Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9123
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Lima, Déborah Menezes de | |
dc.date.accessioned | 2023-11-19T19:59:26Z | - |
dc.date.available | 2023-11-19T19:59:26Z | - |
dc.date.issued | 2022-08-29 | |
dc.identifier.citation | LIMA, Déborah Menezes de. Estudo teórico dos caminhos para formação de aminas precursoras de aminoácidos no meio interestelar. 2022. 81 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9123 | - |
dc.description.abstract | Amino acids have been detected in meteorites since the 1970s (Shivani, et al., 2017). To understand the formation of these amino acids in the interstellar medium and in astronomical bodies, it is necessary to understand the formation and development of their possible precursors. In this work, we want to analyze the possible paths for successive reactions of hydrogen dissociation of ethylamine and dimethylamine in gas phase, using a retrosynthetic analysis strategy, through theoretical calculations, at CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level. These calculations aimed at geometry optimizations, determination of vibrational frequencies and reaction paths. Reaction paths were obtained with the hypothesis that they are dissociation associated with barrierless recombination reactions, therefor, saddle points were not located. Dissociation energies were found in the range from 14 – 123 kcal/mol. The lowest energy path, starting from ethylamine, was identified in the sequence of steps: CH3CH2NH2 → CH3CHNH2 → CH3CHNH → CH3CHN → CH3CN → CH2CN → CHCN → CCN. Similarly, the lowest energy path, starting from dimethylamine, comprises the steps: CH3NH2CH3 → CH3NHCH2 → CH3NCH2 → CH3NCH → CH3NC → CH2NC → CHNC → CNC. Velocity coefficients were calculated by the canonical variational model, for the temperature range from 10 K to 300 K, typical for astrophysical environment, showing a tendency for the constant to increase with increasing temperature. The nitriles and some radicals presented were observed in the interstellar medium, corroborating the reaction pathways proposed as possible routes for the formation of amine precursors of amino acids. | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Etilamina | por |
dc.subject | Acetonitrila | por |
dc.subject | Dimetilamina | por |
dc.subject | Metil-isonitrila | por |
dc.subject | Meio Interestelar | por |
dc.subject | Ethylamine | eng |
dc.subject | Acetonitrile | eng |
dc.subject | Dimethylamine | eng |
dc.subject | Methylisonitrile | eng |
dc.subject | Interstellar Medium | eng |
dc.title | Estudo teórico dos caminhos para formação de aminas precursoras de aminoácidos no meio interestelar | por |
dc.title.alternative | Theoretical study of the pathways for the formation of amine precursors of amino acids in the interstellar medium | eng |
dc.type | Dissertação | por |
dc.contributor.advisor1 | Bauerfeldt, Glauco Favilla | |
dc.contributor.advisor1ID | 069.023.487-23 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-5906-7080 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1876040291299143 | por |
dc.contributor.referee1 | Bauerfeldt, Glauco Favilla | |
dc.contributor.referee1ID | 069.023.487-23 | por |
dc.contributor.referee1ID | https://orcid.org/0000-0001-5906-7080 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/1876040291299143 | por |
dc.contributor.referee2 | Andrade, Diana Paula de Pinho | |
dc.contributor.referee2ID | 028.608.587-92 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/1962516691906456 | por |
dc.contributor.referee3 | Baptista, Leonardo | |
dc.contributor.referee3ID | 053.120.556-89 | por |
dc.contributor.referee3ID | https://orcid.org/0000-0001-9433-3313 | por |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/2182432135517042 | por |
dc.creator.ID | 116.874.707-40 | por |
dc.creator.Lattes | http://lattes.cnpq.br/4445301857031788 | por |
