date.accessioned | 2023-11-19T20:00:44Z | - |
dc.date.available | 2023-11-19T20:00:44Z | - |
dc.date.issued | 2020-02-05 | |
dc.identifier.citation | NADUR, Nathalia Fonseca. Síntese e avaliação farmacológica de novas 3-(1,2,3-triazol)-cumarinas planejadas para o tratamento da Doença de Alzheimer. 2020. 165 f. Dissertação (Mestrado em Química) - Universidade Federal Rural do Rio de Janeiro, Seropédca, 2020. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9194 | - |
dc.description.abstract | Alzheimer’s Disease (AD) is a progressive and irreversible neurodegenerative disorder, which affects memory and other cognitive functions, also affecting ocupational and social aspects. Using hybrid compounds with inhibition potential to multiple targets, like acetylcholinesterase enzyme (AChE) and β-amyloid peptides plaques aggregation (Aβ), has been observed as a high value objective for AD treatment due to possibilty to inhibit simultaneously different targets that contribute to instalation and maintenance of the disease. AChE acts controlling levels of the neurotransmitter acetylcholine (ACh) in synaptic cleft, that plays a role in the processes of learning and memory developing. The aggregation of Aβ plaques is one of the main responsible for neuronal death. Recent published studies by our research group (LaDMol-QM) revealed the alkylamino-coumarin nucleus as a potential inhibitor of AChE and Aβ plaques aggregation. These results inspired a planned developing serie of new 3-(1,2,3-triazole)-coumarin derivatives purposed in this paper, based in structural aspects existent in those alkylamino-coumarin inhibitors, where it was purposed an evaluation of different cyclic alkylamino groups, also the evaluation of different sizes of alkyl chain between the alkylamino group and coumarin group, the addition of 1,2,3-triazole group with different substituents. The compounds were synthesized in yields reasonable to good from reactions of: synthesis of 7-hydroxycoumarin, O-alkylation of 7-hydroxycoumarin with a dibromides serie with different chain sizes, bromation of position 3 of coumarin nucleus of the 7-bromoalkoxy-coumarin, reaction of Sonogashira’s cross-coupling from 3-bromo-7-bromoalkoxy-coumarin, deprotection of trimethylsilyl group of 7-bromoalkoxy-3-((trimethylsilyl)ethenyl)-coumarin, reaction of 1,3-dipolar cycloaddition copper catalyzed (CuAAC), using 3-ethenyl-7-bromo-alkoxy-coumarin and aromatic azides, amination of alkyl chain of 3-(1H-1,2,3-triazol-4,R1)-7-(aminoalkoxy)-coumarin. The compounds were purified and then characterized by spectroscopic techniques (NMR 1H e 13C). As a result, all synthesized compounds were able to inhibit AChE, based on assays and presented IC50 values from 0,006 to 4,79 μM. | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Alzheimer | por |
dc.subject | Cumarinas | por |
dc.subject | Inibidores de colinesterásicos | por |
dc.subject | Inibidores de agregação de placas β-amilóide | por |
dc.subject | Coumarins | eng |
dc.subject | Cholinesterase inhibitors | eng |
dc.subject | β-Amyloid plaques aggregation inhibitors | eng |
dc.title | Síntese e avaliação farmacológica de novas 3-(1,2,3-triazol)-cumarinas planejadas para o tratamento da Doença de Alzheimer | por |
dc.type | Dissertação | por |
dc.contributor.advisor1 | Kümmerle, Arthur Eugen | |
dc.contributor.advisor1ID | 053.978.487-78 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5598000938584486 | por |
dc.contributor.referee1 | Kümmerle, Arthur Eugen | |
dc.contributor.referee2 | Rocha, David Rodrigues da | |
dc.contributor.referee3 | Graebin, Cedric Stephan | |
dc.creator.ID | 426.092.868-64 | por |
dc.creator.Lattes | http://lattes.cnpq.br/4851384421417833 | por |
