Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9189
Full metadata record
DC FieldValueLanguage
dc.creatorRocha, Sheisi Fonseca Leite da Silva
dc.date.accessioned2023-11-19T20:00:38Z-
dc.date.available2023-11-19T20:00:38Z-
dc.date.issued2014-04-15
dc.identifier.citationRocha, Sheisi Fonseca Leite da Silva. Desenvolvimento de um modelo empírico de predição da atividade de inibidores da Urease utilizando o método Semi-Empírico PM6. 2014. [73 f.]. Dissertação (Programa de Pós-Graduação em Química) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9189-
dc.description.abstractUrease is an important enzyme for the research in agriculture, environment and medicine. This enzyme catalyzes the hydrolysis of urea to ammonia and carbamate, which decomposes spontaneously, yielding a second molecule of ammonia, causing a significant increase of pH solution. In order to develop theoretical models for the prediction of activities of urease inhibitors, we initially studied the enzyme’s spin multiplicity, which contains two Ni(II) íons, and the state of protonation of the oxygen located between the nickel ions. The results indicate that the system is best represented by the triplet or quintet state and the oxygen atom located between the nickel ions, probably is a hydroxyl ion. Based on these results, the construction of the models was based on literature proposals about the use of thermodynamic cycles for the calcultation of the free energy of binding between ligands and enzymes. In the present work, parameters such as the interaction enthalpy, the Gibbs free energy required for the inhibitor to go from the aqueous phase to the interior of the enzyme and the entropic losses associated to the freezing of bonds after the binding of the inhibitors to the enzyme were used to develop correlations with the measured experimental Ki values. The quantification of these parameters for some phosphinic acids derivatives from the literature allowed us to obtain a good empirical model for the correlation between experimental activity data and the theoretical parameters (r=0.92). The model was employed for the prediction of the relative activity of a series of new proposed compounds by the organophosphorous synthesis group of UFRRJ. It was possible to identify which compounds are the most promising and which are the main factors that should be modified in order to optimize the urease inhibition profile by these compounds.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectOrganofosforadospor
dc.subjectModelo de energia livrepor
dc.subjectMétodo semi-empíricopor
dc.subjectUreaseeng
dc.subjectOrganophosphorus compoundseng
dc.subjectFree energy modelseng
dc.subjectSemi-empirical methodeng
dc.titleDesenvolvimento de um Modelo Empírico de Predição da Atividade de Inibidores da Urease utilizando o Método Semi-Empírico PM6por
dc.typeDissertaçãopor
dc.contributor.advisor1Sant'Anna, Carlos Mauricio Rabello de
dc.contributor.advisor1ID827232227-72por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2087099684752643por
dc.contributor.referee1Bauerfeldt, Glauco Favilla
dc.contributor.referee2Machado, Sérgio de Paula
dc.creator.ID122348897-74por
dc.creator.Latteshttp://lattes.cnpq.br/4206525243279971por
dc.description.resumoA urease é uma enzima importante para as pesquisas relacionadas com a agricultura, meio ambiente e medicina. Ela catalisa a reação de hidrólise da uréia para formar amônia e carbamato, o qual se decompõe espontaneamente, produzindo uma segunda molécula de amônia e dióxido de carbono, provocando um significativo aumento do pH da solução. Com o objetivo de desenvolver modelos de predição da atividade de inibidores da urease, estudou-se inicialmente a multiplicidade de spin da enzima, que contém dois íons Ni(II), e o estado de protonação do oxigênio localizado entre estes íons. Os resultados indicaram que o sistema é melhor representado pelo estado tripleto ou quinteto e o oxigênio localizado entre os íons de níquel provavelmente é um íon hidroxila. A partir destes resultados, a construção dos modelos se baseou em propostas da literatura sobre o uso de ciclos termodinâmicos para se calcular a energia livre de interação