dc.description.resumo | Aminoácidos tem sido detectados em meteoritos desde a década de 70 (Shivani, et al., 2017). Para entender a formação destes aminoácidos no meio interestelar e em corpos astronômicos é necessário a compreensão da formação e desenvolvimento de seus possíveis precursores. Neste trabalho, deseja-se analisar os caminhos possíveis para reações sucessivas de dissociações de hidrogênio da etilamina e da dimetilamina em fase gás, utilizando uma estratégia de análise retrossintética, através de cálculos teóricos, em nível CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc- pVTZ. Esses cálculos visaram otimizações de geometria, determinação de frequências vibracionais e caminhos de reação. Todos os caminhos de reação foram obtidos partindo da hipótese de que são dissociações sem barreira para recombinação, portanto, pontos de sela não foram localizados. As energias de dissociação se encontravam na faixa de 14 – 123 kcal/mol. O caminho de menor energia, partindo da etilamina, foi identificado na sequência de etapas: CH3CH2NH2 → CH3CHNH2 → CH3CHNH → CH3CHN → CH3CN → CH2CN → CHCN → CCN. De forma semelhante, o caminho de menor energia, partindo da dimetilamina, compreende as etapas: CH3NH2CH3 → CH3NHCH2 → CH3NCH2 → CH3NCH → CH3NC → CH2NC → CHNC → CNC. Coeficientes de velocidade foram calculados pelo modelo variacional canônico, para o intervalo de temperaturas de 10 K a 300 K, esperado para ambientes astrofísicos, mostrando uma tendência de aumento da constante com o aumento da temperatura. As nitrilas e alguns radicais apresentados foram observados no meio interestelar, corroborando os caminhos de reação propostos como possíveis rotas para a formação das aminas precursoras de aminoácidos. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Química | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | AGÚNDEZ, M.; CERNICHARO, J.; PARDO, J. R.; FRONFRÍA EXPÓSITO, J. P.; GUÉLIN, M.; TENENBAUM, E. D.; ZIURYS, L. M.; APPONI, A. J. Understanding the chemical complexity in Circumstellar Envelopes of C-Rich AGB stars: the case of IRC +10216. Astrophysics Space Science, 313, 229–233, 2008. ALTARAWNEHA, M.; ALMATARNEH, M. H.; MARASHDEH, A.; DLUGOGORSKI, B. Z. Decomposition of ethylamine through bimolecular reactions. Combustion and Flame, 163, 532–539, 2016. ALTWEGG, K.; BALSINGER, H.; FUSELIER, S. A. Cometary Chemistry and the Origin of Icy Solar System Bodies: The View After Rosetta. Annual Reviews of Astronomy and Astrophysics, 57, 113-155, 2019. ANDERSON, J. K.; ZIURYS, L. M. Detection of CCN (X2ΠR) In IRC+10216: Constraining Carbon-Chain Chemistry. The Astrophysical Journal Letters, 795, L1-L6, nov. 2014. ANICICH, V. G.; SEN, A. D.; HUNTRESS, W. T.; MCEVAN, M. J. Association reactions at low pressure. V. The CH3 + /HCN system. A final word? The Journal of Chemical Physics, 102, 3256, 1995. APONTE, J. C.; ELSILA, J. E.; GLAVIN, D. P.; MILAM, S. N.; CHARNLEY, S. B.; DWORKIN, J. P. Pathways to Meteoritic Glycine and Methylamine. ACS Earth Space Chemistry, 2017, 1, 1, 3–13. APONTE, J. C.; ELSILA, J. E.; HEIN, J. E.; DWORKIN, J. P.; GLAVIN, D. P.; McLAIN, H. L.; PARKER, E. T.; CAO, T.; BERGER, E. L.; BURTON, A. S. Analysis of amino acids, hydroxy acids, and amines in CR chondrites. Meteoritics & Planetary Science, 55, Nr 11, 2422–2439, 2020. ARULANANTHAM, N.; FRANCE, K.; CAZZOLETTI, P.; MIOTELLO, A.; MANARA, C. F.; SCHNEIDER, P. C.; HOADLEY, K.; DISHOECK, E. F.; GÜNTHER, H. M. Probing UV- sensitive Pathways for CN and HCN Formation in Protoplanetary Disks with the Hubble Space Telescope. The Astronomical Journal, 159, 168, 19pp, abril 2020. 55 ATKINS, P.; JONES, L. Princípios de Química: Questionando a vida moderna e o meio ambiente. Bookman, Porto Alegre – RS, 5 ed., 2012. ISBN 978-85-407-0038-3. BALUCANI, N.; SKOUTERIS, D.; CECCARELLI, C.; CODELLA, C.; FALCINELLI, S.; ROSI, M. A theoretical investigation of the reaction between the amidogen, NH, and the ethyl, C2H5, radicals: a possible gas-phase formation route of interstellar and planetary ethanimine. Molecular Astrophysics, 13, 30-37, 2018. BELLILI, A.; GOUID, Z.; GAZEAU, M. C.; BÉNILAN, Y.; FRAY, N.; GUILLEMIN, J. C.; HOCHALAF, M.; SCHWELL, M. Single photon ionization of methyl isocyanide and the subsequent unimolecular decomposition of its cation: experiment and theory. Physical Chemistry Chemical Physics, 21, 26017, 2019. BELLOCHE, A.; MENTEN, K. M.; COMITO, C.; MÜLLER, H. S. P.; SCHILKE, P.; OTT, J.; THORWIRTH, S.; HIERET, C. Detection of amino acetonitrile in Sgr B2(N). Astronomy & Astrophysics, 482, 179–196, 2008. BELLOCHE, A.; GARROD, R. T.; MÜLLER, H. S. P.; MENTEN, K. M; COMITO, C.; SCHILKE, P. Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and n-propyl cyanide in Sagittarius B2(N). Astronomy & Astrophysics, vol. 499, 215 – 232, 2009. BERG, J. M.; TYMOCZKO, J. L.; STRYER, L. Biochemistry. W H Freeman, New York, 5 ed., 2002. ISBN 10:0-7167-3051-0. BERNSTEIN, M. P.; DWORKIN, J. P.; SANDFORD, S. A.; COOPER, G. W.; ALLAMANDOLA, L. J. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature, 416, 401 – 403, 2002. BERNSTEIN, M. P.; SANDFORD, S. A.; ALLAMANDOLA, L. J.; CHANG, S.; SCHARBERG, M. A. Organic compounds produced by photolysis of realistic interstellar and cometary ice analogs containing methanol. The Astrophysical Journal, 454, 327-344, 1995. BERTIN, M.; DORONIN, M.; MICHAUT, X.; PHILIPPE, L.; MARKOVITS, A.; FILLION, J. H.; PAUZAT, F.; ELLINGER, Y.; GUILLEMIN, J. C. Nitrile versus isonitrile adsorption at 56 interstellar grain surfaces II. Carbonaceous aromatic surfaces. Astronomy & Astrophysics, 608, A50, 2017. BÉZARD, B.; MARTEN, A.; PAUBERT, G. Detection of Acetonitrile on Titan. Bulletin of the American Astronomical Society, vol. 25, p. 1100 in: American Astronomical Society, 25th DPS Meeting, id.25.09. BOICE, Daniel C. SUISEI—A Versatile Global Model of Comets with Applications to Small Solar System Bodies. Journal of Applied Mathematics and Physics, 5, 311-320, 2017. BOGELUND, E. G.; MCGUIRE, B. A.; HOGERHEIJDE, M. R.; VAN DISHOECK, E. F.; LIGTERINK, N. F. W. Methylamine and other simple N-bearing species in the hot cores NGC 6334I MM1–3. Astronomy & Astrophysics, 624, A82, 2019. BORGET, F.; DUVERNAY, F.; DANGER, G.; THEULÉ, P.; BOSSA, J. P.; VINOGRADOFF, V.; MISPELAER, F.; MÜLLER, S.; GROTE, D.; CHIAVASSA, T. What are the intermediates that could react in the interstellar ices? Journal of Physical Organic Chemistry, 28, 163–169, 2015. BORGET, F.; MÜLLER, S.; GROTE, D.; THEULÉ, P.; VINOGRADOFF, V.; CHIAVASSA, T.; SANDER, W. CN radical hydrogenation from solid H2 reactions, an alternative way of HCN formation in the interstellar medium. Astronomy & Astrophysics, 598, A22, 2017. BURGDORF, M.; CRUIKSHANK, D. P.; DALLE ORE, C. M.; SEKIGUCHI, T.; NAKAMURA, R.; ORTON, G.; QUIRICO, E.; SCHMITT, B. A Tentative Identification of HCN Ice on Triton. The Astrophysical Journal Letters, 718, L53–L57, ago. 2010. BURKE, K. The ABC of DFT. Departament of Chemistry, University of California, Irvine, 2007. CALCUTT, H.; FIECHTER, M. R.; WILLIS, E. R.; MÜLLER, H. S. P.; GARROD, R. T.; JORGENSEN, J. K.; WAMPFLER, S. F.; BOURKE, T. L.; COUTENS, A.; DROZDOVSKAYA, M. N.; MIGTERINK, N. F. W.; KRISTENSEN, L. E. The ALMA-PILS survey: first detection of methyl isocyanide (CH3NC) in a solar-type protostar. Astronomy & Astrophysics, 617, A95, 2018. 57 CAPELLE, KLAUS. A Bird’s-Eye View of Density-Functional Theory. Brazilian Journal of Physics, vol. 36, n. 4A, 2006. CARVALHO, G. A.; PILLING, S. Photolysis of CH3CN Ices by Soft X-Rays: Implications for the Chemistry of Astrophysical Ices at the Surroundings of X-Ray Sources. The Journal of Physical Chemistry, 124 (41), 8574-8584, 2020. CERQUEIRA, H. B. A.; SANTOS, J. C.; FANTUZZI, F.; RIBEIRO, F. A.; ROCCO, M. L. M.; OLIVEIRA, R. R.; ROCHA, A. B. Structure, Stability, and Spectroscopic Properties of Small Acetonitrile Cation Clusters. The Journal of Physical Chemistry A, 124, 6845−6855, 2020. CERNICHARO, J.; AGÚNDEZ, M.; CABEZAS, C.; MARCELLINO, N.; TERCERO, B.; PARDO, J. P.; GALLEGO, J. D.; TERCERO, F.; LÓPEZ-PÉREZ, J. A.; DE VICENTE, P. Discovery of CH2CHCCH and detection of HCCN, HC4N, CH3CH2CN, and, tentatively, CH3CH2CCH in TMC-1. Astronomy & Astrophysics, 647, L2, 2021. CERNICHARO, J.; KAHANE, C.; GUÉLIN, M.; GOMEZ-GONZALEZ, J. Tentative detection of CH3NC towards Sgr B2. Astronomy & Astrophysics, 189, L1-L2, 1988. CHARNLEY, S. B.; KRESS, M. E.; TIELENS, A. G. G. M.; MILLAR, T. J. Interstellar Alcohols. The Astrophysical Journal, 448, 232-239, 1995. CHERCHNEFF, I.; GLASSGOLD, A. E.; MAMON, G. A. The Formation of Cyanopolyyne Molecules in IRC+10216. The Astrophysical Journal, 410, 188, 1993. CHEUNG, A. C.; RANK, D. M.; TOWNES, C. H. THORNTON, D. D.; WELCH, W. J. Detection of NH3 molecules in the Interstellar Medium by their Microwave Emission. Physical Review Letters, vol. 21, n° 25, 1968. CHO, H. G. Matrix Infrared Spectra and DFT Computations of CH2CNH and CH2NCH Produced from CH3CN by Laser-Ablation Plume Radiation. Bull. Korean Chem. Soc., Vol. 34, n. 5, 2013. 58 COUSTENIS, A.; SCHMITT, B.; KHANNA, R. K.; TROTTA, F. Plausible condensates in Titan's stratosphere from Voyager infrared spectra. Planetary and Space Science, 47, 1305- 1329, 1999. CRONIN, J. R.; MOORE, C. B. Amino Acid Analyses of the Murchison, Murray, and Allende Carbonaceous Chondrites. Science, Vol. 172, Issue 3990, pp. 1327-1329, 1971. DANGER, G.; BOSSA, J.