dc.description.resumo | A Doença de Alzheimer (DA) caracteriza-se por ser um distúrbio neurodegenerativo progressivo e irreversível de memória e outras funções cognitivas, afetando o funcionamento ocupacional e social. O uso de compostos híbridos com potencial inibidor para mais de um alvo, como a enzima acetilcolinesterase (AChE) e a agregação de placas β-Amiloides (Aβ), vem sendo apontado como de grande valia para o tratamento da DA devido à possiblidade de inibir simultaneamente alvos que contribuem para a instalação e manutenção da doença. A AChE atua no controle dos níveis do neurotransmissor acetilcolina (ACh) na fenda sináptica, o qual está envolvido nos processos de aprendizagem e memória. A agregação de placas Aβ é uma das principais responsáveis pela morte neuronal. Estudos recentes publicados pelo nosso grupo de pesquisa (LaDMol-QM) demostraram o núcleo alquilamino-cumarina como um potencial inibidor da enzima AChE e agregação de placas Aβ. Esses resultados inspiraram a série planejada dos novos derivados 3-(1,2,3-triazol)-cumarínicos propostos nesse trabalho, baseando-se em requisitos estruturais presentes nestes inibidores alquilamino-cumarínicos, onde se propôs a avaliação de diferentes grupamentos alquilamino cíclico, a avaliação de diferentes tamanhos de cadeia alquílica entre o grupamento alquilamino e o núcleo cumarínico, a adição do grupamento 1,2,3-triazol com diferentes substituintes. Os compostos foram sintetizados em rendimentos de razoáveis a bons a partir das reações de: síntese da 7-hidroxicumarina, O-alquilação da 7-hidroxicumarina com uma série de dibrometos com diferentes tamanhos de cadeia, a bromação da posição 3 do núcleo cumarínico das 7-bromoalcoxi-cumarina, reação de acoplamento cruzado de Sonogashira a partir das 3-bromo-7-bromoalcoxi-cumarina, desproteção do grupamento trimetilsilila da 7-bromoalcoxi-3-((trimetilsilil)etenil)-cumarina, reação de cicloadição 1,3-dipolar catalisada por cobre (CuAAc), utilizando 3-etenil-7-bromoalcoxi-cumarina e azidas aromáticas, aminação da cadeia alquílica das 3-(1H-1,2,3-triazol-4-R1)-7-(aminoalcoxi)-cumarina. Os compostos obtidos foram purificados e, então, caracterizados por técnicas espectroscópicas (RMN 1H e 13C). Todos os compostos sintetizados foram capazes de inibir a AChE, ensaiados e apresentaram valores de CI50 variando de 0,006 a 4,79 μM. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Química | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | ADI - ALZHEIMER’S DISEASE INTERNATIONAL. Disponível em: < http://www.alz.co.uk/about-dementia >. Acesso em: 15 jun. 2019. AGALAVE, Sandip G.; MAUJAN, Suleman R.; PORE, Vandana S. Click chemistry: 1, 2, 3‐ triazoles as pharmacophores. Chemistry–An Asian Journal, v. 6, n. 10, p. 2696-2718, 2011. ALVAREZ, A.; ALARCÓN, R.; OPAZO, C.; CAMPOS, E. O.; MUNOZ, F. J.;CALDERON, F. H.; DAJAS, F.; GENTRY, M. K.; DOCTOR, B. P.; DE MELLO, F.G.; INESTROSA, N. C. Stable complexes involving acetylcholinesterase and amyloid-β peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. Journal of Neuroscience, v. 18, n. 9, p. 3213-3223, 1998. ALVAREZ-BUILLA, J.; VAQUERO, J. J.; BARLUENGA, J. Modern Heterocyclic Chemistry. v. 1, Wiley-Blackwell, 2011. ALZHEIMER’S ASSOCIATION. Dentro Do Cérebro: Uma Viagem Interativa. Disponível em: <https://www.alz.org/brain_portuguese/>. Acesso em: 05 jun. 2019. ALZHEIMER’S ASSOCIATION. Disponível em: < https://www.alz.org/brain_portuguese/09.asp >. Acesso em: 28 dez. 2019. AMARAL, M. D. P. H.; PIRESVIEIRA, F.; LEITE, M. N., DO AMARAL, L. H.; PINHEIRO, L. C.; FONSECA, B. G.; VAREJÃO, E. V. Determinação do teor de cumarina no xarope de guaco armazenado em diferentes temperaturas. Brazilian Journal of farmacognosy, 19(2B), p. 607-611, 2009. ASTORINO, T.; BAKER, J.; BROCK, S.; DALLECK, L.; GOULET, E.; GOTSHALL, R.; LIM, Y. A. Reduction in Butyrylcholinesterase Activity and Cardiovascular Risk Factors in Obese Adolescents after 12-Weeks of High-Intensity Interval Training. Journal of Exercise Physiologyonline, 20(3), p. 110-120, 2017 BANU, K. Masna; DINAKAR, A.; ANANTHANARAYANAN, C. Synthesis, characterization, antimicrobial studies and pharmacological screening of some substituted 1, 2, 3-triazoles. Indian Journal of Pharmaceutical Sciences, v. 61, n. 4, p. 202, 1999. BARNARD, Eric A. Ionotropic glutamate receptors: new types and new concepts. Trends in pharmacological sciences, v. 18, n. 5, p. 141-148, 1997. BERTRAND, G.; JIN, l.; TOLENTINO, D. R..; MELAIMI, M.; Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne “click reaction. Science Advances, v.1 , 2015. BOCK, V. D.; HIEMSTRA, H.; MAARSEVEEN, J H. V. CuI Catalyzed alkyne-azide “click” cycloadditions from a mechanistic and synthetic perspective. European Journal of Organic Chemistry, v. 2006, p. 51–68, 2006. BOISDE, P.M.; MEULY, W.C. Coumarin. Encyclopedia