entre ligantes e enzimas. No presente estudo, foram combinados termos referentes à entalpia de interação entre o inibidor e a enzima, a energia livre de Gibbs necessária para o inibidor passar do meio aquoso para o interior da enzima e as perdas entrópicas devido a restrições rotacionais após a interação do mesmo com a enzima para se obter funções de correlação com constantes inibitórias (Ki) obtidas experimentalmente. A quantificação destes parâmetros para alguns derivados do ácido fosfínico da literatura nos possibilitou o desenvolvimento de um modelo para determinação da atividade com boa correlação com dados experimentais (r=0,92). Este modelo foi utilizado na predição da atividade relativa de novas dialquilfosforilidrazonas, sintetizadas pelo grupo de síntese de organofosforados da UFRRJ. Foi possível identificar quais compostos são os mais promissores da série proposta e quais fatores devem ser alterados para otimizar o perfil de inibição da urease.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesABRAHAM, D. J. Burger´s: medicinal chemistry and drug discovery. Virgínia: Wiley Interscience, p.1125. 2003. ALCÁCER, L. Introdução à Química quântica computacional. Rio de Janeiro. Editora: IST Press, Lisboa, 2007. 305p. (Ensino da Ciência e da Tecnologia, 20) ALLINGER, N.L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc., v.99, p.8127-8134, 1977. ALONSO, H. et al. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev., v. 26, p. 531- ASI, A. M. et al. Application o binding free energy values of Escherichia coli wild terminal domain (ArgRc)– - Mol. Graphics Model., v.22, n.4, p.249 BACCHI, A. et al. Antimicrobial and mutagenic properties of organotin(IV) complexes with isatin and N-alkylisatin bisthiocarbonohydrazones. J. Inorg. Biochem. v.99, p.397. BARREIRO, E. J. & FRAGA, C. A. M. Química Porto Alegre, 2002. BENINI, S. et al. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Struct. Fold. Des. v.7, p.205. 1999. BENINI, S. et al. The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 A resolution. BENINI, S. et al. Molecular Details of Urease Inhibition by Boric Acid: Catalytic Mechanism. J. Am. Ch BÖHM, H.J.. LUDI: Rule-based automatic design of new substituents for enzyme inhibitor leads. Journal of Computer-Aided Molecular Design BORN, M. & OPPENHEIMER, J. R p.457-484, 1927. BONET, B. et al. A robust and fast selection mechanism for planning. 14th National Conference on Artificial Intelligence (American Intelligence), p. 714-719, 1997. BRAVO, I.G et al. Kinetic properties of the Acylneuraminate Cytidylytransferase from Pasteurella haemolytica A. Biochem. J., v.358, p.585 BREMNER, J. M. Recent Research on Problems in the Use of Urea as a Nitrog Fert. Res. v.42, p.321-329. 1995. BROOKS, C. L. et al. A theoretical perspective of dynamics, structure, and thermodynamics. Advances in chemical physics; John Wiley: New York, v.LXXI. 1988. -568, 2006. of the linear interaction energy method (LIE) to estimate the wild-type and mutant arginine repressor C arginine and ArgRc– -citrulline protein–ligand complexes ., 249-262, 2004. . Medicinal. Porto Alegre. Editora: Artmed, Bacillus pasteurii: why urea hydrolysis costs two nickels. old. J. Biol. Inorg. Chem. v.1, n.5, p.110, 2000. . Insights into the Chem. Soc., v.12, n.126, p.3714–3715, 2004. Design, v.8, p. 593-606. 1992 ER, R. Zur Quantentheorie der Molekeln. Ann. Phys., v.84, Proceedings of the Association for Artificial 585-598. 2001. 66 f Cligand complexes. J. 2005. : . Nitrogen Fertilizer. 67 BROOKS, B.R. et. al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem., v.4, p.187-217, 1983. BROOIJMANS, N. & KUNTZ, I.D.. Molecular recognition and docking algorithms. Annual Reviews of Biophysical and Biomolecular Structures, v.32, p.335-373. 2003. CLARK, T. A handbook of computational chemistry: a practical guide to chemical structure and energy calculations. New York: Wiley. p.352. 1985. CARLSSON, H. & NORDLANDER, E. Computacional Modeling of the Mechanism of Urease. Bioinorganic Chem. And Applic. 2010. CARMONA, G. et al. Temperature and low concentration effects of the urease inhibitor N- (n-butyl) thiophosphoric triamide (NBPT) on ammonia volatilisation from urea. Soil Biol. Biochem. v.22, p.933–937. 