-B.; DEMARCELLUS, P.; BORGET, F.; DUVERNAY, F.; THEULÉ, P.; CHIAVASSA, T.; D’HENDECOURT, L. Experimental investigation of nitrile formation from VUV photochemistry of interstellar ices analogs: acetonitrile and amino acetonitrile. Astronomy & Astrophysics, 525, A30, 2011. DEFREES, D. J.; MCLEAN, A. D.; HERBST, E. Theoretical Investigation of The Interstellar CH3NC/CH3CN Ratio. The Astrophysical Journal, 293, 236-242, 1985. DE JESUS, D. N.; DA SILVA, J. M. B. A.; TEJERO, T. N.; XAVIER JR., N. F.; BAUERFELDT, G. F. Chemical Mechanism for the Decomposition of CH3NH2 and Implications to Interstellar Glycine. Monthly Notices of the Royal Astronomical Society, Vol 501, Issue 1, 2021. D’HENDERCOURT, L. B.; MUIZON, M. J. The discovery of interstellar carbon dioxide. Astronomic and Astrophysics, 223, L5-L8, ago. 1989. DISHOECK, E. F.; JANSEN, D. J.; SCHILKE, P.; PHILLIPS, T. G. Detection of Interstellar NH2 radical. The Astrophysical Journal, 416, L83-L86, out. 1993. ELSILA, J. E.; DWORKIN, J. P.; BERNSTEIN, M. P.; MARTIN, M. P.; SANDFORD, S. A. Mechanisms of Amino Acid Formation in Interstellar Ice Analogs. The Astrophysical Journal, v. 660, p. 911–918, 2007. EVANS, M. G.; POLANYI, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Transactions of the Faraday Society, v. 31, p. 875, 1935. EYRING, H. The Activated Complex in Chemical Reactions. Journal Of Chemical Physics, v. 3, n. 107, 1935. 59 FERNANDES, R. L. O império Inca e a economia da América pré-colombiana. 2010. 71 p. Dissertação (Bacharel em Ciências Econômicas) – Faculdade Ciências Econômicas, UFRGS, Porto Alegre, 2010. FERRIS, J. P.; HAGAN JR, W. J. HCN And Chemical Evolution: The Possible Role of Cyano Compounds in Prebiotic Synthesis. Tetrahedron, v. 40, n. 7, 1093-1120, 1984. Frisch, M. J., et al. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016. FÖRSTEL, M.; BERGANTINI, A.; MAKSYUTENKO, P.; GÓBI, S.; KAISER, R. I. Formation of Methylamine and Ethylamine in Extraterrestrial Ices and Their Role as Fundamental Building Blocks of Proteinogenic α-amino Acids. The Astrophysical Journal, v. 845, n. 83, p. 12, 2017. GANS, B.; HARTWEG, S.; GARCIA, G. A.; BOYÉ-PÉRONNE, S.; HARPER, O. J.; GUILLEMIN, J. C.; LOISON, J. C. VUV photoionization of the CH2NC radical: adiabatic ionization energy and cationic vibrational mode wavenumber determinations. Physical Chemistry Chemical Physics, n. 22, p. 12496-12501, 2020. GARCIA, G. A.; KRÜGER, J.; GANS, B.; FALVO, C.; COUDERT, L. H.; LOISON, J. C. Valence shell threshold photoelectron spectroscopy of the CHxCN (x = 0-2) and CNC radicals. The Journal of Chemical Physics, v. 147, n. 013908, 2017. GARROD, R. T.; WEAVER, S. L. W.; HERBEST, E. Complex Chemistry in Star-Forming Regions: An Expanded Gas-Grain Warm-Up Chemical Model. The Astrophysical Journal, 682, 283–302, 2008. GARROD, R. T.; PAULY, T. On The Formation of CO2 And Other Interstellar Ices. The Astrophysical Journal, 735, 15, 18p, julho, 2011. GARROD, Robin T.; WIDICUS WEAVER, Susanna L.; HERBST, Eric. Complex Chemistry in Star-forming Regions: An Expanded Gas-Grain Warm-up Chemical Model. The Astrophysical Journal, 682, 283-302, 2008. GLAVIN, D. P.; DWORKIN, J. P.; SANDFORD, S. A. Detection of cometary amines in samples returned by Stardust. Meteoritics & Planetary Science 43, Nr 1/2, 399–413, 2008. 60 GLAVIN, D. P.; M.O’D CONEL, A.; APONTE, J. C.; DWORKIN, J. P.; ELSILA, J. E.; YABUTA, H. The Origin and Evolution of Organic Matter in Carbonaceous Chondrites and Links to Their Parent Bodies. In: ABREU, Neyda. Primitive meteorites and asteroids. Cambridge - United States: Elsevier, p. 205-271, 2018. ISBN: 978-0-12-813325-5. GUELIN, M.; CERNICHARO, J. Astronomical detection of the HCCN radical. Toward a new Family of carbono-chain molecules? Astronomy & Astrophysics, 244, L21-L24, 1991. GODFREY, P. D.; BROWN, R. D.; ROBINSON, B. J.; SINCLAIR, M. W. Discovery of Interstellar Methanimine. Astrophysical Letters, vol. 13, pp. 119-121, 1973. GRATIER, P.; PETY, J.; GUZMÁN, V.; GERIN, M.; GOICOECHEA, J. R.; ROUEFF, E.; FAURE, A. The IRAM-30 m line survey of the Horsehead PDR: III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas. Astronomy & Astrophysics, 557, A101, 2013. GUPTA, V. P.; TANDON, P.; RAWAT, P.; SINGH, R. N.; SINGH, A. Quantum chemical study of a new reaction pathway for the adenine formation in the interstellar space. A&A, 528, A129, 1-6, 2011. HAESE, N. N.; WOODS, R. C. On the possible selective formation of CNC+ and CCN+ in the interstellar reactions of C+ with HCN and HNC. The Astrophysical Journal, 246, L51-L55, maio 1981. HERBST, E.; LEUNG, C. M. The gas phase production of CH2CN and other organo-nitrogen species in dense interstellar clouds. Astronomy and Astrophysics, 233, 177-180, 1990. HOLLIS, J. M.; JEWELL, P. R.; LOVAS, F. J. A Search for Methylene in The Orion Nebula. The Astrophysical Journal, 346, 794-798, nov. 1989. HOLLIS, J. M.; JEWELL, P. R.; LOVAS, F. J. Confirmation of Interstellar Methylene. The Astrophysical Journal, 438, 259-264, jan. 1995. HUDSON, R. L.; MOORE, M. H. Reactions of nitriles in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles. Icarus, 172, 466–478, 2004. 