of Chemical Technology, 5, 2007. BORGES, F.; ROLEIRA, F.; MILHAZES, N.; SANTANA, L.; URIARTE, E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Current medicinal chemistry, 12(8), p. 887-916, 2005. BOURNE, Y., GRASSI, J., BOUGIS, P. E., MARCHOT, P. Conformational flexibility of the acetylcholinesterase tetramer suggested by X-ray crystallography. Journal of Biological Chemistry, v. 274, n. 43, p. 30370-30376, 1999. BOZOROV, K.; ZHAO, J.; AISA, H. A. 1, 2, 3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorganic & medicinal chemistry, 2019. BROWN, G. C.; BAL-PRICE, A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Molecular Neurobiology, v. 27, n. 3, p. 325-355, 2003. BUTLER, R. N.; FOX, A.; COLLIER, S.; BURKE, L. A. Pentazole chemistry: the mechanism of the reaction of aryldiazonium chlorides with azide ion at 280 8C: concerted versus stepwise formation of arylpentazoles, detection of a pentazene intermediate, a combined 1 H and 15N NMR experimental and ab initio theoretical study. Journal of the Chemical Society, Perkin Transactions 2, p. 2243–2247, 1998. CAIXETA, Leonardo et al. Doença de Alzheimer. 1. ed. Porto Alegre: Artmed, 2012. 504 p. CARVALHO A. O.; MARTINS, J.L.S. Determinação de cumarina em extrato fluido e tintura de guaco por espectrofotometria derivada de primeira ordem. Revista Brasileira de Ciências Farmacêuticas, v. 40, n. 4, p. 481-486, 2004. CAREY, F. A. SUNDBERG, R. J. Advanced Organic Chemistry, Part A: Structure and Mechanisms, 5ª Ed., New York: Springer, 2008. CHEIGNON, C.; TOMAS, M., BONNEFONT-ROUSSELOT, D.; FALLER, P.; HUREAU, C.; COLLIN, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s Disease. Redox Biology, 2017. CHEN, M.; LU, S.; YUAN, G.; YANG, S.; DU, X. Synthesis and antibacterial activity of some heterocyclic β-enamino ester derivatives with 1, 2, 3-triazole. Heterocyclic Communications, v. 6, n. 5, p. 421-426, 2000. CHENG, H.; WAN, J.; LIN, M.; LIU, Y.; LU, X.; LIU, J.; XU, Y.; CHEN, J.; TU, Z.;CHENG, Y. E.; DING, K. Design, Synthesis, and in Vitro Biological Evaluation of 1H- 1,2,3- 85 Triazole-4-carboxamide Derivatives as New Anti-influenza A Agents Targeting Virus Nucleoprotein. Journal of Medicinal Chemistry, v. 55, p. 2144-2153, 2012. CHENG, Y.; BAI, F. The association of tau with mitochondrial dysfunction in alzheimer's disease. Frontiers in neuroscience, v. 12, p. 163, 2018. CHRIS MIN, K.; DOCKENDORF, M. F.; PALCZA, J.; TSENG, J.; MA, L.; STONE, J. A.; KLEIJN, H.J.; HODSMAN, P.; MASUO, K.; TANEN, M.; TROYER, M. D.; VUGT. M.; FORMAN, M. S.;TROYER, M. D. Pharmacokinetics and Pharmacodynamics of the BACE 1 Inhibitor Verubecestat (MK‐8931) in Healthy Japanese Adults: A Randomized, Placebo‐ Controlled Study. Clinical Pharmacology & Therapeutics, v. 105, n. 5, p. 1234-1243, 2019. CITRON, Martin. Alzheimer's disease: strategies for disease modification. Nature reviews Drug discovery, v. 9, n. 5, p. 387, 2010. CLAYDEN, J.; GREEVES, N.; WARREN, S. Organic Chemistry. 2ª Ed., New York: Oxford University Press, 2001. CONGDON, E. E.; WU, J. W.; MYEKU, N.; FIGUEROA, Y. H.; HERMAN, M.; MARINEC, P. S.; GESTWICKI, J. E.; DICKEY, C. A.; YU, W. H.; DUFF, K. E. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy, v. 8, n. 4, p. 609-622, 2012. DE OLIVEIRA FREITAS, L. B.; RUELA, F. A.; PEREIRA, G. R.; ALVES, R. B.; DE FREITAS, R. P.; DOS SANTOS, L. J. A reação “click” na síntese de 1, 2, 3-triazóis: aspectos químicos e aplicações. Química Nova, v. 34, n. 10, p. 1791-1804, 2011. DE SOUZA, Gabriela Alves et al. Discovery of novel dual-active 3-(4-(dimethylamino) phenyl)-7-aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. Journal of enz yme inhibition and medicinal chemistry, v. 34, n. 1, p. 631- 637, 2019. DÖHLER, D.; MICHAEL, P.; BINDER, W. H. CuAAC-Based Click Chemistry in Self- Healing Polymers. Accounts of Chemical Research, v. 50, n. 10, p. 2610-2620, 2017. DURAN, A.; DOGAN, H. N.; ROLLAS, S. Synthesis and preliminary anticancer activity of new 1, 4-dihydro-3-(3-hydroxy-2-naphthyl)-4-substituted-5H-1, 2, 4-triazoline-5-thiones. Il Farmaco, v. 57, n. 7, p. 559-564, 2002. ELLMAN, G. L.; COURTNEY, K. D.; ANDRES, V.; FEATHERSTONE, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, v. 7, n. 2, p. 88-95, 1961 FALCO, A.D.; CUKIERMAN, D.S.; HAUSER-DAVIS, R.A.; REY, N.A. Alzheimer's disease: etiological hypotheses and treatment perspectives. Química Nova, 39(1), p. 63-80, 2016. FALLER, P.; HUREAU, C.; LA PENNA, G. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Accounts of chemical research, v. 47, n. 8, p. 2252-2259, 2014. FERREIRA, V. F.; DA ROCHA, D. R.; DA SILVA, F. C.; FERREIRA, P. G.; BOECHAT, N. A.; MAGALHÃES, J. L. Novel 1 H-1, 2, 3-, 2 H-1, 2, 3-, 1 H-1, 2, 4-and 4 H-1, 2, 4- triazole derivatives: a patent review (2008–2011). Expert opinion on therapeutic patents, v. 23, n. 3, p. 319-331, 2013. FERRI, C. P.; PRINCE, M.; BRAYNE, C.; BRODATY, H.; FRATIGLIONI, L.; GANGULI, M.; HALL, K.; HASEGAWA, K.; HENDRIE, H.; HUANG, Y.; JORM, A.; MATHERS, C.; MENEZES, P. R.; RIMMER, E.; SCAZUFCA, M. Global prevalence of dementia: a Delphi consensus study. The Lancet, v. 366, n. 9503, p. 2112-2117, 2006 FRANCIS, P. T.; PALMER, A. M.; SNAPE, M.; WILCOCK, G. K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry, v. 66, n. 2, p. 137-147, 1999. FRÈRE, S.; THIÉRY, V.; BESSON, T. Microwave acceleration of the Pechmann reaction on graphite/montmorillonite K10: application to the preparation of 4-substituted 7- aminocoumarins. Tetrahedron Letters, 42(15), p. 2791-2794., 2001 FOKIN, V. V. (Ed.). Organic chemistry: breakthroughs and perspectives. Weinheim: Wiley-VCH, 2012. FURUKAWA-HIBI, Y.; ALKAM, T.; NITTA, A.; MATSUYAMA, A.; MIZOGUCHI, H.; SUZUKI, K.; YAMADA, K. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice. Behavioural brain research, 225(1), p. 222-229, 2011. GAO, M.; DUAN, L.; LUO, J.; ZHANG, L.; LU, X.; ZHANG, Y.; ZHANG, Z.; TU, Z.; XU, Y.; REN, X.; DING, K. Discovery and Optimization of 3-(2 (Pyrazolo[1,5-a]pyrimidin-6-yl)- ethynyl)benzamides as Novel Selective and Orally Bioavailable Discoidin Domain Receptor 1(DDR1) Inhibitors. Journal of Medicinal Chemistry, v. 56, p. 3281-3295, 2013. GAO, Y., PIMPLIKAR, S. W. The γ-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proceedings of the National Academy of Sciences, v. 98, n. 26, p. 14979-14984, 2001. GODOY, J. A.; RIOS, J. A.; ZOLEZZI, J. M.; BRAIDY, N.; INESTROSA, N. C. Signaling pathway cross talk in Alzheimer’s disease. Cell Communication and Signaling, v. 12, n. 1, p. 23, 2014. GODYŃ, J.; JOŃCZYK, J.; PANEK, D.; MALAWSKA, B. Therapeutic strategies for Alzheimer's disease in clinical trials. Pharmacological Reports, 68(1), p. 127-138, 2016. GREENAMYRE, J. Timothy; YOUNG, Anne B. Excitatory amino acids and Alzheimer's disease. Neurobiology of aging, v. 10, n. 5, p. 593-602, 1989. GROVER, J.; KUMAR, V.; SOBHIA, M.E.; JACHAK, S.M. Synthesis, biological evaluation and docking analysis of 3-methyl-1-phenylchromeno [4, 3-c] pyrazol-4 (1H)- ones as potential cyclooxygenase-2 (COX-2) inhibitors. Bioorganic & medicinal Chemistry letters, 24(19), p. 4638-4642, 2014. GUAN, L. P.; JIN, Q. H.; TIAN, G. R.; CHAI, K. Y.; QUAN, Z. S. Synthesis of some quinoline-2 (1H)-one and 1, 2, 4-triazolo [4, 3-a] quinoline derivatives as potent anticonvulsants. J. Pharm. Pharmaceut. Sci, v. 10, n. 3, p. 254-262, 2007. GUJJAR, R.; MARWAHA, A.; EL MAZOUNI, F.; WHITE, J.; WHITE, K. L.; CREASON, S.; SHACKFORD, D. M.; BALDWIN, J.; CHARMAN, W. N.; BUCKNER, F. S.; RATHOD, P. K.; PHILLIPS, M. A.; CHARMAN, S. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. Journal of medicinal chemistry, v. 52, n. 7, p. 1864-1872, 2009. HAFEZ, H.; ABBAS, H.; EL-GAZZAR, A. Synthesis and evaluation of analgesic, antiinflammatory and ulcerogenic activities of some triazolo-and 2-pyrazolyl-pyrido [2, 3-d]- pyrimidines. Acta Pharmaceutica, v. 58, n. 4, p. 359-378, 2008. HALLIWELL, B.; GUTTERIDGE, J. M. C. Free radicals in biology and medicine. Oxford University Press, USA, 2015. HAN, Xu; HE, Gefei. Toward a rational design to regulate β-amyloid fibrillation for alzheimer’s disease treatment. ACS chemical neuroscience, v. 9, n. 2, p. 198-210, 2018. HARDY, J.A.; HIGGINS, G.A. Alzheimer's disease: the amyloid cascade hypothesis. Science, 256(5054), p. 184, 1992. HEIN, J. E.; FOKIN, V. V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chemical Society Reviews, v. 39, p.1302- 1315, 2010. HONG, L.; LIN, W.; ZHANG, F.; LIU, R.; ZHOU, X. Ln[N(SiMe3)2]3-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides leading to 