1990. COWAN, J. A. Inorganic Biochemistry – An Introducion. 2a Ed. New York: Ed. Wiley-VCH, 1993. DA COSTA, J. B. N. et al. Compostos Organofosforados Pentavalentes: Histórico, Métodos Sintéticos de Preparação e Aplicações como Inseticida e Agente Atitumorais. Química Nova, v.30, p.159. 2007. DA COSTA, P. A. & POPPI, R. J. Genetic algorithm in chemistry. Quimica Nova, v.22, p.405- 411. 1999. DEWAR, M. J. S. et al. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., v.107, p.3902-3909, 1985. DEWAR, M. J. S. & THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc., v.99, p.4899-4907, 1977. DIXON, N. E. et al. Jack Bean Urease (EC 3.5..1.5) a Metalloenzyme. A simple Biological Role for Nickel? J. Am. Chem. Soc. 97: 4131-133, 1975. DOMÍNGUEZ, M. J. et al. Design, Synthesis, and Biological Evaluation of Phosphoramide Derivatives as Urease Inhibitors J. Agric. Food Chem. v.56, p.3721–3731. 2008. ELDRIDGE, M.D., et al.Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, v.11, p. 425-445, 1997. 68 ESTIU, G. & MERZ JR, K. M. Competitive Hydrolytic and Elimination Mechanisms in the Urease Catalyzed Decomposítion of Urea. J. Phys. Chem. v.111, p.10263-10274. 2007. FENTON, D. E. Biocoordination Chemistry. New York: Oxford Chemistry Primers, 1995. FERREIRA, S. B. et al. B lapachona: sua importância em química medicinal e suas modificações estruturais. Rev. Virtual de Química, v.2, p.140-160. 2010. FONG, Y. et al. Assembly of Preactivation Complex for Urease Maturation in Helicobacter pylori: Crystal Structure of UreF-UreH Protein Complex. Journal of Biological Chemistry, v.50, p.286. 2011. GILL, J.S. et al. Efficiency of N-(n-butyl) thiophosphoric triamide in retarding hydrolysis of urea and ammonia volatilization losses in a flooded sandy loam soil amended with organic materials. Nutr. Cycl. Agroecosyst. v.53,p.203–207. 1997. GOHLKE, H., HENDLICH, M. & KLEBE, G.. Knowledge-based scpring function to predict protein-ligand interactions. Journal of Molecular Biology, v.295, p.337-356. 2000. HAQ, Z. & WADOOD, A. Prediction of Binding Affinities for Hydroxamic Acid Derivatives as Urease Inhibitors by Molecular Docking and 3D-QSAR Studies. Letters in Drug Design and Discovery, v.6, p. 93-100. 2009. HANSSON T. et al. Ligand binding affinity prediction by linear interaction energy methods. J. Comput.-Aided Mol. Des., v.12, n.1, p. 27-35, 1998. HAYAKAWA, K. et al. Determinação de atividades específicas e constantes cinéticas de biotinidase e lipoamidase em LEW rato e Lactobacillus casei (Shirota). J Chrom Analyt Tec. Biomed., v.2, p.240-50. 2006. HARTREE, D. R.; Proc. Cambridge. Phil. Soc., v.21, p.625, 1923. HARTREE, D. R.; Proc. Cambridge. Phil. Soc., v.22, p.464, 1924. HÖLTJE, H. D. & FOLKERS, G. Molecular modeling: basic principles and applications. Weinheim: VCH. p.194. 1996. HOUSE, J. E. Fundamentals of Quantum Chemistry, Elsevier, San Diego, 2004. HYPERCHEM e (TM) Computational chemistry manual, 1994, (@c) hypercube inc. JABRI, E. et al. The crystal structure of urease from Klebsiella aerogenes. Science. v.268, p. 998-1004. 1995. JENSEN, F. Introduction to computational chemistry. Chichester: John Wiley & Sons, p.429. 1999. 69 JORGENSEN, W. L. & TIRADO-RIVES, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., v.110, p.1657-1666, 1988. KARPLUS, P. A. et al. 70 Years of Crystalline Urease: What Have We Learned? Acc. Chem. Res, v.30, p.330. 1997. KITCHEN, D.B., et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews in Drug Discovery, v.3, p.935-949. 2004, KLEBE, G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discovery Today, v. 11, p.580-594, 2006. KOLLMAN P. A. Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev., v.93, p.2395-23417, 1993. KORB, O., et al. An ant colony optimization approach to flexible protein-ligand docking. Swarm Intelligence, v.1, 2, p.115-134, 2007. KORB, O., et al. Empirical scoring function for advanced protein ligand docking with PLANTS. Journal of Chemical Information and Modeling, v.49, n.1,p.84-96, 2009. KUNTZ, I.D. et al. Geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, v.161, p.269-288. 