61 HUDSON, R. L.; MOORE, M. H.; DWORKIN, J. P. MARTIN, M. P.; POZUN, Z. D. Amino Acids from Ion-Irradiated Nitrile-Containing Ices. Astrobiology, 8, 4, 2008. IRAQI, M.; PETRANK, A.; PERES, M.; LIFSHITZ, C. Proton Transfer Reactions of C2H2 + : The Bond Energy D0 (C2H-H). International Journal of Mass Spectrometry and ion Processes, 100, 679-691, 1990. IRVINE, W. M.; FRIBERG, P.; HJALMRSON, A.; ISHIKAWA, S.; KAIFU, N.; KAWAGUCHI, K.; MADDEN, S. C.; MATTHEUWS, H. E. et al. Identification of The Interstellar Cyanomethyl Radical (CH2CN) IN THE Molecular Clouds Tmc-1 And Sagittarius B2. The Astrophysical Journal, 334, L107-L111, 1988. JACOX, M. E.; MILLIGAN, D. E. Infrared Study of the Reactions of CH2 and NH with C2H2 and C2H4 in Solid Argon. Journal of the American Chemical Society, 85, 3, 278-282, 1963. JEFFERTS, K. B.; PENZIAS, A. A.; WILSON, R. W. Observation of the CN Radical in the Orion Nebula and W51. The Astrophysical Journal, 161, L87-L89, ago. 1970. KAIFU, N.; MORIMOTO, M.; NAGANE, K.; AKABANE K.; IGUCUI, T.; TAKAGI, K. Detection of Interstellar Methylamine. The Astrophysical Journal, 191, L135-L137, 1974. KAISER, R. I. Experimental Investigation on the Formation of Carbon-Bearing Molecules in the Interstellar Medium via Neutral-Neutral Reactions. Chemical Reviews, 102, 5, 1309-1358, 2002. KAMENEVA, S. V.; VOLOSATOVA, A. D.; FELDMAN, V. I. Radiation-induced transformations of isolated CH3CN molecules in noble gas matrices. Radiation Physics and Chemistry, 141, 363-368, 2017. KASS, S. R.; DEPUY, C. H. Gas-Phase Ion Chemistry of Azides. The Generation of CH2=N- and CH2=NCH2 - . J. Org. Chem., Vol. 50, n. 16, 1985. KHARE, B. N.; SAGAN, C.; OGINO, H.; NAGY, B.; SCHRAM, K. H.; ARAKAWA, E. T. Amino Acids derived from Titan Tholins. Icarus, vol. 68, p. 176-184, 1986. 62 KIM, Y. S.; KAISER, R. I. On The Formation of Amines (RNH2) and the Cyanide Anion (CN− ) in Electron-Irradiated Ammonia–Hydrocarbon Interstellar Model Ices. The Astrophysical Journal, 729, 68, (7pp), 2011. KOBAYASHI, K.; TSUCHIYA, M.; OSHIMA, T.; YANAGAWA, H. Abiotic Synthesis Of Amino Acids And Imidazole By Proton Irradiation Of Simulated Primitive Earth Atmospheres. Origins of Life and Evolution of the Biosphere, v. 20, n. 9, 1990. KOHN, W.; SHAM, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, 4A, 1965. KOUCHI, A.; FURUYA, K. HAMA, T.; CHIGAI, T.; KOZASA, T.; WATANABE, N. Direct Measurements of Activation Energies for Surface Diffusion of CO and CO2 on Amorphous Solid Water Using in Situ Transmission Electron Microscopy. The Astrophysical Journal Letters, 891, L22-L29, março, 2020. LACY, J. H.; CARR, J. S.; EVANS II, N. J.; BAAS, F.; ACHTERMANN, J. M.; ARENS, J. F. Discovery of Interstellar Methane: Observations of Gaseous and Solid CH Absorption Toward Young Stars in Molecular Clouds. The Astrophysical Journal, 376, 556-560, ago. 1991. LAINE, P. E.; JHEETA, S. Are we the First: was there life before our Solar System? In: GORDON, R; SHAROV, A. A. Astrobiology: Exploring life on earth and beyond. Cambridge, United States, Academic Press, 2018, p. 321-341. LAWLESS, J. G.; KVENVOLDEN, K. A.; PETERSON, E.; PONNAMPERUMA, C. Amino Acids Indigenous to the Murray Meteorite. Science, Vol. 173, Issue 3997, pp. 626-627, 1971. LAWLESS, J. G.; PETERSON, E. Amino Acids in Carbonaceous Chondrites. Origins of Life, 6, pp. 3-8, 1975. LEUNG, C. M.; HERBEST, E.; HUEBNER, W. F. Synthesis of Complex Molecules in Dense Interstellar Clouds Via Gas-Phase Chemistry: A Pseudo Time-Dependent Calculation. The Astrophysical Journal Supplement Series, 56, 231-256, 1984. 63 LOISON, J. C.; HICKSON, K. M. Ab initio study of the C + HNC, N + C2H, H + C2N and H + CNC reactions. Chemical Physics Letters, 635, 174–179, 2015. LOOMIS, R. A.; ZALESKI, D. P.; STEBER, A. L.; NEILL, J. L.; MUCKLE, M. T.; HARRIS, B. J.; et al. The Detection of Interstellar Ethanimine (CH3CHNH) From Observations Taken During the GBT Primos Survey. The Astrophysical Journal Letters, 765, L9-L16, 2013. LÓPEZ-TRIFA, P.; GRZEGORZ, D.; PEKARSKI; ROSSICH, E.; DU PENHOAT, M. A. H.; VUILLEUMIER, R. et al. Ultrafast nonadiabatic fragmentation dynamics of biomolecules. Journal of Physics: Conference Series, 488, 012037, 2014. LOVAS, F. J.; HOLLIS, J. M.; REMIJAN, A. J.; JEWELL, P. R. Detection of Ketenimine (CH2CNH) In Sagittarius B2(N) Hot Cores. The Astrophysical Journal, 645, L137–L140, 2006. LU, X.; XU, X.; WANG, N.; ZHANG, Q. A DFT Study of the 1,3-Dipolar Cycloadditions on the C(100)-2 x 1 Surface. J. Org. Chem., 67, 515-520, 2002 MACKAY, G. I.; BETOWSKI, L. D.; PAYZANT, J. D.; SCHIFF, H. I.; BOHME, D. K. Rate Constants at 297 K for Proton-Transfer Reactions with HCN and CH3CN. Comparisons with Classical Theories and Exothermicity. The Journal of Physical Chemistry, Vol. 80, No. 26, 1976. MARTIN, T. W.; MELTON, C. E. Hydrogen Atom Abstraction Reactions by Cyanide Ion Radicals. J. Chem. Phys. 32, 700, 1960. MATSUURA, O. T. História da Astronomia no Brasil. 