Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9127
Full metadata record
DC FieldValueLanguage
dc.creatorGrillo, Danniel Cosme Neves
dc.date.accessioned2023-11-19T19:59:30Z-
dc.date.available2023-11-19T19:59:30Z-
dc.date.issued2022-09-15
dc.identifier.citationGRILLO, Danniel Cosme Neves. Avaliação do potencial antioxidante de derivados triazólicos inibidores da acetilcolinesterase em células de Saccharomyces cerevisiae. 2022. 89 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9127-
dc.description.abstractAlzheimer's Disease (AD) is a progressive neurodegenerative disease known for memory loss and difficulty with language. It is formed by pathological factors, among which the cholinergic deficit and oxidative stress stand out. Oxidative stress is characterized by the imbalance between the generation of free radicals and/or non-radical reactive species and the action of antioxidant defense systems. Currently, the primary treatment for Alzheimer's disease is the use of inhibitors of cholinesterase enzymes. However, due to the multifactorial nature of the disease and the fact that many drug candidates have not been successful, a new approach has emerged, the so-called “multi-target” compounds. Therefore, this work evaluated the antioxidant protection of four new compounds containing the core 3-amino-1,2,4-triazole-N-1,5-trisubstituted cholinesterase inhibitors in two strains of Saccharomyces cerevisiae (BY4741 and ∆gsh1) with oxidative stress induced by hydrogen peroxide. The toxicity of the compounds was initially analyzed through the semi-qualitative assay with resazurin and cell growth curves. Antioxidant assays were TBARS and intracellular oxidation by 2,7'- dichlorofluorescein. In the resazurin assay, there was no toxicity of the compounds in the two strains at concentrations below 250 μM. The growth curves confirmed this non-toxicity in the concentration of 20 μM of the compounds for 24h. In strain BY4741 all compounds reduced MDA levels between 30-40%, however in strain ∆gsh1 only compounds containing phenolic substituents were active (25%). In the evaluation of protection to the intracellular environment, only in the ∆gsh1 strain in the fermentative phase of growth, there was a significant reduction of oxidant species promoted by the compounds, with emphasis on the compound with nitro substituent (27%). In the oxygen consumption test, it was not possible to conclude the mitochondrial protection capacity of the substances, as there was no statistical difference between treatments, in both strains. The results demonstrated that triazoles were not toxic and provided antioxidant protection even in the absence of glutathione in S. cerevisiae cells.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDoença de Alzheimerpor
dc.subjectAntioxidantepor
dc.subjectSaccharomyces cerevisiaepor
dc.subjectDerivados triazóispor
dc.subjectEstresse oxidativopor
dc.subjectAlzheimer’s diseaseeng
dc.subjectAntioxidanteng
dc.subjectSaccharomyces cerevisiaeeng
dc.subjectTriazole derivativeseng
dc.subjectOxidative stresseng
dc.titleAvaliação do potencial antioxidante de derivados triazólicos inibidores da acetilcolinesterase em células de Saccharomyces cerevisiaepor
dc.title.alternativeEvaluation of the antioxidant potential of acetylcholinesterase inhibitory triazole derivatives in Saccharomyces cerevisiae cellseng
dc.typeDissertaçãopor
dc.contributor.advisor1Riger, Cristiano Jorge
dc.contributor.advisor1ID030.096.277-00por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8756160468801705por
dc.contributor.advisor-co1Kümmerle, Arthur Eugen
dc.contributor.advisor-co1ID053.978.487-78por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5598000938584486por
dc.contributor.referee1Riger, Cristiano Jorge
dc.contributor.referee1IDhttps://orcid.org/0000-0002-7579-5958por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8756160468801705por
dc.contributor.referee2Gomes, Daniela Cosentino
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3067190550867881por
dc.contributor.referee3Pereira, Marcos Dias
dc.contributor.referee3ID070.325.537-10por
dc.contributor.referee3IDhttps://orcid.org/0000-0001-5594-2255por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8437359425613507por
dc.creator.ID140.514.587-09por
dc.creator.Latteshttp://lattes.cnpq.br/9621768289314309por
dc.description.resumoA Doença de Alzheimer (DA) é uma doença neurodegenerativa progressiva conhecida pela perda de memória e dificuldade com a linguagem. Ela é formada por um conjunto de fatores patológicos e dentre eles destacam-se o déficit colinérgico e o estresse oxidativo. O estresse oxidativo é caracterizado pelo desequilíbrio entre a geração de radicais livres e/ou espécies reativas não radicalares e a atuação dos sistemas de defesa antioxidante. Atualmente, o principal tratamento da doença de Alzheimer consiste no uso de inibidores das enzimas colinesterásicas. Entretanto, devido à natureza multifatorial da doença e de muitos candidatos a fármacos não terem sido bem-sucedidos, uma nova abordagem tem se destacado, os chamados compostos “multialvos”. Portanto, este trabalho avaliou a proteção antioxidante de quatro compostos novos contendo o núcleo 3-amino-1,2,4-triazol-N-1,5-trissubstituídos inibidores de colinesterases em duas cepas de Saccharomyces cerevisiae (BY4741 e ∆gsh1) com estresse oxidativo induzido por peróxido de hidrogênio. Analisou-se inicialmente a toxicidade dos compostos através do ensaio semi-qualitativo com resazurina e de curvas de crescimento celular. Os ensaios antioxidantes foram TBARS e oxidação intracelular por 2,7’-diclorofluoresceína. No ensaio da resazurina não houve toxicidade dos compostos nas duas cepas em concentrações inferiores a 250 μM. As curvas de crescimento confirmaram essa não toxicidade na concentração de 20 μM dos compostos por 24h. Na cepa BY4741 todos os compostos reduziram os níveis de MDA entre 30-40%, entretanto na cepa ∆gsh1 apenas os compostos contendo substituintes fenólicos foram ativos (25%). Na avaliação de proteção ao ambiente intracelular, apenas na cepa ∆gsh1 em fase fermentativa do crescimento houve redução significativa de espécies oxidantes promovidas pelos compostos, com destaque ao composto com substituinte nitro (27%). No ensaio de consumo de oxigênio não foi possível concluir a capacidade de proteção mitocondrial das substâncias, pois não houve diferença estatística entre os tratamentos, em ambas as cepas. Os resultados demonstraram que os triazóis não foram tóxicos e forneceram proteção antioxidante mesmo com ausência de glutationa em células de S. cerevisiae.