1982. LINEWEAVER, H & BURK, D. Determinação de Constantes de inibição de enzimas. J. A. Chem, v.3, p.53. 1934. LEACH, A. R. Molecular Modelling - Principles and Applications. England: Person Prentice Hall, p.744. 2001. Li, L. et al. On the Dielectric “Constant” of Proteins: Smooth Dielectric Function for Macromolecular Modeling and Its Implementation in DelPhi, J. Chem. Theory Comput., v.9, 2126−2136. 2013 LINDEN, R. Algoritmos Genéticos: Uma Importante Ferramenta da Inteligência Computacional. Rio de Janeiro: Editora Brasport, p.428. 2006. MCCARTY G. W. & BREMNER J. M., Laboratory evaluation of dicyandiamide as a soil nitrification inhibitor. Commun. Soil Sci. Plant Anal. V.20, p.2049–2065. 1989. MARSHALL, B. J. & WARREN, J. R. Unidentified Curved Bacilli in the Stomach of Patients with Gastritis and Peptic Ulceration. Lancet, p. 1311-1315. 1984. MITCHELL, M. An Introduction a Genetic Algorithm. London: MIT Press, 1998. 70 MONKS, T. J. et al. Quinone, Chemistry and Toxicology. Appl. Pharmacol. v.2, p.112. 1992. MOYO, C.C. et al. Temperature Effects on Soil Urease Activity. Soil Biol. and Biochem. v.21, n.7, p.935-938. 1989. MORGON, N. H. & COUTINHO, K. Métodos de Química Teórica e Modelagem Molecular. São Paulo: Livraria da Física, p.539. 2007. MORRIS, G.M., et al. Automated docking using a Lamarckian Genetic Algorithm and an empirical binding free energy function. Journal of Computational Chemistry, v.19, p.1639- 1662. 1998. MUEGGE, I. & MARTIN, Y.C.. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry, v.42, p.791- 804. 1999. MUSIANI, F. et al. Structure-based computational study of the catalytic and inhibition mechanisms of urease. J. Biol. Inorg. Chem. v.3, p.300–314, 2001. OLIVEIRA, F. G. et al. Molecular docking study and development of na empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorg. Med. Chem., v.14, p.6001- 6011, 2006. OVERREIN, L.N. & MOE, P.G. Factors affecting urea hydrolysis and ammonia volatilization in soil. Soil Science Society of America Proceedings, v.31, p. 57-61. 1967. OPREA, T. I. Chemoinformatics in drug discovery. Weinheim: Wiley-VCH, p.493. 2005. PEARSON, M. A. et al. Biochemistry, v.36, p.8164-8172. 1997. PEARSON, M. A. et al. Structures of Cys319 Variants and Acetohydroxamate-Inhibited Klebsiella aerogenes Urease. Biochemistry, , V.36, n.26, p.8164–8172,1997. POPLE, J. A. & NESBET, R. K. Self-consistent orbitals for radicals. J. Chem. Phys., v.22, n.3, p.571-572, 1954. POPLE, J. A. BEVERIDGE, D. L. DOBOSH, P. A. Approximate Self-consistent Molecular Orbital Theory V. Intermediate Neglect of Differential Overlap,. J. Chem. Phys., v.6, n.47, p.2026, 1967. VASSILIOU, S. et al. Computer-Aided Optimization of Phosphinic Inhibitors of Bacterial Ureases. J. Med. Chem., v. 53 (15), p.5597–5606. 2010. 71 VASSILIOU, S. et al. Design, Synthesis and Evaluation of Novel Organophosphorus Inhibitors of Bacterial Ureases. J. Med. Chem. v.51, p.5736-5744. 2008. RAIJ, B. V. et al. Análise química para avaliação da fertilidade de solos tropicais. Campinas, Instituto Agronômico, p.285. 2001. REEVES, C. R. Modern Heuristic Techniques for Combinatorial Problems. London: McGraw-Hill, 1995. ROCHA JR., J. G. Desenvolvimento de um Modelo Empírico de Predição da Atividade de Inibidores da Esterol 14 -Desmetilase (CYP51) utilizando o Método Semi-Empírico PM6. Dissertação. 2009. ROSENZWEIG, A. C. & DOOLEY, D. M. Bioinorganic chemistry: Editorial overview. Current Opinion in Chemical Biology, v. 10, p.89-90, 2006. ROOTHAAN, C.C.J. New developments in molecular orbital theory. Rev. Mod. Phys., v.23, n.2, p.69-89, 1951. ROOTHAAN, C. C. J. Self consistent field functions for the atomics configurations 1S2, 1S22S, e 1S22S2S. Rev. Mod. Phys., v.32, v.2, p.179-185, 1960. SANT’ANNA, C. M. R. Glossário de Termos Usados no Planejamento de fármacos (Recomendações da IUPAC para 1997). Quím. Nov. v.25, n.3, p.505. 2002. SANT’ANNA, C. M. R. Métodos de Modelagem Molecular para Estudo e Planejamento de compostos bioativos: Uma Introdução. Ver. Virtual Quim. v.1, n.1, p.49-57. 2009. SCHNEIDER, G. & BÖHM, H-J. Virtual screening and fast automated docking methods. Drug Discovery Today, v.7, p.64-70. 