1 ed. Recife: Companhia Editora de Pernambuco, 2014, 600 p. MCGUIRE, B. A. 2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. The Astrophysical Journal Supplement Series, 239, 17, 1-48, 2018. MCKELLAR, A. Evidence for the Molecular Origin of Some Hitherto Unidentified Interstellar Lines. Publications of the Astronomical Society of the Pacific, Vol. 52, n. 307, p.187, Jun. 1940. 64 MEBEL, A. M.; KAISER, R. I. The Formation of Interstellar C2N Isomers in Circumstellar Envelopes of Carbon Stars: An Ab Initio Study. The Astrophysical Journal, 564, 787-791, jan. 2002. MEIERHENRICH, U. J.; CARO, G. M. M.; SCHUTTE, W. A.; BARBIER, B.; SEGOVIA, A. A.; ROSENBAUER, H.; THIEMANN, W. H. P.; BRACK, A. Prebiotic synthesis of amino acids – interstellar VS. atmospheric mechanisms. NASA Astrophysics Data System, In: Proceedings of the First European Workshop on Exo-Astrobiology, 2002, p. 25 – 30, Graz, Austria. Ed.: Huguette Lacoste. ISBN 92-9092-828-X. MEINERT, C.; FILLIPI, J. J.; NAHON, L.; HOFFMANN, S. V.; D’HENDECOURT, L.; MARCELLUS, P.; BREDEHÖFT, J. H.; THIEMANN, W. H. P.; MEIERHENRICH, U. J. Photochirogenesis: Photochemical Models on the Origin of Biomolecular Homochirality. Symmetry, 2, 2010. MEYER, D. M.; ROTH, K. C. Discovery of Interstellar NH. The Astrophysical Journal, 376, L49-L52, ago. 1991. MILLER, S. L. A production of amino acids under possible primitive earth conditions. Science, vol. 117 (3046), p. 528-529, 1953. MILONE, A. C.; WUENSCHE, C. A.; RODRIGUES, C. V.; D’AMICO, F.; JABLONSKI, F. J.; CAPELATO, H. V.; BRAGA, J.; CECATTO, J. R.; VILAS BOAS, J. W.; AGUIAR, O. D. de; MIRANDA, O. D. Introdução À Astronomia E Astrofísica. INPE, São José dos Campos – São Paulo, 2019. MOORE, M. H.; HUDSON, R. L. Infrared study of ion-irradiated N2-dominated ices relevant to Triton and Pluto: formation of HCN and HNC. Icarus, 161, 486-500, 2003. MORRIS, M.; ZUCKERMAN, B.; PALMER, P.; TURNER, B. E. Interstellar Ammonia. The Astrophysical Journal, 186, pp. 501-528, 1973. MORRIS, M.; ZUCKERMAN, B.; TURNER, B. E; Palmer, P. The ‘New Molecular Cloud in Orion. The Astrophysical Journal, 192, L27-L30, ago. 1974. 65 MORRIS, A. R. Computational Studies of Precursors to Amino Acids in the Interstellar Medium. McNair Scholarly Review, vol. 20, pp. 57-68, 2014. ISSN 1531-0175. NELSON, D. L.; COX, M. M. Lehninger Princípios de Bioquímica. Câmara brasileira do Livro, São Paulo, 3 ed., 2002. ISBN 85-7378-125-4. NGUYEN, T. L.; THORPE, J. H.; BROSS, D. H.; RUSCIC, B.; STANTON, J. F. Unimolecular Reaction of Methyl Isocyanide to Acetonitrile: A High-Level Theoretical Study. The Journal of Physical Chemistry Letters, 9, 2535-2538, 2018. NGUYEN, T. L.; FOURRÉ, I.; FAVRE, C.; BAROIS, C.; CONGIU, E.; BAOUCHE, S.; GUILLEMIN, J. C.; ELLINGER, Y.; DULIEU, F. Formation of amines: hydrogenation of nitrile and isonitrile as selective routes in the interstellar medium. Astronomy & Astrophysics, 628, A15, 2019. OKABE, H.; DIBELER, V. H. Photon impact studies of C2HCN and CH3CN in the vacuum ultraviolet; heats of formation of C2H and CH3CN. The Journal of Chemical Physics, 59, 5, 1973. OLIVEIRA, R. C. DE M.; BAUERFELDT, G. F. Implementation of a variational code for the calculation of rate constants and application to barrierless dissociation and radical recombination reactions: CH3OH = CH3 + OH. International Journal of Quantum Chemistry, v. 112, n. 19, p. 3132–3140, 5 out. 2012. QUAN, D.; HERBST, E.; CORBY, J. F.; DURR, A.; HASSEL, G. Chemical Simulations of Prebiotic Molecules: Interstellar Ethanimine Isomers. The Astrophysical Journal, 824, 129- 143, 2016. REMIJAN, A. J.; HOLLIS, J. M.; LOVAS, F. J.; PLUSQUELLIC, D. F.; JEWELL, P. R. Interstellar Isomers: The Importance of Bonding Energy Differences. The Astrophysical Journal, 632, 333–339, 2005. RIVILLA, V. M.; JIMÉNEZ-SERRA, I.; MATÍN-PINTADO, JESÚS; BRIONES, C.; RODRÍGUEZ-ALMEIDA, L. F.; RICO-VILLAS, F.; et al. Discovery in space of ethanolamine, the simplest phospholipid head group. PNAS, Vol. 118, No. 22 (8p), 2021. 