Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/9106
Full metadata record
DC FieldValueLanguage
dc.creatorSantos, Thanízia Ferraz
dc.date.accessioned2023-11-19T19:59:04Z-
dc.date.available2023-11-19T19:59:04Z-
dc.date.issued2015-08-28
dc.identifier.citationSANTOS, Thanízia Ferraz. Estudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfurano. 2015. 61 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2015.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9106-
dc.description.abstractIn this work, potential energy surfaces for the reactions of hydroxyl radical and 2,5-dimethylfuran were studied using the Density Functional Theory. The stationary points, such as reactants, pre-barrier complex, transition states and products were located at BHandHLYP/aug-cc-pVDZ and M06-2X-cc-pVDZ levels by geometry optimization, followed by the calculations of vibrational frequencies. Single point calculations using CCSD(T) were also explored. Thermodynamics properties of enthalpy, entrophy and Gibbs free energies have been determinated at 298,15 K within the conventional equations of Statistical Thermodynamics. The results suggest different addition mechanisms, since an analysis of the potential energy surface (PES) in BHandHLYP/ aug-cc-pVDZ points to paths going through a pi-type intermediary, while in M06-2X/aug-cc-pVDZ the intermediary would have a sigma-type interaction. About the abstraction reactions, only the PES obtained in M06-2X/aug-cc-pVDZ level points to the formation of a pre-barrier complex. The rate coefficients have been determined on the basis of the Variational Transition State Theory, with the kcvt program. The coefficient obtained at CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ for the mechanism which includes the participation of -PC is 𝑘𝑔𝑙𝑜𝑏𝑎𝑙=48,4×10−11, cm³ molec-1 s-1, approximately 4 times higher than the experimental rate coefficient. Deviations of this magnitude are considered satisfactory in theoretical calculation of kinetic parameters. Addition of OH should be the main degradation pathway for furan and its derivatives, during daytime. Moreover, it was possible to clarify the effect of the formation of pre-barrier complexes in the reactions between DMF and OH radicals and propose rate coefficients in the high temperature region, which can be applied in combustion studieseng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectiniciation reactionseng
dc.subjectcombustioneng
dc.subjectbiofuelseng
dc.subjectDMF, , , ,por
dc.subjectab initiopor
dc.subjectreações de iniciaçãopor
dc.subjectcombustãopor
dc.subjectbiocombustíveispor
dc.titleEstudo teórico das reações de abstração e adição do radical hidroxila com o 2,5-dimetilfuranopor
dc.title.alternativeTheoretical study of abstraction and addiction reactions of hydroxyl radical with 2,5-dimethylfuraneng
dc.typeDissertaçãopor
dc.contributor.advisor1Bauerfeldt, Glauco Favilla
dc.contributor.advisor1ID6902348723por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1876040291299143por
dc.contributor.referee1Silva, Clarissa Oliveira da
dc.contributor.referee2Rocha, Alexandre Braga da
dc.creator.ID12624431721por
dc.creator.Latteshttp://lattes.cnpq.br/5605243531841399por
dc.description.resumoNeste trabalho, as superfícies de energia potencial para as reações do radical hidroxila (OH) com o 2,5-dimetilfurano (DMF) foram estudadas em detalhes, utilizando a Teoria do Funcional de Densidade. Pontos estacionários como reagentes, complexos pré-barreira, estados de transição e produtos foram localizados por procedimentos de otimização de geometria, acompanhado do cálculo das frequências vibracionais, em níveis BHandHLYP/aug-cc-pVDZ e M06-2X/aug-cc-pVDZ. Cálculos single point a partir da metodologia coupled-cluster com simples e duplas excitações com tratamento perturbativo das triplas conectadas, CCSD(T), também foi explorado. Propriedades termodinâmicas de entalpia, entropia e energia livre de Gibbs foram calculadas a 298,15 K através das equações da Termodinâmica Estatística. Os resultados sugerem mecanismos de adição diferentes, já que uma análise da superfície de energia potencial (SEP) em BHandHLYP/aug-cc-pVDZ aponta para caminhos passando por um intermediário do tipo pi, enquanto em M06-2X/aug-cc-pVDZ o intermediário seria do tipo sigma. Na abstração, apenas