2002. SERGEEVA, M. V. & CATHERS, B. E., Biochem. Pharmacol. v.65, p.823. 2003. SILVA, C. M. & BISCAIA, E. C. Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors. Comp. Chem. Eng. v.27, p.1329- 1344. 2003. Sítio http://www.dockthor.lncc.br, acessado em novembro de 2013. Sítio http://www.graphpad.com, acessado em janeiro de 2014. Sítio http://openmopac.net/index.html, acessado em outubro de 2013. 72 Sítio http://openbabel.org, acessado em 2012. SLATER, J. C. The theory of complex spectra. Phys. Rev., v.34, p.1293-1322, 1929. SMYJ, R. P. A Conformational Analysis Study of a Nickel(II) Enzyme: Urease. J. Mol. Struct. v.391, n.3, p. 207. 1997. SMOOT, D.T. et al. Helicobacter Pylori Urease Activity is Toxic to Human Gastric Epithelial Cells. Infect. Immun. v.58, p1992-1994, 1990. STEWART, J. J. P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., v.10, n.2, p.209-220, 1989. STEWART, J. J. P. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations, Int. J. Quantum Chem. 58, 133-146, 1996. STEWART, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model., v.13, p.1173-1213, 2007. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to NDDO aproximations and re-otimization of parameters. J. Mol. Model., v. 19, p.1-32. 2013. SUAREZ, D. et al. Ureases: Quantum Chemical Calculations on Cluster Models. J. Am. Chem. Soc. v.125, p.15325. 2003. SUMNER, J.B. The Isolation and Crystallization of the Enzyme Urease. J. Biol. Chem. 69:435-441. 1926 TERAMOTO, R. & FUKUNISHI, H. Supervised consensus scoring for docking and virtual screening. Journal of Chemical Information and Modeling, v. 47, p. 526-534, 2007. THIEL, W. & VOITYUK, A. A. Extension of the MNDO formalism to d-orbitals - Integral approximations and preliminary numerical results. Theor. Chim. Acta, v.81, p.391-404, 1992a. THIEL, W. & VOITYUK, A. A. Extension of MNDO to d-orbitals - Parameters and results for the halogens. Int. J. Quantum Chem., v. 44, p.807-829, 1992b. 73 VERDONK, M. et al. Improved protein-ligand docking using GOLD. Proteins-Structure Function and Genetics, v. 52, p. 609-623, 2003. VERDONK, M.L., et al. Improved protein-ligand docking using GOLD. Proteins, v.52, p. 609- 623. 2003. VOTANO, J. R. et al. Prediction of Aqueous Solubility Based on Large Datasets Using Several QSPR Models Utilizing Topological Structure Representation. J. Chem Info. Comput. Sci., v.1, n.11, p.1829-1841, 2004. WANG, S. et al. Protein Kinase C. Modeling of the Binding Site and Prediction of Binding Constants. J. Med. Chem., v.37, p.1326-1338, 1994. WANG, R. X. et al. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem. v. 46, p. 2287-2303, 2003. WEINER, S.J. et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc., v.106, p.765-784, 1984. WOLFENDEN, R. & SNIDER, M. J. The Depth of Chemical Time and the Power of Enzymes as Catalysts. Acc. Chem. Res, v.34, p.938, 2001. YURIEV, E. & RAMSLAND, A. P. Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recognit, v. 26, p.215–239. 2013. ZAMAN, M. et al. Reducing NH3, N2O and NO3 – - N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers, Biol. Fertil. Soils. v.44, p.693–705. 2008. ZAMBELLI, B. et al. UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn2+. J Biol Chem. v.280, p.4684. 2005. ZIMMER, M. Are Classical Molecular Machanics Calculations Still Useful in Bioinorganic Simulations. Coord. Chem. Ver. V.253, n5, p.817-826. 2009.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/63070/2014%20-%20Sheisi%20Fonseca%20Leite%20da%20Silva%20Rocha.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4163
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-11-19T13:29:49Z No. of bitstreams: 1 2014 - Sheisi Fonseca Leite da Silva Rocha.pdf: 988981 bytes, checksum: 49abe58d9422ae29356979cf6629dec8 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-11-19T13:29:49Z (GMT). No. of bitstreams: 1 2014 - Sheisi Fonseca Leite da Silva Rocha.pdf: 988981 bytes, checksum: 49abe58d9422ae29356979cf6629dec8 (MD5) Previous issue date: 2014-04-15eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2014 - Sheisi Fonseca Leite da Silva Rocha.pdf2014 - Sheisi Fonseca Leite da Silva Rocha965.8 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.