66 ROUSSEAU, P.; PIEKARSKI, D. G.; CAPRON, M.; DOMARACKA, A.; ADOUI, L.; MARTÍN, F.; ALCAMÍ, M.; DÍAZ-TENDERO, S.; HUBER, B. A. Polypeptide formation in clusters of β-alanine amino acids by single ion impact. Nature Communications, 11:3818, 2020. Disponível em: https://doi.org/10.1038/s41467-020-17653-z. Acesso em: 02 de setembro de 2021. ROSER, J. E.; VIDALI, G.; MANICÒ, G.; PIRRONELLO, V. Formation of Carbon Dioxide by Surface Reactions on Ices in The Interstellar Medium. The Astrophysical Journal, 555, L61–L64, 2001. ROSI, M.; FALCINELLI, S.; BALUCANI, N.; CASAVECCHIA, P.; SKOUTERIS, D. A Theoretical Study of Formation Routes and Dimerization of Methanimine and Implications for the Aerosols Formation in the Upper Atmosphere of Titan. Lecture Notes in Computer Science, vol 7971, 2013. RUAUD, M.; WAKELAM, V.; HERSANT, F. Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model. Monthly Notices of the Royal Astronomical Society, 459, 3756–3767, abril, 2016. RUIZ-BERMEJO, M.; MENOR-SALVÁN, C.; OSUNA-ESTEBAN, S.; VEINTEMILLAS- VERDAGUER, S. The Effects of Ferrous and other Ions on the Abiotic Formation of Biomolecules using Aqueous Aerosols and Spark Discharges. Origins of Life and Evolution of Biospheres, v. 37, n. 507, 2007. SHEFFER, Y.; FEDERMAN, S. R. Hubble Space Telescope Measurements of Vacuum Ultraviolet Lines of Interstellar CH. The Astrophysical Journal, 659, 1352-1359, abril 2007. SHIVANI; PANDEY, P.; MISRA, A.; TANDON, P. A theoretical quantum chemical study of alanine formation in interstellar medium. The European Physical Journal D, 71: 215, pp. 1- 10, 2017. SIGNORELLI, M. C. Efeitos da Sarcosina e do Óxido de Trimetilamina na Transmissão Neuromuscular e no processo de Acoplamento Excitaçãocontração de Músculo Estriado Esquelético de Mamífero. 2005. 104p. Dissertação (Mestre em Biologia Celular e Molecular) - Universidade Federal do Paraná – UFP, Curitiba, 2005. 67 SIL, M.; GORAI, P.; DAS, A.; BHAT, B.; ETIM, E. E.; CHAKRABARTI, S. K. Chemical Modeling for Predicting the Abundances of Certain Aldimines and Amines in Hot Cores. The Astrophysical Journal, 853, 139-159, 2018. SILVA, A. R. Teoria do Funcional da Densidade exata para o modelo de Hubbard de dois sítios. 2009. 110p. Dissertação (Mestre em ciências dos materiais) - Universidade Federal do Vale do São Francisco – UNIVASF, Juazeiro – Bahia, 2009. SLEIMAN, C.; DIB, G. E.; TALBI, D.; CANOSA, A. Gas Phase Reactivity of the CN radical with methyl amines at very low temperatures (23 – 297 K): a combined experimental and theoretical investigation. ACS Earth and Space Chemistry, 2, 38 p., 2018. SMITH, A. M.; STECHER, T. P. Carbon Monoxide in The Interstellar Spectrum of Zeta Ophiuchi. The Astrophysical Journal, 164, L43-L47, março 1971. SNYDER, L. E.; BUHL, D. Observations of Radio Emission from Interstellar Hydrogen Cyanide. The Astrophysical Journal, 163, L47-L52, jan. 1971. SNYDER, L. E.; BUHL, D. Detection of Several New Interstellar Molecules. ANNALS of the New York Academy of Sciences, 194, 1, maio 1972. SOLOMON, P.; JEFFERTS, K. B.; PENZIAS, A. A.; WILSON, R. W. Observation of CO Emission At 2.6 Millimeters From IRC+10216. The Astrophysical Journal, 163, L53-L56, jan. 1971. SOLOMON, P.; JEFFERTS, K. B.; PENZIAS, A. A.; WILSON, R. W. Detection of Millimeter Emission Lines from Interstellar Methyl Cyanide. The Astrophysical Journal, 168, L107- L110, 1971. SONG, W.; HU, Y.; XIE, M.; LI, Y.; ZHANG, Z.; JIANG, N.; LIU, F.; SHAN, X.; SHENG, L. Proton transfer processes in interstellar molecular clusters under synchrotron VUV radiation: Taking acrylonitrile and acetonitrile dimers as example. Journal of Electron Spectroscopy and Related Phenomena, 242, 146954, 2020. 68 STEIN, T.; BERA, P. P.; LEE, T. J.; HEAD-GORDON, M. Molecular Growth upon Ionization of Van der Waals Clusters Containing HCCH and HCN is a Pathway to Prebiotic Molecules. Physical Chemistry Chemical Physics, 22, 20337-20348, 2020. STEINFELD, J. I.; FRANCISCO, J. S.; HASE, W. L. Chemical Kinetics and Dynamics. Pearson: Second ed. New Jersey, USA, 1998. SUGAHARA, H.; TAKANO, Y.; TACHIBANA, S.; SUGAWARA, I.; CHIKARAISHI, Y.; OGAWA, N. O.; OHKOUCHI, N.; KOUCHI, A.; YURIMOTO, H. Molecular and isotopic compositions of nitrogen-containing organic molecules formed during UV-irradiation of simulated interstellar ice. Geochemical Journal, 53, 5-20, 2019. SUN, H.; HE, H. Q.; HONG, B.; CHANG, Y. F.; AN, Z.; WANG, R. S. Theoretical Study of the Mechanism of CH2CO + CN Reaction. International Journal of Quantum Chemistry, 106, 894–905, 2006. THEULE, P.; BORGET, F.; MISPELAER, F.; DANGER, G.; DUVERNAY, F.; GUILLEMIN, J. C.; CHIAVASSA, T. Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature. Astronomy & Astrophysics, 534, A64, 2011. TURNER, A. M.; KAISER, R. I. Exploiting Photoionization Reflectron Time-of-Flight Mass Spectrometry to Explore Molecular Mass Growth Processes to Complex Organic Molecules in Interstellar and Solar System Ice Analogs. Accounts of Chemical Research, 53, 2791-2805, dez. 2020. TURNER, B. E.; KISLYAKOV, A. G.; LISZT, H. S.; KAIFU, N. Microwave Detection of Interstellar Cyanamide. The Astrophysical Journal, 201, L149-L152, nov., 1975. VIEIRA, G. S.; SANTOS, L. G. F.; ALMEIDA, C. S.; TEJERO, T. N.; XAVIER JR, N. F.; MACHADO, G. S.; BAUERFELDT, G. F. Assessment of Uni and Bimolecular Reaction Kinetics of Dimethoxymethane with the KINPRO Package. 10th European Combustion Meeting. Napoli, April 14-15, 2021. www.ecm2021napoli.eu/ VIGREN, E.; KAMINSKA, M.; HAMBERG, M.; ZHAUNERCHYK, V.; THOMAS, R. D.; DANIELSSON, M.; SEMANIAK, J.; ANDERSSON, P. U.; LARSSON, M.; GEPPER, W. D. Dissociative recombination of fully deuterated protonated acetonitrile, CD3CND+ : product 69 branching fractions, absolute cross section and thermal rate coefficient. Physical Chemistry Chemical Physics, 10, 4014–4019, 2008. WANG, Q.; WU, D.; ZHANG, D.; JIN, M.; LIU, F.; LIU, H.; HU, Z.; DING, D. Ionization and Dissociation Processes of Pyrrolidine in Intense Femtosecond Laser Field. J. Phys. Chem., 113, 11805–11815, 2009. WILSON, R. W.; JEFFERTS, K. B.; PENZIAS, A. A. Carbon Monoxide in The Orion Nebula. The Astrophysical Journal, 161, L43-L44, Jul. 1970. WLODEK, S.; BOHME, D. K. Gas-Phase Reactions of Si+ with Ammonia and the Amines (CH3)xNH3-x (x = 1−3): Possible Ion-Molecule Reaction Pathways toward SiH, SiCH, SiNH, SiCH3, SiNCH3, and H2SiNH. The American Chemical Society, 110, 2396-2399, 1988. WOON, David E. Pathways to Glycine and Other Amino Acids in Ultraviolet-Irradiated Astrophysical Ices Determined Via Quantum Chemical Modeling. The Astrophysical Journal, 571, L177–L180, 2002. WOON, D. E.; DUNNING Jr., T. H. Calculation of the electron affinities of the second row atoms: Al–Cl. The Journal of Chemical Physics, v. 99, n. 3730, 1993. XUE, C.; WILLIS, E. R.; LOOMIS, R. A.; et al. Detection of Interstellar HC4NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions. The Astrophysical Journal Letters, 2020, 900:9L, 1-13. ZAIA, D. A. M.; ZAIA, T. B. V.; SANTANA, H. Which Amino Acids Should Be Used in Prebiotic Chemistry Studies? Origins of Life and Evolution of Biospheres, v. 38, p. 469-488, 2008. ZALESKI, D. P.; SEIFERT, N. A.; STEBER, A. L.; MUCKLE, M. T.; LOOMIS, R. A.; CORBY, J. F.; et al. Detection of E-Cyanomethanimine Toward Sagittarius B2(N) in the Green Bank Telescope Primos Survey. The Astrophysical Journal Letters, 765, L10 (6pp), março, 2013. ZHANG, W.; DU, B. Reaction Mechanism for CN With CH2CO. International Journal of Quantum Chemistry, 106, 1076–1085, 2006. 70 ZHAO, Y.; TRUHKAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215-241, 2008. ZHU, C.; FRIGGE, R.; TURNER, A. M.; ABPLANALP, M. J.; SUN, B. J.; CHEN, Y. L.; CHANG, A. H. H.; KAISER, R. I. A vacuum ultraviolet photoionization study on the formation of methanimine (CH2NH) and ethylenediamine (NH2CH2CH2NH2) in low temperature interstellar model ices exposed to ionizing radiation. Physical Chemistry Chemical Physics, 21, 1952-1962, 2019. ZUCKERMAN, B.; MORRIS, M.; TURNER, B. E.; PALMER, P. New Ammonia Lines and Sources in The Galaxy. The Astrophysical Journal, 169, L105-L108, 1971. ZUCKERMAN, B.; MORRIS, M.; TURNER, B. E.; PALMER, P. Observations of CS, HCN, U89.2, and U90.7 IN NGC 2264. The Astrophysical Journal, 173, L125-L129, maio, 1972. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/74712/2022%20-%20D%c3%a9borah%20Menezes%20de%20Lima.Pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6912 | |
dc.originais.provenance | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-11T16:04:13Z No. of bitstreams: 1 2022 - Déborah Menezes de Lima.Pdf: 1187605 bytes, checksum: fe4cad1ced1bf8c05204c5e0241cf376 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-09-11T16:04:13Z (GMT). No. of bitstreams: 1 2022 - Déborah Menezes de Lima.Pdf: 1187605 bytes, checksum: fe4cad1ced1bf8c05204c5e0241cf376 (MD5) Previous issue date: 2022-08-29 | eng |
Appears in Collections: | Mestrado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Déborah Menezes de Lima.Pdf | 2022 - Déborah Menezes de Lima | 1.16 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.