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesADEOYE, Oyewopo et al. Review on the role of glutathione on oxidative stress and infertility. JBRA assisted reproduction, v. 22, n. 1, p. 61, 2018. ADLIMOGHADDAM, Aida et al. A review of clinical treatment considerations of donepezil in severe Alzheimer's disease. CNS neuroscience & therapeutics, v. 24, n. 10, p. 876-888, 2018. ALI, Mohamed Ashraf et al. Design, synthesis and evaluation of novel 5, 6- dimethoxy-1-oxo-2, 3-dihydro-1H-2-indenyl-3, 4-substituted phenyl methanone analogues. Bioorganic & medicinal chemistry letters, v. 19, n. 17, p. 5075-5077, 2009. ALLEN, R. G.; FARMER, K. J.; SOHAL, RoS. Effect of catalase inactivation on levels of inorganic peroxides, superoxide dismutase, glutathione, oxygen consumption and life span in adult houseflies (Musca domestica). Biochemical Journal, v. 216, n. 2, p. 503-506, 1983. ALZHEIMER NEWS TODAY; Alzheimer’s Disease Statistics. Disponível em: https://alzheimersnewstoday.com/alzheimers-disease-statistics/. Acesso em: 18 jan. 2022. ALZHEIMER'S ASSOCIATION et al. 2021 Alzheimer's disease facts and figures. Alzheimer's & dementia, v. 17, n. 3, p. 327-406, 2021 ANANDATHEERTHAVARADA, Hindupur K. et al. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. The Journal of cell biology, v. 161, n. 1, p. 41-54, 2003. ARONSON, Stephen et al. Optimal dosing of galantamine in patients with mild or moderate Alzheimer’s disease. Drugs & aging, v. 26, n. 3, p. 231-239, 2009. BABIC, T. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry, v. 67, n. 4, p. 558-558, 1999. BAGLIETTO-VARGAS, David et al. Diabetes and Alzheimer’s disease crosstalk. Neuroscience & Biobehavioral Reviews, v. 64, p. 272-287, 2016. BAGNYUKOVA, Tetyana V. et al. Catalase inhibition by amino triazole induces oxidative stress in goldfish brain. Brain research, v. 1052, n. 2, p. 180-186, 2005. BANFI, Elena et al. Antifungal and antimycobacterial activity of new imidazole and triazole derivatives. A combined experimental and computational approach. Journal of Antimicrobial Chemotherapy, v. 58, n. 1, p. 76-84, 2006. BARBOSA, Kiriaque Barra Ferreira et al. Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de nutrição, v. 23, n. 4, p. 629-643, 2010. 57 BARONE, Eugenio; CALABRESE, Vittorio; MANCUSO, Cesare. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology, v. 10, n. 2, p. 97-108, 2009. BARREIRO, Eliezer J.; FRAGA, Carlos Alberto Manssour. Química Medicinal-: As bases moleculares da ação dos fármacos. Artmed Editora, 2014. BAYLIAK, M. et al. Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells. Biochemistry (Moscow), v. 73, n. 4, p. 420-426, 2008. BELEVICH, Ilya; VERKHOVSKY, Michael I. Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxidants & redox signaling, v. 10, n. 1, p. 1-30, 2008. BELINHA, Iracema et al. Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. Journal of agricultural and food chemistry, v. 55, n. 6, p. 2446-2451, 2007 BELLOY, Michaël E.; NAPOLIONI, Valerio; GREICIUS, Michael D. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron, v. 101, n. 5, p. 820-838, 2019. BENEK, Ondrej; KORABECNY, Jan; SOUKUP, Ondrej. A perspective on multi-target drugs for Alzheimer’s disease. Trends in Pharmacological Sciences, v. 41, n. 7, p. 434-445, 2020. BENTZ, Alexandra B. A Review of quercetin: chemistry, antioxident properties, and bioavailability. Journal of young investigators, 2017. BERN, Caryn. Antitrypanosomal therapy for chronic Chagas' disease. New England Journal of Medicine, v. 364, n. 26, p. 2527-2534, 2011. BIRKS, Jacqueline S.; EVANS, John Grimley. Rivastigmine for Alzheimer's disease. Cochrane Database of systematic reviews, n. 4, 2015. BITLA, Sampath et al. Design and synthesis, biological evaluation of bis-(1, 2, 3-and 1, 2, 4)-triazole derivatives as potential antimicrobial and antifungal agents. Bioorganic & Medicinal Chemistry Letters, v. 41, p. 128004, 2021. BOLOGNESI, M. L Polypharmacology in a single drug: multitarget drugs. Current medicinal chemistry, v. 20, n. 13, p. 1639-1645, 2013. BOLOGNESI, Maria Laura. Harnessing polypharmacology with medicinal chemistry. ACS Medicinal Chemistry Letters, v. 10, n. 3, p. 273-275, 2019. BOUKTAIB, Mohamed; ATMANI, Aziz; ROLANDO, Christian. Regio-and stereoselective synthesis of the major metabolite of quercetin, quercetin-3-O-β-d- glucuronide. Tetrahedron Letters, v. 43, n. 35, p. 6263-6266, 2002. 58 BOZO, E.; SZILÁGYI, Géza; JANÁKY, Judit. 