a SEP obtida em M06-2X/aug-cc-pVDZ aponta para a formação de um intermediário pré-barreira. Coeficientes de velocidade foram determinados com base na Teoria do Estado de Transição Variacional, com auxílio do programa kcvt. O coeficiente CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ para o mecanismo que inclui a participação do -PC é de 𝑘𝑔𝑙𝑜𝑏𝑎𝑙=48,4×10−11 cm³ molec-1 s-1, superestimado em relação ao coeficiente experimental em aproximadamente 4 vezes. Desvios dessa magnitude são esperados em cálculos teóricos, especialmente quando envolvem moléculas volumosas. Pode-se constatar que a adição de OH deve ser a principal rota de degradação para o furano e seus derivados durante o dia. Além disso, foi possível esclarecer o efeito da formação de intermediários pré-barreira nas reações entre DMF e o radical OH.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesCAPÍTULO IX - REFERÊNCIAS BIBLIOGRÁFICAS ATKINSON, R.; AREY, J. Atmospheric Degradation of Volatile Organic Compounds. J. Chem. Rev., v. 103, p. 4605−4638, 2003. BABOUL, A. G.; SCHLEGEL, H. B. Improved Method for Calculating Projected Frequencies along a Reaction Path. J. Chem. Phys., v. 107, p. 9413-9417, 1997. BAER, T.; HASE, W. L. Unimolecular Reaction Dynamics: Theory and Experiments. New York , Oxford University Press, Inc. 1996. BARBOSA, T. S.; NIETO, J. D.; COMETTO, P. M.; LANE, S. I.; BAUERFELD, G. F.; ARBILLA, G. Theoretical calculations of the kinetics of the OH reaction with 2-methyl-2-propen-1-ol and its alkene analogue. RSC Adv., v. 4, p. 20830-20840, 2014. BIERBACH, A.; BARNES, I.; BECKER, K. H. Rate coefficients for the gas-phase reactions of hydroxyl radicals with furan, 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran at 300 ± 2 K. Atmos. Environ., v. 26, p. 813-817, 1992. BINDER, J. B.; RAINES, R. T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals .J. Am. Chem. Soc., v. 131, p. 1979-1985, 2009. BOZELL, J. J.; PETERSEN, G. R. Technology development for the productionof biobased products from biorefinery carbohydrates – the US Departmentof Energy’s ―Top 10‖ revisited. Green Chem., v. 12, p. 539–554, 2010. CABAÑAS, B.; VILLANUEVA, F.; MARTÍN, P.; BAEZA, M. T.; SALGADO, S.; JIMÉNEZ, E. Study of reaction processes of furan and some furan derivatives initiated by Cl atoms. Atmospheric Environment, v. 39, p. 1935–1944, 2005. 58 DUTTA, S.; DE, S.; ALAM, M. I.; ABU-OMAR, M. M.; SAHA, B. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal., v. 288, p. 8-15, 2012. FRANCISCO-MÁRQUEZ, M.; ALVAREZ-IDABOY, J. R.; GALANO, A.; VIVIER-BUNGE, A.A Possible Mechanism for Furan Formation in the Tropospheric Oxidation of Dienes. Environ. Sci. Technol., v. 39, p. 8797-8802, 2005. FRIESE, P.; SIMMIE, J.M.; OLZMANN, M. The reaction of 2,5-dimethylfuran with hydrogen atoms – An experimental and theoretical study. Proceedings of the Combustion Institute, v. 34, p. 233–239, 2013. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHIAN, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY, JR., J. A.; PERALTA, J. E.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.; BURANT, J. C.; IYENGAR, S. S.; TOMASI, J.; COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J. E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, Ö.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. GAUSSIAN, INC., WALLINGFORD CT, Gaussian 09, Revision A.02, 2009. FUKUI, K. A. A Formulation of the Reaction Coordinate. J. Phys Chem., v. 74, 4161, 1970. 59 GREENWALD, E. E.; NORTH, S. W.; GEORGIEVSKII, Y.; KLIPPENSTEIN, S. J.A two transition state model for radical-molecule reactions: a case study of the addition of OH to C2H4. J. Phys. Chem. A, v. 109, p. 6031-6044, 2005. GRELA, M. A.; AMOREBIETA, V. T.; COLUSSI, A. J. Very Low Pressure Pyrolysis of Furan, 2-Methytfuran, and 2,5-Dimethylfuran. The Stability of the Furan Ring. J. Phys. Chem., v. 89, p. 38-41, 1985. GONZALEZ, Z.; SCHLEGEL, H. B. Reaction Path Following in Mass-Weighted Internal Coordinates. J. Phys. Chem., v. 94, p. 5523-5527, 1990. HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. Physical Review, v. 136, n. 3B, p. 864-871, 1964. JIAO, C. Q.; ADAMS, S. F.; GARSCADDEN, A. Ionization of 2,5-dimethylfuran by electron impact and resulting ion-parent molecule reactions. Journal of Applied Physics, v. 106, 