1,5-disubstituted 1,2,3-triazole derivatives: new mechanistic features. Chemical Communications, v. 49, p. 5589-5591, 2013. HORI, Y.; TAKEDA, S.; CHO, H.; WEGMANN, S.; SHOUP, T. M.; TAKAHASHI, K.; IRIMIA, D.; ELMALEH, D. R.; HYMAN, B. T.; HUDRY, E. A Food and Drug Administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease. Journal of Biological Chemistry, v. 290, n. 4, p. 1966-1978, 2015. HOWELL, S. J.; SPENCER, N.; PHILP, D. Recognition-Mediated Regiocontrol of a Dipolar Cycloaddition Reaction. Tetrahedron, v. 57, p. 4945-4954, 2001. HUANG, L.; MIAO, H.; SUN, Y.; MENG, F.; LI, X. Discovery of indanone derivatives as multi-target-directed ligands against Alzheimer's disease. European journal of medicinal chemistry, 87, p. 429-439, 2014. HUISGEN, R.; SZEIMIES, G.; MOEBIUS, L.; 1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen. Chemische Berichte, v. 100, p. 2494, 1967. JING, L.; WU, G.; KANG, D.; ZHOU, Z.; SONG, Y.; LIU, X.; ZHAN, P. Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug discovery today, 2018. JOHNS, B. A., WEATHERHEAD, J. G., ALLEN, S. H., THOMPSON, J. B., GARVEY, E. P., FOSTER, S. A., JEFFREY, J. L.; MILLER, W. H. The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1: Establishing the pharmacophore. Bioorganic & medicinal chemistry letters, v. 19, n. 6, p. 1802-1806, 2009. JONES, G.; WILLETT, P.; GLEN, R. C.; LEACH, A. R.; TAYLOR, R. Development and validation of a genetic algorithm for flexible docking. Journal of molecular biology, v. 267, n. 3, p. 727-748, 1997. JOULE, J. A.; MILLS, K. Heterocyclic Chemistry. 5ª Ed., New Jersey: Wiley-Blackwell, 2010. KHAN, K.M.; RAHIM, F.; WADOOD, A.; KOSAR, N.; TAHA, M.; LALANI, S.; KHAN, A.; FAKHRI, M.I.; JUNAID, M.; REHMAN, W.; KHAN, M. Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. European journal of medicinal chemistry, 81, p. 245-252, 2014. KHARB, R.; SHARMA, P. C.; YAR, M. S. Pharmacological significance of triazole scaffold. Journal of enzyme inhibition and medicinal chemistry, v. 26, n. 1, p. 1-21, 2011. KHOMENKO, T.M.; ZARUBAEV, V.V.; ORSHANSKAYA, I.R.; KADYROVA, R.A.; SANNIKOVA, V.A.; KORCHAGINA, D.V.; VOLCHO, K.P.; SALAKHUTDINOV, N.F. Anti-influenza activity of monoterpene-containing substituted coumarins. Bioorganic & medicinal chemistry letters, 27(13), p. 2920-2925, 2017. KNEZEVIC, D.; MIZRAHI, R. Molecular imaging of neuroinflammation in Alzheimer's disease and mild cognitive impairment. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 80, p. 123-131, 2018. KOLB, H. C.; FINN, M. G.; SHARPLESS, K. B. Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition in English, v. 40, p. 2004–2021, 2001. KOVAC, B.; NOVAK, I. Electronic structure of coumarins. Spectrochimica Acta Part A, 58(7), p. 1483-1488, 2002. KRAEPELIN, E. Psychiatrie: Ein Lehrbuch für Studierende und Ärzte, Klinische Psychiatrie [Psychiatry: a study book for students and doctors, clinical psychiatry]. Liepzig, Barth, v. 1915, 1910. KUDO, E.; TAURA, M.; MATSUDA, K.; SHIMAMOTO, M.; KARIYA, R.; GOTO, H.; HATTORI, S.; KIMURA, S.; OKADA, S. Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorganic & medicinal chemistry letters, 23(3), p. 606-609, 2013. KUMAR, D.; REDDY, V. B.; VARMA, R. S. A facile and regioselective synthesis of 1, 4- disubstituted 1, 2, 3-triazoles using click chemistry. Tetrahedron Letters, v. 50, n. 18, p. 2065-2068, 2009. LAUFER, M.C.; HAUSMANN, H.; HÖLDERICH, W.F.J. Synthesis of 7-hydroxycoumarins by Pechmann reaction using Nafion resin/silica nanocomposites as catalysts. Journal of Catalysis, 218(2), p. 315-320, 2003. LEE, S. J. C.; NAM, E.; LEE, H. J.; SAVELIEFF, M. G.; LIM, M. H. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chemical Society Reviews, v. 46, n. 2, p. 310-323, 2017. LEI, L.; XUE, Y.B.; LIU, Z.; PENG, S.S.; HE, Y.; ZHANG, Y.; FANG, R.; WANG, J.P.; LUO, Z.W.; YAO, G.M.; ZHANG, J.W. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Scientific reports, 5, p. 13544, 2015. LEVY, E.; CARMAN, M. D.; FERNANDEZ-MADRID, I.J.; POWER, M.D.; LIEBERBURG, I.; VAN DUINEN, S.G.; FRANGIONE, B. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science, 248(4959), p. 1124-1126, 1990. LIU, Z.; ZHANG, A.; SUN, H.; HAN, Y.;KONG, L; WANG, X. TWO decades of new drug discovery and development for Alzheimer's disease. RSC Advances, v. 7, n. 10, p. 6046- 6058, 2017. LUO, W.; RODINA, A.; CHIOSIS, G. Heat shock protein 90: translation from cancer to Alzheimer's disease treatment?. BMC Neuroscience, v. 9, n. 2, p. S7, 2008. MANFREDINI, S.; VICENTINI, C. B.; MANFRINI, M.; BIANCHI, N.; RUTIGLIANO, C.; MISCHIATI, C.; GAMBARI, R. Pyrazolo-triazoles as light activable dna cleaving agents. Bioorganic & medicinal chemistry, v. 8, n. 9, p. 2343-2346, 2000. MARTIN-JIMÉNEZ, C. A.; GAITÁN-VACA, D. M.; ECHEVERRIA, V.; GONZÁLEZ, J.; BARRETO, G. E. Relationship Between Obesity, Alzheimer’s Disease, and Parkinson’s Disease: an Astrocentric View. Molecular Neurobiology, p. 1-20, 2016 MAURICE, T.; STREHAIANO, M.; SIMÉON, N.; BERTRAND, C.; CHATONNET, A. Learning performances and vulnerability to amyloid toxicity in th butyrylcholinesterase knockout mouse. Behavioural brain research, 296, p. 351-360, 2016. MELDAL, M.; TORNØE, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chemical Reviews, v. 108, p. 2952-30152008, 2008. MESULAM, M. M.; GUILLOZET, A.; SHAW, P.; LEVEY, A.; DUYSEN, E. G.; LOCKRIDGE, O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience, 110(4), p. 627-639, 2002. MI, J.; ZHOU, C.; BAI, X. Advances in triazole antimicrobial agents. 2007. MICHAEL, A. Ueber die einwirkung von diazobenzolimid auf acetylendicarbonsäuremethylester. Journal für Praktische Chemie, v. 46, p. 94, 1893. MÖBIUS, H. J.; STÖFFLER, A. New approaches to clinical trials in vascular dementia: memantine in small vessel disease. Cerebrovascular Diseases, v. 13, n. Suppl. 2, p. 61-66, 2002. MÖLLER, H.-J.; GRAEBER, M. B. The case described by Alois Alzheimer in 1911. European archives of psychiatry and clinical neuroscience, v. 248, n. 3, p. 111-122, 1998. MOREIRA, P. I.; CARVALHO, C.; ZHU, X.; SMITH, M. A.; PERRY, G. Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, v. 1802, n. 1, p. 2-10, 2010. MURI, E.M.F.; DE MELLO, M.M.S.; METSAVAHT, L. Farmacologia de drogas vasoativas. Acta fisiátrica,17(1), p. 22-27, 2016. MURRAY, R.D.H. Coumarins. Natural Product Reports, 12, p. 477-505, 1995. NALIVAEVA, N.N.; TURNER, A.J. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Letters, 587(13), p. 2046-2054, 2013. NELSON, D. L.; COX, M. M. Princípios de Bioquímica de Lehninger-7. Artmed Editora, 2018. NEUMANN, U.; UFER, M.; JACOBSON, L. H.; ROUZADE‐DOMINGUEZ, M. L.; HULEDAL, G.; KOLLY, C.; LÜÖND, R. M.; MACHAUER, R.; VEENSTRA, S. J.; HURTH, K.; RUEEGER, H.; TINTELNOT-BLOMLEY, M.; STAUFENBIEL, M.; SHIMSHEK, D. R.; PERROT, L.; FRIEAUFF, W.; DUBOST, V.; SCHILLER, H.; VOGG, B.; BELZT, K.; AVRANEAS, A.; KRETZ, S.; PEZOUS, N.; RONDEAU, J. M. BECKMANN, N.; HARTMANN, A.; VORMFELDE, S.; DAVID, O. J.; GALLI, B.; RAMOS, R.; GRAF, A.; LOPEZ, C. L. The BACE‐1 inhibitor CNP520 for prevention trials in Alzheimer's disease. EMBO molecular medicine, v. 10, n. 11, 2018. NORRIS, P.; HORTON, D.; LEVINE, B. R. Cycloaddition of acetylenes with 5-azido-5- deoxy-D-aldopentose derivatives: synthesis of triazole reversed nucleoside analogs. Heterocycles, v. 12, n. 43, p. 2643-2655, 1996. PARIHAR, M. S.; HEMNANI, T. Alzheimer’s disease pathogenesis and therapeutic interventions. Journal of Clinical Neuroscience, v. 11, n. 5, p. 456-467, 2004. PASSANNANTI, A.; DIANA, P.; BARRAJA, P.; MINGOIA, F.; LAURIA, A.; CIRRINCIONE, G. Pyrrolo [2, 3-d][1, 2, 3] triazoles as potential antineoplastic agents. Heterocycles, v. 6, n. 48, p. 1229-1235, 1998. PATEL, D.; KUMARI, P.; PATEL, N.B. In vitro antimicrobial and antimycobacterial activity of some chalcones and their derivatives. Medicinal Chemistry Research, 22(2), p.726-744, 2013. PATEL, R.V.; KUMARI, P.; RAJANI, D.P; CHIKHALIA, K.H. Synthesis of coumarinbased 1, 3, 4-oxadiazol-2ylthio-N-phenyl/benzothiazolyl acetamides as antimicrobial and antituberculosis agents. Medicinal Chemistry Research, 22(1), p.195-210, 2013. PECHMANN, H. Neue bildungsweise der cumarine. Synthese des daphnetins. I. Berichte der deutschen chemischen Gesellschaft, v. 17, n. 1, p. 929-936, 1884. PEREIRA, T. M.; VITÓRIO, F.; AMARAL, R. C.; ZANONI, K. P. S.; IHA, N. Y. M.; KUMMERLE, A. E. Microwave-assisted synthesis and photophysical studies of novel fluorescent N-acylhydrazone and semicarbazone-7-OH-coumarin dyes. New Journal of Chemistry, 40(10), p. 8846-8854, 2016. PRINCE, M.; COMAS-HERRERA, A.; KNAPP, M.; GUERCHET, M.; KARAGIANNIDOU, M. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future, 2016. QUINN, Daniel M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chemical Reviews, v. 87, n. 5, p. 955-979, 1987. RAJASEKHAR, K.; GOVINDARAJU, T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer's disease. RSC advances, v. 8, n. 42, p. 23780-23804, 2018. RAJENDRAN, L.; SCHNEIDER, A.; SCHLECHTINGEN, G.; WEIDLICH, S.; RIES, J.; BRAXMEIER, T.; SCHWILLE, P.; SCHULZ, J. B.; SCHROEDER, C.; SIMONS, M.; JENNINGS, G.; KNÖLKER, H. J.; SIMONS, K. Efficient inhibition of the Alzheimer's disease β-secretase by membrane targeting. Science, v. 320, n. 5875, p. 520-523, 2008. RANG, H. P.; DALE, M. M.; RITTER, J. M.; GARDNER, P. Farmacologia, 7ª Ed., Elsevier, 2012. RIBEIRO, C. V. C.; KAPLAN, M. A. C. Tendências evolutivas de Famílias Produtoras de Cumarinas em Angiospermae. Quím. Nova, v. 25, n. 4, p. 533-538, 2002. RIHA, P. D.; ROJAS, J. C.; GONZALEZ-LIMA, F. Beneficial network effects of methylene blue in an amnestic model. Neuroimage, v. 54, n. 4, p. 2623-2634, 2011. RODIONOV, V. O.; FOKIN, V. V.; FINN, M. G. Mechanism of the ligand-free CuIcatalyzed azide-alkyne cycloaddition reaction. Angewandte Chemie International Edition in English, v. 44, p. 2210-2215, 2005. ROGERS, J.; LUE, L. Microglial chemotaxis, activation, and phagocytosis of amyloid β- peptide as linked phenomena in Alzheimer's disease. Neurochemistry International, v. 39, n. 5, p. 333-340, 2001. RODRIGUES, R.F. Extração da cumarina a partir das sementes da emburana (Torresea cearensis) utilizando dióxido de carbono supercritico. Campinas/SP: Unicamp, 2005. SAIDO, T.; LEISSRING, M. A. Proteolytic degradation of amyloid β-protein. Cold Spring Harbor Perspectives in Medicine, 2(6), p. a006379, 2012. SANTOS, S. N., DE SOUZA, G. A., PEREIRA, T. M., FRANCO, D. P., DEL CISTIA, C. D. N., SANT'ANNA, C. M. R., LACERDA, R. B., KÜMMERLE, A. E. Regioselective microwave synthesis and derivatization of 1, 5-diaryl-3-amino-1, 2, 4-triazoles and a study of their cholinesterase inhibition properties. RSC advances, v. 9, n. 35, p. 20356-20369, 2019. SHALINI, K.; KUMAR, N.; DRABU, S.; SHARMA, P. K. Advances in synthetic approach to and antifungal activity of triazoles. Beilstein journal of organic chemistry, v. 7, n. 1, p. 668-677, 2011. SANABRIA-CASTRO, A.; ALVARADO-ECHEVERRÍA, I.; MONGE-BONILLA, C. Molecular pathogenesis of Alzheimer's disease: an update. Annals of neurosciences, v. 24, n. 1, p. 46-54, 2017. SAVELIEFF, M. G.; LEE, S.; LIU, Y.; LIM, M. H. Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS chemical biology, v. 8, n. 5, p. 856-865, 2013. SELKOE, D. J. Alzheimer9s Disease: Genes, Proteins, and Therapy. Physiological Reviews, v. 81, n. 2, p. 741-766, 2001. SHARPLESS, K. B.; ROSTOVTSEV, V. V.; GREEN, L. G.; FOKIN, V. V. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition in English, v. 41, p. 2596– 2599, 2002. SIES, H. Oxidative stress: a concept in redox biology and medicine. Redox biology, v. 4, p. 180-183, 2015. SMITH, M. B.; MARCH, J. March’s advanced organic chemistry reactions, mechanism, and structure, 6° Ed., Wiley, New York, 2007. SONOGASHIRA, K. Development of Pd–Cu catalyzed cross coupling of terminal acetylenes with sp2-carbon halides. Journal of Organometallic Chemistry, v. 653, p. 46–49, 2002. SONOGASHIRA ,K.; TOHDA, Y.; HAGIHARA, N. A.; A Convenient Synthesis of Acetylenes: catalytic substitutions of acetylenic hidrogen with bromolkenes, iodoarenes, and bromopyridines. Tetrahedron Lett , v. 50, p. 4467-4471, 1975. SUGIMOTO, H., IIMURA, Y., YAMANISHI, Y., & YAMATSU, K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5, 6- dimethoxy-1-oxoindan-2-yl) methyl] piperidine hydrochloride and related compounds. Journal of medicinal chemistry, v. 38, n. 24, p. 4821-4829, 1995. SUN, Q.; PENG, D. Y.; YANG, S. G.; ZHU, X. L.; YANG, W. C.; YANG, G. F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorganic & medicinal chemistry, 22(17), p. 4784-4791, 2014. SYMEONIDIS, T.; CHAMILOS, M.; LITINA, D. J. H.; KALLITSAKIS, M.; LITINAS, K. E. Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors. Bioorganic & medicinal chemistry letters, 19(4), p. 1139–1142, 2009. TAKASU, K.; AZUMA, T.; TAKEMOTO, Y. Synthesis of trifunctional thioureas bearing 1, 5-disubstituted triazole tether by Ru-catalyzed Huisgen cycloaddition. Tetrahedron Letters, v. 51, n. 20, p. 2737-2740, 2010 TALEKAR, R. R.; WIGHTMAN, R. H. Synthesis of some pyrrolo [2, 3-d] pyrimidine and 1, 2, 3-triazole isonucleosides. Tetrahedron, v. 53, n. 10, p. 3831-3842, 1997. TERRY, A. V.; BUCCAFUSCO, J. J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. Journal of Pharmacology and Experimental Therapeutics, v. 306, n. 3, p. 821-827, 2003. TRKOVNIK, M.; IVEZIC, Z. J. Syntheses of some new coumarin‐ quinolone carboxylic acids. Journal of Heterocyclic Chemistry, 37(1), p. 137-141, 2000 UTTARA, B.; SINGH, A. V.; ZAMBONI, P.; MAHAJAN, R. T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current neuropharmacology, v. 7, n. 1, p. 65-74, 2009. VAN ES, J. H., VAN GIJN, M. E., RICCIO, O., VAN DEN BORN, M., VOOIJS, M., BEGTHEL, H., COZIJNSEN. M., ROBINE. S., WINTON. D. J. RADTKE. F., CLEVERS, H. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature, v. 435, n. 7044, p. 959, 2005. VASSAR, R.; BENNETT, B. D.; BABU-KHAN, S.; KAHN, S.; MENDIAZ, E. A.; DENIS, P.; TEPLOW, D. B.; ROSS, S.; AMARANTE, P.; LOELOFF, R.; LUO, Y.; FISHER, S.; FULLER, J.; EDENSON, S.; LILE, J.; JAROSINSKI, M. A.; BIERE, A. L.; CURRAN, E.; BURGESS, T.; LOIUS, J. C.; COLLINS, F.; TREANOR, J.; ROGERS, G.; CITRON, M. β- Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science, v. 286, n. 5440, p. 735-741, 1999. VENUGOPAL, C.; DEMOS, C. M.; JAGANNATHA RAO, K. S.; PAPPOLLA, M. A.; SAMBAMURTI, K. Beta-secretase: structure, function, and evolution. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), v. 7, n. 3, p. 278-294, 2008. WHO. Disponível em: < http://www.who.int/mediacentre/factsheets/fs362/en/ >. Acesso em: 15 jun. 2019. WILCOCK, G. K.; GAUTHIER, S.; FRISONI, G. B.; JIA, J.; HARDLUND, J. H.; MOEBIUS, H. J.; PETER, B.; KOOK, K. Q.; SCHELTER, B. O.; WISCHIK, D. J.; DAVIS, C. S; STAFF, R. T.; VUKSANOVIC, V.; AHEARN, T.; BRACOUD, L.; SHAMSI, K.; MAREK, K. SEIBYL, J.; RIEDEL, G.; STOREY, J. M. D.; HARRINGTON, C. R.; WISCHIK. C.M. Potential of low dose leuco-methylthioninium bis (hydromethanesulphonate)(LMTM) monotherapy for treatment of mild Alzheimer’s disease: Cohort analysis as modified primary outcome in a phase III clinical trial. Journal of Alzheimer's Disease, v. 61, n. 1, p. 435-457, 2018. WORRELL, B. T.; MALIK, J. A.; FOKIN, Valery Valerievich. Direct evidence of a dinuclear copper intermediate in Cu (I)-catalyzed azide-alkyne cycloadditions. Science, v. 340, n. 6131, p. 457-460, 2013. WU, Y.; CHEN, M.; JIANG, J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, 2019. XICOTA, L.; RODRÍGUEZ-MORATÓ, J.; DIERSSEN, M.; DE LA TORRE, R. Potential role of (-)-epigallocatechin-3-gallate (EGCG) in the secondary prevention of Alzheimer disease. Current drug targets, 18(2), p.174-195, 2017. YANG, L. B., LINDHOLM, K., YAN, R., CITRON, M., XIA, W., YANG, X. L., BEACH. T., SUE. L., WONG. P., LI, R., SHEN. Y. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature medicine, v. 9, n. 1, p. 3, 2003. YEE, D. J.; BALSANEK, V.; SAMES, D. Ligands for aldoketoreductases. WO2006023821 A2, 2006. ZHOU, C. H.; ZHANG, F. F.; GAN, L. L.; ZHANG, Y. Y.; GENG, R. X. Research in supermolecular chemical drugs. Sci China Ser B, v. 39, p. 208-252, 2009. ZHOU, C. H.; ZHANG, Y. Y.; YAN, C. Y.; WAN, K.; GAN, L. L.; SHI, Y. Recent researches in metal supramolecular complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), v. 10, n. 5, p. 371-395, 2010. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/70348/2020%20-%20Nathalia%20Fonseca%20Nadur.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5895 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-08-17T17:35:28Z No. of bitstreams: 1 2020 - Nathalia Fonseca Nadur.pdf: 5646935 bytes, checksum: 3dd4e95c40dee4800ea7b5e21f29f79f (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-08-17T17:35:29Z (GMT). No. of bitstreams: 1 2020 - Nathalia Fonseca Nadur.pdf: 5646935 bytes, checksum: 3dd4e95c40dee4800ea7b5e21f29f79f (MD5) Previous issue date: 2020-02-05 | eng |
Appears in Collections: | Mestrado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2020 - Nathalia Fonseca Nadur.pdf | 5.51 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.