1, 2, 4-triazoles, III: new 1, 5-diaryl-3- (substituted amino)-1H-1, 2, 4-triazoles as anti-inflammatory agents. Archiv der Pharmazie, v. 322, n. 10, p. 583-587, 1989. BRACESCO, Nelson et al. Antioxidant activity of a botanical extract preparation of Ilex paraguariensis: prevention of DNA double-strand breaks in Saccharomyces cerevisiae and human low-density lipoprotein oxidation. The Journal of Alternative & Complementary Medicine, v. 9, n. 3, p. 379-387, 2003. BRIGELIUS-FLOHÉ, R.; MAIORINO, M. Glutathione peroxidases. Biochimica et Biophysica Acta - General Subjects, v. 1830, n. 5, p. 3289–3303, 2013. BRIGGS, Robert; KENNELLY, Sean P.; O'NEILL, Desmond. Drug treatments in Alzheimer’s disease. Clinical medicine, v. 16, n. 3, p. 247, 2016. BRION, Jean Pierre et al. Neurofibrillary tangles of Alzheimer's disease: an immunohistochemical study. Journal of submicroscopic cytology, v. 17, n. 1, p. 89-96, 1985 BULUT, Nilufer et al. Synthesis of some novel pyridine compounds containing bis-1, 2, 4-triazole/thiosemicarbazide moiety and investigation of their antioxidant properties, carbonic anhydrase, and acetylcholinesterase enzymes inhibition profiles. Journal of biochemical and molecular toxicology, v. 32, n. 1, p. e22006, 2018. BUSTI, Stefano et al. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors, v. 10, n. 6, p. 6195-6240, 2010 BUTTERFIELD, D. Allan et al. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer's disease. Brain research, v. 1148, p. 243-248, 2007. CÂMARA, Viktor Saraiva. Síntese de inibidores das enzimas colinesterases contendo os núcleos lofina e benzilamina. 2018. CAMPS, Pelayo et al. Novel donepezil-based inhibitors of acetyl-and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation. Journal of medicinal chemistry, v. 51, n. 12, p. 3588-3598, 2008. CANABARRO, Micaela do Canto. Análise da formação e da susceptibilidade a antimicrobianos de biofilmes de bactérias isoladas de peles humanas para uso em enxertos alógenos. 2017. CARNEVALE, Daniela et al. Pathophysiological links among hypertension and Alzheimer’s disease. High Blood Pressure & Cardiovascular Prevention, v. 23, n. 1, p. 3-7, 2016. 59 CASTILLO-ORDOÑEZ, Willian Orlando; CAJAS-SALAZAR, Nohelia. Acetylcholinesterase inhibitory agents in plants and their application to dementia: Alzheimer's disease. In: Diagnosis and Management in Dementia. Academic Press, 2020. p. 631-645. CATTO, Marco et al. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorganic & medicinal chemistry, v. 21, n. 1, p. 146-152, 2013. CENINI, Giovanna et al. Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Radical Biology and Medicine, v. 45, n. 1, p. 81-85, 2008. CETIN, Ahmet; GEÇIBESLER, Ibrahim Halil. Evaluation as antioxidant agents of 1, 2, 4-triazole derivatives: effects of essential functional groups. J. Appl. Pharm. Sci, v. 5, n. 6, p. 120-126, 2015. CHEN, John Xi; YAN, Shirley Shidu. Role of mitochondrial amyloid-β in Alzheimer's disease. Journal of Alzheimer's Disease, v. 20, n. s2, p. S569-S578, 2010. CHEN, Zhichun; ZHONG, Chunjiu. Oxidative stress in Alzheimer’s disease. Neuroscience bulletin, v. 30, n. 2, p. 271-281, 2014. CHOI, Daein; CHOI, Seulggie; PARK, Sang Min. Effect of smoking cessation on the risk of dementia: a longitudinal study. Annals of clinical and translational neurology, v. 5, n. 10, p. 1192-1199, 2018. CLEVELAND, Don W.; HWO, Shu-Ying; KIRSCHNER, Marc W. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. Journal of molecular biology, v. 116, n. 2, p. 207-225, 1977. COLOVIC, Mirjana B. et al. Acetylcholinesterase inhibitors: pharmacology and toxicology. Current neuropharmacology, v. 11, n. 3, p. 315-335, 2013. COOKE, Marcus S. et al. Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB Journal, v. 17, n. 10, p. 1195-1214, 2003. CORTÉS-ROJO, Christian et al. Electron transport chain of Saccharomyces cerevisiae mitochondria is inhibited by H2O2 at succinate-cytochrome c oxidoreductase level without lipid peroxidation involvement. Free radical research, v. 41, n. 11, p. 1212-1223, 2007. CROUCH, Peter J. et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1-42. Journal of Neuroscience, v. 25, n. 3, p. 672-679, 2005. CUMMINGS, Jeffrey et al. Role of donepezil in the management of neuropsychiatric symptoms in Alzheimer's disease and dementia with Lewy bodies. CNS neuroscience & therapeutics, v. 22, n. 3, p. 159-166, 2016. 60 DE PAULA E SILVA, A. C. A. et al. Microplate alamarBlue assay for Paracoccidioides susceptibility testing. Journal of Clinical Microbiology, v. 51, n. 4, p. 1250-1252, 2013. DEGÁSPARI, Cláudia Helena; WASZCZYNSKYJ, Nina. Propriedades antioxidantes de compostos fenólicos. Visão acadêmica, v. 5, n. 1, 2004. DEIBEL, M. A.; EHMANN, W. D.; MARKESBERY, W. R. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress. Journal of the neurological sciences, v. 143, n. 1-2, p. 137-142, 1996. DEISSEROTH, Albert; DOUNCE, Alexander L. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiological reviews, v. 50, n. 3, p. 319-375, 1970. DELANOGARE, Eslen et al. Hipótese amiloide e o tratamento da doença de Alzheimer: revisão dos estudos clínicos realizados. 2019. DESAI, S. N.; FARRIS, F. F.; RAY, S. D. Lipid peroxidation. 2014. DJUKIC, Mirjana et al. In vitro antioxidant activity of thiazolidinone derivatives of 1, 3- thiazole and 1, 3, 4-thiadiazole. Chemico-Biological Interactions, v. 286, p. 119- 131, 2018. ĐORĐEVIĆ, Neda O. et al. Antioxidant activity of selected polyphenolics in yeast cells: The case study of Montenegrin Merlot wine. Molecules, v. 23, n. 8, p. 1971, 2018. DOUIRI, Salma et al. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes. Journal of Neurochemistry, v. 137, n. 6, p. 913-930, 2016. DRÖGE, Wulf. Free radicals in the physiological control of cell function. Physiological reviews, 2002. DUBOIS, Bruno et al. Donepezil decreases annual rate of hippocampal atrophy in suspected prodromal Alzheimer's disease. Alzheimer's & Dementia, v. 11, n. 9, p. 1041-1049, 2015. DUINA, Andrea A.; MILLER, Mary E.; KEENEY, Jill B. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics, v. 197, n. 1, p. 33-48, 2014. EMAMI, Saeed et al. Synthesis, in vitro antifungal activity and in silico study of 3-(1, 2, 4-triazol-1-yl) flavanones. European Journal of Medicinal Chemistry, v. 66, p. 480-488, 2013. 