2009. KOHN, W.; SHAM, L. Self-Consistent Equation Using Exchange and Correlation Effects. Physical Review, v. 140, n. 4A, p. A1133– A1138, 1965. LIFSHITZ, A.; TAMBURU, C.; SHASHUA, R. Thermal Decomposition of 2,5Dimethylfuran. Experimental Results and Computer Modeling. J. Phys. Chem. A, v. 102, p. 10655−10670, 1998. LUC-SY, T.; SIRJEAN, B.; GLAUDE, P.; KOHSE-HÖINGHAUS, K.; BATTIN-LECLERC, F. Influence of substituted furans on the formation of Polycyclic Aromatic Hydrocarbons in flames. Proc. Combust.,http://dx.doi.org/10.1016/j.proci.2014.06.137, 2014. OLIVEIRA, R. C. M.; BAUERFELDT, G. F. International Journal of Quantum Chemistry, 2012, 112, 3132-3140. 60 ROMÁN-LESHKOV, Y.; BARRETT, C. J.;.LIU, Z. Y.; DUMESIC, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, v. 447, p. 982-986, 2007. SIMMIE, J. M.; CURRAN, H. J. Formation Enthalpies and Bond Dissociation Energies of Alkylfurans. The Strongest C-X Bonds Known? J. Phys. Chem. A., v. 113, p. 5128–5137, 2009. SIMMIE, J. M.; METCALFE, W. K. Ab Initio Study of the Decomposition of 2,5Dimethylfuran. J. Phys. Chem. A, v. 115, p. 8877–8888, 2011. SIRJEAN, B.; FOURNET, R. Unimolecular decomposition of 2,5-dimethylfuran : a theoretical chemical kinetic study. Phys. Chem. Chem. Phys., v. 15, p. 596—611, 2013. SIRJEAN, B.; FOURNET, R.; GLAUDE, P.; BATTIN-LECLERC, F.; WANG, W.; OEHLSCHLAEGER, M. A. Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran. J. Phys. Chem. A, v. 117, p. 1371-1392, 2013. SOMERS, K. P.; SIMMIE, J. M.; GILLESPIE, F.; CONROY, C.; BLACK, G.; METCALFE, W. K.; BATTIN-LECLERC, F.; DIRRENBERGER, P.; HERBINET, O. ; GLAUDE, P. A.; DAGAUT, P.; TOGBÉ, C.; YASUNAGA, K.; FERNANDES, R. X.; LEE, C.; TRIPATHI, R.; CURRAN, H. J. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame, 2013. STEINFELD, J. I.; FRANCISCO, J. S.; HASE, W. L. Chemical Kinetics and Dynamics. Upper Saddle River. Prentice Hall, 2nd ed, 1998.560 p. THANANATTHANACHON, T.; RAUCHFUSS, T. B. Efficient Production of the Liquid Fuel 2,5- Dimethylfuran from Fructose Using Formic Acid as a Reagent. Angew. Chem. Int. Ed., v. 49, p. 6616-6618, 2010. 61 TOGBÉ, C.; TRAN, L.; LIU, D.; FELSMANN. D.; OßWALD, P.; GLAUDE, P.; SIRJEAN, B.; FOURNET, R.; BATTIN-LECLERC, F.; KOHSE-HÖINGHAUS, K. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part III: 2,5-Dimethylfuran. Combustion and Flame, 2013. TRUHLAR, D. G.; GARRETT, B. C. Variational Transition State Theory. Annual Review of Physical Chemistry, ,v. 35, p. 159-189, 1984. WOON, D. E.; DUNNING JR., T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys., v. 98, p. 1358-1371, 1993. YANG, P.; CUI, Q.; ZU, Y.; LIU, X.; LU, G.; WANG, Y. Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ni/Co3O4 catalyst. Catalysis Communications, vol. 66, p. 55-59, 2015. YOUNG, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. New York. John Wiley & Sons, 2011. 370 p. ISBN: 0-471-33368-9. ZHAO, Y.; TRUHLAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account, v. 120, p. 215-241, 2008. ZHANG, W.; DU, B.; MU, L.; FENG, C. Computational study on the mechanism for the reaction of OH with 2-methylfuran. J. Mol. Struct., v. 851 (1-3), p. 353−357, 2008.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5381/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20104/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26405/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32828/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/39258/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45636/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/52012/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58470/2015%20-%20Than%c3%adzia%20Ferraz%20Santos.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1709
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-30T17:17:07Z No. of bitstreams: 1 2015 - Thanízia Ferraz Santos.pdf: 1742658 bytes, checksum: 07706cbaaa52be04cb7ec04d0d453fa2 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-05-30T17:17:07Z (GMT). No. of bitstreams: 1 2015 - Thanízia Ferraz Santos.pdf: 1742658 bytes, checksum: 07706cbaaa52be04cb7ec04d0d453fa2 (MD5) Previous issue date: 2015-08-28eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2015 - Thanízia Ferraz Santos.pdf2015 - Thanízia Ferraz Santos1.7 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.