61 ESTRADA-VALENCIA, Martín et al. New flavonoid–N, N-dibenzyl (N-methyl) amine hybrids: Multi-target-directed agents for Alzheimer ́ s disease endowed with neurogenic properties. Journal of enzyme inhibition and medicinal chemistry, v. 34, n. 1, p. 712-727, 2019. FAI, Patricia Bi; GRANT, Alastair. A rapid resazurin bioassay for assessing the toxicity of fungicides. Chemosphere, v. 74, n. 9, p. 1165-1170, 2009. FARINA, Marcelo; ASCHNER, Michael. Glutathione antioxidant system and methylmercury-induced neurotoxicity: an intriguing interplay. Biochimica et Biophysica Acta (BBA)-General Subjects, v. 1863, n. 12, p. 129285, 2019. FERNÁNDEZ-BACHILLER, Marıa Isabel et al. Novel tacrine ́ − 8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. Journal of medicinal chemistry, v. 53, n. 13, p. 4927-4937, 2010. FERREIRA, Vitor F. et al. Novel 1 H-1, 2, 3-, 2 H-1, 2, 3-, 1 H-1, 2, 4-and 4 H-1, 2, 4- triazole derivatives: a patent review (2008–2011). Expert Opinion on Therapeutic Patents, v. 23, n. 3, p. 319-331, 2013. FERREIRA-VIEIRA, Talita H et al. Alzheimer's disease: targeting the cholinergic system. Current neuropharmacology, v. 14, n. 1, p. 101-115, 2016. FETER, Natan et al. Ten-year trends in hospitalizations due to Alzheimer’s disease in Brazil: a national-based study. Cadernos de Saúde Pública, v. 37, p. e00073320, 2021. FONSECA, Marina Wajsenzon da. Estudo do potencial antioxidante da própolis verde, do artepelin C e do ácido rosmarínico sobre a funcionalidade mitocondrial em células de Saccharomyces cerevisiae: Seropédica, RJ. 2021.75p Dissertação (Mestrado em Química). Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro. FRANÇA, Mauro B.; LIMA, Karina C.; ELEUTHERIO, Elis CA. Oxidative stress and amyloid toxicity: insights from yeast. Journal of cellular biochemistry, v. 118, n. 6, p. 1442-1452, 2017. FRANCO, Daiana de Fátima Portella. Síntese e avaliação farmacológica de novos 3-amino-1,2,4-triazóis como inibidores de enzimas envolvidas na doença de Alzheimer. 2020. 271 f.Tese (Dissertação em Ciências) – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020. GALANIS, Christos et al. Amyloid-beta mediates homeostatic synaptic plasticity. Journal of Neuroscience, v. 41, n. 24, p. 5157-5172, 2021. GAMBLIN, T. Chris et al. Oxidative regulation of fatty acid-induced tau polymerization. Biochemistry, v. 39, n. 46, p. 14203-14210, 2000. 62 GAO, Yu et al. Tau in Alzheimer's disease: Mechanisms and therapeutic strategies. Current Alzheimer Research, v. 15, n. 3, p. 283-300, 2018. GAO, Yuting et al. Antioxidant activity evaluation of dietary flavonoid hyperoside using saccharomyces cerevisiae as a model. Molecules, v. 24, n. 4, p. 788, 2019. GASCH, Audrey P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell, v. 11, n. 12, p. 4241- 4257, 2000 GEMELLI, Tanise et al. Estresse oxidativo como fator importante na fisiopatologia da Doença de Alzheimer. Revista Brasileira Multidisciplinar, v. 16, n. 1, p. 67-78, 2013. GOEDERT, Michel et al. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS letters, v. 409, n. 1, p. 57-62, 1997. GOFFEAU, André et al. Life with 6000 genes. Science, v. 274, n. 5287, p. 546-567, 1996. GRANT, Chris M.; PERRONE, Gabriel; DAWES, Ian W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeastsaccharomyces cerevisiae. Biochemical and biophysical research communications, v. 253, n. 3, p. 893-898, 1998. GREENOUGH, Mark A.; CAMAKARIS, James; BUSH, Ashley I. Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochemistry international, v. 62, n. 5, p. 540-555, 2013. GRUNDKE-IQBAL, Inge et al. Abnormal phosphorylation of the microtubule- associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences, v. 83, n. 13, p. 4913-4917, 1986. GUAN, Zhi-Zhong et al. Reduced expression of neuronal nicotinic acetylcholine receptors during the early stages of damage by oxidative stress in PC12 cells. Journal of Neuroscience Research, v. 66, n. 4, p. 551-558, 2001. GULTEKIN, Ergun et al. A Study On Synthesis, Biological Activities and Molecular Modelling of Some Novel Trisubstituted 1, 2, 4-Triazole Derivatives. ChemistrySelect, v. 3, n. 31, p. 8813-8818, 2018. HALLIWELL, Barry. Oxidative stress and neurodegeneration: where are we now?. Journal of neurochemistry, v. 97, n. 6, p. 1634-1658, 2006. HAMPEL, Harald et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, v. 141, n. 7, p. 1917-1933, 2018. HARDMAN, Roy J. et al. Adherence to a Mediterranean-style diet and effects on cognition in adults: a qualitative evaluation and systematic review of longitudinal and prospective trials. Frontiers in nutrition, p. 22, 2016. 63 HE, Shi-Chao et al. Design and synthesis of novel sulfonamide-derived triazoles and bioactivity exploration. Medicinal Chemistry, v. 16, n. 1, p. 104-118, 2020. HERMAN, Paul K. Stationary phase in yeast. Current opinion in microbiology, v. 5, n. 6, p. 602-607, 2002. HU, Nan et al. Nutrition and the risk of Alzheimer's disease. BioMed research international, v. 2013, 2013. HUANG, Xudong. Metalloenzyme-like Activity of Alzheimer's Disease beta-Amyloid. Cu-DEPENDENT CATALYTIC CONVERSION OF DOPAMINE,.. 2002. JAKUBOWSKI, W.; BARTOSZ, G. Estimation of oxidative stress in Saccharomyces cerevisiae with fluorescent probes. International Journal of Biochemistry and Cell Biology, v. 29, n. 11, p. 1297–1301, 1997. JAMIESON, Derek J. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast, v. 14, n. 16, p. 1511-1527, 1998. JONES, Michael R. et al. Multi-target-directed phenol–triazole ligands as therapeutic agents for Alzheimer's disease. Chemical science, v. 8, n. 8, p. 5636-5643, 2017. KACHROO, Aashiq H. et al. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science, v. 348, n. 6237, p. 921-925, 2015. KAPROŃ, Barbara et al. 1, 2, 4-Triazole-based anticonvulsant agents with additional ROS scavenging activity are effective in a model of pharmacoresistant epilepsy. Journal of Enzyme Inhibition and Medicinal Chemistry, v. 35, n. 1, p. 993-1002, 2020. KATRITZKY, Alan R.; ROGOVOY, Boris; VVENDESKY, Vladimir; KOVALENKO, Katherine; STEEL, Peter; MARKOV, Victor; FOROOD, Behrouz. Synthesis of N, N- disubstituted 3-amino-1, 2, 4-triazoles. Synthesis, v. 2001, n. 06, p. 0897-0903, 2001. KATZ, David L.; DOUGHTY, Kim; ALI, Ather. Cocoa and chocolate in human health and disease. Antioxidants & redox signaling, v. 15, n. 10, p. 2779-2811, 2011. KATZMAN, Robert. Apolipoprotein E and Alzheimer's disease. Current opinion in neurobiology, v. 4, n. 5, p. 703-707, 1994. KELLER, J. N. et al. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology, v. 64, n. 7, p. 1152-1156, 2005. KHAN, Imtiaz et al. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorganic & Medicinal Chemistry, v. 22, n. 21, p. 6163-6173, 2014. 64 KHARB, Rajeev; SHARMA, Prabodh Chander; YAR, Mohammed Shahar. Pharmacological significance of triazole scaffold. Journal of enzyme inhibition and medicinal chemistry, v. 26, n. 1, p. 1-21, 2011. KHOOBI, Mehdi et al. Design, synthesis, docking study and biological evaluation of some novel tetrahydrochromeno [3′, 4′: 5, 6] pyrano [2, 3-b] quinolin-6 (7H)-one derivatives against acetyl-and butyrylcholinesterase. European journal of medicinal chemistry, v. 68, p. 291-300, 2013. KIM, Tae-Suk et al. Decreased plasma antioxidants in patients with Alzheimer's disease. International journal of geriatric psychiatry, v. 21, n. 4, p. 344-348, 2006. KLIS, F. M. et al. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews, v. 26, n. 3, p. 239–256, 2002 KOHEN, Ron; NYSKA, Abraham. Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic pathology, v. 30, n. 6, p. 620-650, 2002. KOŠČAK TIVADAR, Blanka. Physical activity improves cognition: possible explanations. Biogerontology, v. 18, n. 4, p. 477-483, 2017. KRASOWSKA, A.; SIGLER, K. Cell-protective and antioxidant activity of two groups of synthetic amphiphilic compounds—Phenolics and amineN-oxides. Folia Microbiologica, v. 52, n. 6, p. 585-592, 2007. KREMS, B.; CHARIZANIS, C.; ENTIAN, K.-D. Mutants of Saccharomyces cerevisiae sensitive to oxidative and osmotic stress. Current genetics, v. 27, n. 5, p. 427-434, 1995. KUMARI, Mukesh et al. Synthesis and biological evaluation of heterocyclic 1, 2, 4- triazole scaffolds as promising pharmacological agents. BMC chemistry, v. 15, n. 1, p. 1-16, 2021. LAMBERTUCCI, Rafael Herling. Controle da produção muscular de espécies reativas e citocinas por ácido palmítico e eletroestimulação: possíveis implicações no envelhecimento. 2009. Tese de Doutorado. Universidade de São Paulo. LAVERDIERE, Michel et al. Therapeutic drug monitoring for triazoles: a needs assessment review and recommendations from a Canadian perspective. Canadian Journal of Infectious Diseases and Medical Microbiology, v. 25, n. 6, p. 327-343, 2014. LEBEL, Carl P.; ISCHIROPOULOS, Harry; BONDY, Stephen C. Evaluation of the probe 2', 7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical research in toxicology, v. 5, n. 2, p. 227-231, 1992. 65 LENNON, Matthew J.; KONCZ, Rebecca; SACHDEV, Perminder S. Hypertension and Alzheimer's disease: is the picture any clearer?. Current opinion in psychiatry, v. 34, n. 2, p. 142-148, 2021. LIMA, M. L. BARREIRO, E. J. Bioisosterism: A Useful Strategy for molecular Modification and Drug Design. Current Medicinal Chemistry, v. 12, p. 23-49, 2005. LIN, Michael T.; BEAL, M. Flint. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, v. 443, n. 7113, p. 787-795, 2006. LIN, Yi-Ting et al. Galantamine plasma concentration and cognitive response in Alzheimer’s disease. PeerJ, v. 7, p. e6887, 2019. LOERA-VALENCIA, Raúl et al. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: Potential novel targets for treatment. The Journal of steroid biochemistry and molecular biology, v. 190, p. 104-114, 2019. LOVELL, Mark A.; MARKESBERY, William R. Oxidative damage in mild cognitive impairment and early Alzheimer's disease. Journal of neuroscience research, v. 85, n. 14, p. 3036-3040, 2007. LOY, Clement; SCHNEIDER, Lon. Galantamine for Alzheimer's disease and mild cognitive impairment. Cochrane database of systematic reviews, n. 1, 2006. LUBERDA, Zofia. The role of glutathione in mammalian gametes. Reprod Biol, v. 5, n. 1, p. 5-17, 2005. LUSTBADER, J. W. et al. ABAD Directly Links A to Mitochondrial Toxicity in Alzheimer’s Disease. Science, v. 30, n. 5669, p. 8-52, 2004. MA, Yunxia et al. Effects of donepezil on cognitive functions and the expression level of β-amyloid in peripheral blood of patients with Alzheimer's disease. Experimental and Therapeutic Medicine, v. 15, n. 2, p. 1875-1878, 2018. MACHADO, Hussen et al. Flavonóides e seu potencial terapêutico. Boletim do Centro de Biologia da Reprodução (Descontinuada), v. 27, n. 1/2, 2008. MACHADO, Jorge; BARROS, José; PALMEIRA, Manuela. Enxaqueca: fisiopatogenia, clínica e tratamento. Revista Portuguesa de Medicina Geral e Familiar, v. 22, n. 4, p. 461-70, 2006. MAKIN, Simon. The amyloid hypothesis on trial. Nature, v. 559, n. 7715, p. S4-S4, 2018. MANSON, Margaret M. Cancer prevention–the potential for diet to modulate molecular signalling. Trends in molecular medicine, v. 9, n. 1, p. 11-18, 2003. MARIANI, Cristina et al. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L.(Ranunculaceae). Phytochemistry, v. 69, n. 5, p. 1220-1226, 2008. 66 MARNETT, Lawrence J. Lipid peroxidation—DNA damage by malondialdehyde. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 424, n. 1-2, p. 83-95, 1999. MASSOULIÉ, Jean et al. Molecular and cellular biology of cholinesterases. Progress in neurobiology, v. 41, n. 1, p. 31-91, 1993. MATOS, Maria João. Multitarget therapeutic approaches for Alzheimer's and Parkinson's diseases: an opportunity or an illusion? Future Medicinal Chemistry, v. 13, n. 15, p. 1301-1309, 2021. MAURER, Konrad; VOLK, Stephan; GERBALDO, Hector. Auguste D and Alzheimer's disease. The lancet, v. 349, n. 9064, p. 1546-1549, 1997. MCKHANN, G. drachman d, Folstein M, Katzman r, price d, Stadlan eM. Clinical diagnosis of Alzheimer’s disease: report of the NiNCdS-AdrdA Work Group under the auspices of department of health and human Services Task Force on Alzheimer’s disease. Neurology, v. 34, n. 7, p. 939-944, 1984. MECOCCI, Patrizia; MACGARVEY, Usha; BEAL, M. Flint. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, v. 36, n. 5, p. 747-751, 1994. MEDEIROS, Rodrigo; BAGLIETTO-VARGAS, David; LAFERLA, Frank M. The role of tau in Alzheimer's disease and related disorders. CNS neuroscience & therapeutics, v. 17, n. 5, p. 514-524, 2011. MEHTA, Rita S. et al. Combination anastrozole and fulvestrant in metastatic breast cancer. New England Journal of Medicine, v. 367, n. 5, p. 435-444, 2012. MOHANDAS, E.; RAJMOHAN, V.; RAGHUNATH, B. Neurobiology of Alzheimer's disease. Indian journal of psychiatry, v. 51, n. 1, p. 55, 2009. MONTEIRO, Raquel Fonseca Guedes. Estudo De Proteínas Que Afetam A Tradução Mitocondrial em Saccharomyces cerevisiae. Tese (Doutorado), Instituto de Ciências Biomédicas, São Paulo: Universidade de São Paulo, 2017 MORADAS-FERREIRA, P. et al. The molecular defences against reactive oxygen species in yeast. Molecular microbiology, v. 19, n. 4, p. 651-658, 1996 MORPHY, Richard; KAY, Corinne; RANKOVIC, Zoran. From magic bullets to designed multiple ligands. Drug discovery today, v. 9, n. 15, p. 641-651, 2004. MORPHY, Richard; RANKOVIC, Zoran. Designing multiple ligands-medicinal chemistry strategies and challenges. Current pharmaceutical design, v. 15, n. 6, p. 587-600, 2009. MORRIS, Martha Clare et al. MIND diet slows cognitive decline with aging. Alzheimer's & dementia, v. 11, n. 9, p. 1015-1022, 2015. 67 MULLAART, Erik et al. Increased levels of DNA breaks in cerebral cortex of Alzheimer's disease patients. Neurobiology of aging, v. 11, n. 3, p. 169-173, 1990. MUSHTAQ, Gohar et al. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease and type 2 diabetes mellitus. CNS & Neurological Disorders- Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), v. 13, n. 8, p. 1432-1439, 2014. NAJAR-AHMADI, Sepideh et al. Interaction of donepezil with tau protein: Insights from surface plasmon resonance and molecular modeling methods. Journal of Molecular Liquids, v. 333, p. 115924, 2021. NANDI, Ankita et al. Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxidative medicine and cellular longevity, v. 2019, 2019. NECHIFOR, Marina Tamara; DINU, Diana. 3-Amino-1, 2, 4-triazole Limits the Oxidative Damage in UVA-Irradiated Dysplastic Keratinocytes. BioMed Research International, v. 2017, 2017 NEJM CATALYST. Value-Based Care Must Strengthen Focus on Chronic Illnesses. Disponível em: https://catalyst.nejm.org/doi/full/10.1056/CAT.18.0058. Acesso em: 18 jan. 2022. NEUGROSCHL, Judith; WANG, Sophia. Alzheimer's disease: diagnosis and treatment across the spectrum of disease severity. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, v. 78, n. 4, p. 596-612, 2011. NG, Neville S.; OOI, Lezanne. A simple microplate assay for reactive oxygen species generation and rapid cellular protein normalization. Bio-protocol, v. 11, n. 1, p. e3877-e3877, 2021. NIELSEN, Jens. Yeast systems biology: model organism and cell factory. Biotechnology journal, v. 14, n. 9, p. 1800421, 2019 NIKI, Etsuo et al. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochemical and biophysical research communications, v. 338, n. 1, p. 668-676, 2005. OBOH, Ganiyu et al. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro- oxidant induced oxidative stress in rats’ brain-in vitro. Neurochemical research, v. 38, n. 2, p. 413-419, 2013. OH, Esther S. et al. Amyloid precursor protein increases cortical neuron size in transgenic mice. Neurobiology of aging, v. 30, n. 8, p. 1238-1244, 2009. OHARA, Tomoyuki et al. Midlife and late-life smoking and risk of dementia in the community: The Hisayama Study. Journal of the American Geriatrics Society, v. 63, n. 11, p. 2332-2339, 2015 68 PEDERSEN, Ward A. et al. Protein modification by the lipid peroxidation product 4- hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Annals of neurology, v. 44, n. 5, p. 819-824, 1998. PEÑA, Cristina et al. Effects of low-fat high-fibre diet and mitratapide on body weight reduction, blood pressure and metabolic parameters in obese dogs. Journal of Veterinary Medical Science, p. 13-0475, 2014. PENG, Zhiyun et al. Synthesis, antioxidant and anti-tyrosinase activity of 1, 2, 4- triazole hydrazones as antibrowning agents. Food Chemistry, v. 341, p. 128265, 2021. PEREIRA DA SILVA, A. P. “Mecanismos De Ação Do 3-Bromopiruvato, Um Agente Anti-Tumoral, Sobre O Metabolismo Energético De Células Derivadas De Hepatocarcinoma Humano.” Tese de Doutorado, Instituto De Bioquímica Médica, Universidade Federal Do Rio De Janeiro, Rio de Janeiro, 2008. PÉREZ DE VEGA, María Jesús et al. Characterization of novel synthetic polyphenols: Validation of antioxidant and vasculoprotective activities. Antioxidants, v. 9, n. 9, p. 787, 2020. PETTIT, Robin K. et al. Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrobial agents and chemotherapy, v. 49, n. 7, p. 2612-2617, 2005. PI, Rongbiao et al. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer's disease-associated pathogenesis in vitro and in vivo. PLoS One, v. 7, n. 2, p. e31921, 2012. PICONE, Pasquale; DI CARLO, Marta; NUZZO, Domenico. Obesity and Alzheimer’s disease: Molecular bases. European Journal of Neuroscience, v. 52, n. 8, p. 3944- 3950, 2020. PIOVEZAN-BORGES, A. C. et al. Antioxidant potential of yerba mate (Ilex paraguariensis St. Hil.) extracts in Saccharomyces cerevisae deficient in oxidant defense genes. Brazilian journal of biology, v. 76, p. 539-544, 2016. PISOSCHI, Aurelia Magdalena et al. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, v. 209, p. 112891, 2021. POWERS, Scott K.; JACKSON, Malcolm J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological reviews, v. 88, n. 4, p. 1243-1276, 2008. PRATICÒ, Domenico et al. Increased 8, 12-iso-iPF2α-VI in Alzheimer's disease: Correlation of a noninvasive index of lipid peroxidation with disease severity. Annals of neurology, v. 48, n. 5, p. 809-812, 2000. 69 PROCHÁZKOVÁ, Dagmar; BOUŠOVÁ, I.; WILHELMOVÁ, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, v. 82, n. 4, p. 513-523, 2011. RAJAN, Kumar B. et al. Population estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the United States (2020–2060). Alzheimer's & Dementia, v. 17, n. 12, p. 1966-1975, 2021. RAY, Balmiki et al. Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer’s disease. Translational psychiatry, v. 10, n. 1, p. 1-17, 2020. RAY, Robin; SHAH, Ajay M. NADPH oxidase and endothelial cell function. Clinical Science, v. 109, n. 3, p. 217-226, 2005. REIS, Joana et al. Multi-target-directed ligands for Alzheimer's disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. European Journal of Medicinal Chemistry, v. 158, p. 781-800, 2018. REPETTO, Marisa; SEMPRINE, Jimena; BOVERIS, Alberto. Lipid peroxidation: chemical mechanism, biological implications and analytical determination. Lipid peroxidation, v. 1, p. 3-30, 2012. RIGOTTI, Marina. Avaliação da função mitocondrial, do estresse oxidativo e da expressão de sirtuínas em células HEK-293 tratadas com proantocianidinas de semente de uva. 2018. ROSA, Renato Moreira et al. Pharmacology and toxicology of diphenyl diselenide in several biological models. Brazilian Journal of Medical and Biological Research, v. 40, n. 10, p. 1287-1304, 2007. ROSES, MD, Allen D. Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annual review of medicine, v. 47, n. 1, p. 387-400, 1996. RUIZ-OJEDA, Francisco Javier et al. Impact of 3-amino-1, 2, 4-triazole (3-AT)- derived increase in hydrogen peroxide levels on inflammation and metabolism in human differentiated adipocytes. PLoS One, v. 11, n. 3, p. e0152550, 2016. SADEGHI, Mohsen et al. Preparation and characterization of rivastigmine transdermal patch based on chitosan microparticles. Iranian Journal of Pharmaceutical Research: IJPR, v. 15, n. 3, p. 283, 2016. SADOWSKA-BARTOSZ, I. et al. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS yeast research, v. 13, n. 8, p. 820–30, 2013. SAMIERI, Cécilia et al. Association of cardiovascular health level in older age with cognitive decline and incident dementia. Jama, v. 320, n. 7, p. 657-664, 2018. SANTACRUZ, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science, v. 309, n. 5733, p. 476-481, 2005. 70 SANTOS, Sabrina Neves et al. Regioselective microwave synthesis and derivatization of 1, 5-diaryl-3-amino-1, 2, 4-triazoles and a study of their cholinesterase inhibition properties. RSC advances, v. 9, n. 35, p. 20356-20369, 2019. SAWYER II, R. John. Value-based care must strengthen focus on chronic illnesses. NEJM Catalyst, v. 4, n. 6, 2018. SCHNEIDER, Lon S. et al. Low-dose ladostigil for mild cognitive impairment: A phase 2 placebo-controlled clinical trial. Neurology, v. 93, n. 15, p. e1474-e1484, 2019. SELKOE, Dennis J.; HARDY, John. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO molecular medicine, v. 8, n. 6, p. 595-608, 2016. ŠERÝ, Omar et al. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia neuropathologica, v. 51, n. 1, p. 1-9, 2013. SHARMA, Kamlesh. Cholinesterase inhibitors as Alzheimer's therapeutics. Molecular medicine reports, v. 20, n. 2, p. 1479-1487, 2019. SHEN, Jeff; WONG, B.; ZHANG, H. Negishi Approach to 1, 5-Disubstituted 3-Amino- 1 H-1, 2, 4-triazoles. Organic letters, v. 17, n. 19, p. 4678-4681, 2015. SHI, Yuan; ZHOU, Cheng-He. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorganic & medicinal chemistry letters, v. 21, n. 3, p. 956-960, 2011. SHIEH, Jonathan Chang-Cheng; HUANG, Pai-Tsang; LIN, Yung-Feng. Alzheimer’s disease and diabetes: insulin signaling as the bridge linking two pathologies. Molecular neurobiology, v. 57, n. 4, p. 1966-1977, 2020. SILVA, Nathalia Cristina da Silva. Funcionalização do 3, 4, 6-tri-O-acetil-D-glucal com sais de organotrifluoroboratos de potássio e reações de click chemistry para a geração e funcionalização de triazóis. Tese de Mestrado. Universidade de São Paulo. 2013 SIVAPRAKASAM, Kannan. Towards a unifying hypothesis of Alzheimer's disease: cholinergic system linked to plaques, tangles and neuroinflammation. Current medicinal chemistry, v. 13, n. 18, p. 2179-2188, 2006. SKOUMALOVÁ, Alice; HORT, Jakub. Blood markers of oxidative stress in A lzheimer's disease. Journal of cellular and molecular medicine, v. 16, n. 10, p. 2291-2300, 2012. SOARES, Daniele Grazziotin; ANDREAZZA, Ana Cristina; SALVADOR, Mirian. Evaluation of compounds with antioxidant activity in Saccharomyces cerevisiae yeast cells. Revista Brasileira de Ciências Farmacêuticas, v. 41, p. 95-100, 2005. 71 SOCRIER, L. et al. Flax phenolic compounds as inhibitors of lipid oxidation: Elucidation of their mechanisms of action. Food Chemistry, v. 274, p. 651–658, 2019. SONG, Yongfeng et al. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell metabolism, v. 33, n. 10, p. 1911-1925, 2021. STADTMAN, Earl R. Role of oxidant species in aging. Current medicinal chemistry, v. 11, n. 9, p. 1105-1112, 2004. STEELS, E. L.; LEARMONTH, R. P.; WATSON, K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology (Reading, England), v. 140 (Pt 3, n. 1994, p. 569–76, 1994. STEFANACHI, Angela et al. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules, v. 23, n. 2, p. 250, 2018. STEPHEN, Ruth et al. Physical activity and Alzheimer’s disease: a systematic review. The Journals of Gerontology: Series A, v. 72, n. 6, p. 733-739, 2017. STRITTMATTER, Warren J. et al. Apolipoprotein E: high-avidity binding to beta- amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences, v. 90, n. 5, p. 1977- 1981, 1993. SUBHASWARAJ, Pattnaik et al. Determination of antioxidant activity of Hibiscus sabdariffa and Croton caudatus in Saccharomyces cerevisiae model system. Journal of food science and technology, v. 54, n. 9, p. 2728-2736, 2017. SUBHASWARAJ, Pattnaik et al. Determination of antioxidant potential of Acacia nilotica leaf extract in oxidative stress response system of Saccharomyces cerevisiae. Journal of the Science of Food and Agriculture, v. 97, n. 15, p. 5247- 5253, 2017. SUN, Yuqian et al. Fluconazole is as effective as other anti-mold agents in preventing early invasive fungal disease after allogeneic stem cell transplantation: assessment of antifungal therapy in haematological disease in China. Translational Cancer Research, v. 9, n. 11, p. 6900, 2020. SWERDLOW, Russell H.; BURNS, Jeffrey M.; KHAN, Shaharyar M. The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, v. 1842, n. 8, p. 1219- 1231, 2014. TAN, Seng-Lai et al. Hepatitis C therapeutics: current status and emerging strategies. Nature Reviews Drug Discovery, v. 1, n. 11, p. 867-881, 2002. TANZI, Rudolph E.; BERTRAM, Lars. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell, v. 120, n. 4, p. 545-555, 2005. 72 THINAKARAN, Gopal; KOO, Edward H. Amyloid precursor protein trafficking, processing, and function. Journal of Biological Chemistry, v. 283, n. 44, p. 29615- 29619, 2008. TIWARI, Sneham et al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. International journal of nanomedicine, v. 14, p. 5541, 2019. TÖNNIES, Eric; TRUSHINA, Eugenia. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. Journal of Alzheimer's Disease, v. 57, n. 4, p. 1105-1121, 2017. TRIPATHI, Prabhash Nath et al. Biphenyl-3-oxo-1, 2, 4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorganic Chemistry, v. 85, p. 82-96, 2019. TROKE, P. F. et al. Efficacy of UK-49,858 (fluconazole) against Candida albicans experimental infections in mice. Antimicrobial agents and chemotherapy, v. 28, n. 6, p. 815-818, 1985. VALKO, Marian et al. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, v. 39, n. 1, p. 44-84, 2007. VALKO, Marian et al. Free radicals, metals and antioxidants in oxidative stress- induced cancer. Chemico-biological interactions, v. 160, n. 1, p. 1-40, 2006. VAN DEN ENDE, Wim; PESHEV, Darin; DE GARA, Laura. Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Science & Technology, v. 22, n. 12, p. 689-697, 2011. VAN DER JEUGD, Ann et al. Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta neuropathologica, v. 123, n. 6, p. 787-805, 2012 VAZ, Miguel; SILVESTRE, Samuel. Alzheimer's disease: recent treatment strategies. European journal of pharmacology, v. 887, p. 173554, 2020 VICTOR, Victor M.; ROCHA, Milagros; DE LA FUENTE, Monica. Immune cells: free radicals and antioxidants in sepsis. International immunopharmacology, v. 4, n. 3, p. 327-347, 2004. VON OSSOWSKI, Ingemar; HAUSNER, Georg; LOEWEN, Peter C. Molecular evolutionary analysis based on the amino acid sequence of catalase. Journal of molecular evolution, v. 37, n. 1, p. 71-76, 1993. VON STASZEWSKI, M. et al. Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity. Journal of Functional Foods, v. 4, n. 4, p. 800–809, 2012. 73 WALCZAK-NOWICKA, Łucja Justyna; HERBET, Mariola. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. International Journal of Molecular Sciences, v. 22, n. 17, p. 9290, 2021. WATKINS, Paul B. et al. Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease. Jama, v. 271, n. 13, p. 992-998, 1994. XIE, Sai-Sai et al. Design, synthesis and evaluation of novel tacrine–coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease. European journal of medicinal chemistry, v. 64, p. 540-553, 2013. YU, Wen-Feng et al. Correlation of oxidative stress and the loss of the nicotinic receptor alpha4 subunit in the temporal cortex of patients with Alzheimer's disease. Neuroscience letters, v. 338, n. 1, p. 13-16, 2003. YU, Yongping; OSTRESH, John M.; HOUGHTEN, Richard A. Solid-phase synthesis of 3-amino-1, 2, 4-triazoles. Tetrahedron letters, v. 44, n. 42, p. 7841-7843, 2003. ZHENG, Yan-Zhen et al. The influence of the H5⋯ OC4 intramolecular hydrogen- bond (IHB) on the antioxidative activity of flavonoid. Phytochemistry, v. 160, p. 19- 24, 2019.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74738/2022%20-%20Danniel%20Cosme%20Neves%20Grillo.Pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6917
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-14T12:53:41Z No. of bitstreams: 1 2022 - Danniel Cosme Neves Grillo.Pdf: 2719821 bytes, checksum: 6ede91b000f562a3ac56295fd52001ca (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-09-14T12:53:41Z (GMT). No. of bitstreams: 1 2022 - Danniel Cosme Neves Grillo.Pdf: 2719821 bytes, checksum: 6ede91b000f562a3ac56295fd52001ca (MD5) Previous issue date: 2022-09-15eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Danniel Cosme Neves Grillo.Pdf2022 - Danniel Cosme Neves Grillo2.66 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.