Please use this identifier to cite or link to this item: http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/23235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaciel, Maria Dávila Rodrigues-
dc.date.accessioned2025-09-17T13:29:17Z-
dc.date.available2025-09-17T13:29:17Z-
dc.date.issued2024-04-19-
dc.identifier.citationMACIEL, Maria Dávila Rodrigues. Dinâmicas espaciais e temporais da assembleia de peixes recifais da baía da Ilha Grande, RJ. 2024. 75 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2024.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/23235-
dc.description.abstractOs ambientes recifais encontram-se ameaçados por múltiplos distúrbios que operam em diferentes escalas espaciais e temporais, promovendo mudanças na diversidade, na estrutura e no funcionamento dos ecossistemas. Compreender como as assembleias de peixes recifais respondem às influências ambientais e antrópicas no espaço e a longo prazo é essencial para implementar estratégias de gestão e reduzir os efeitos da perda de biodiversidade nos ambientes recifais. O presente estudo teve como objetivo investigar as mudanças temporais na estrutura e composição das assembleias de peixes recifais da baia da Ilha Grande através de um gradiente de distância da costa, contrastando interior e adjacências da unidade de proteção integral Estação Ecológica de Tamoios. Censos visuais subaquáticos foram realizados em locais próximos (<2km) e intermediários (~4,5km, área protegida pela ESEC) da costa nos períodos de 2010 e 2019, bem como em locais mais distantes (área não protegida) em 2010/2011 e 2015. O nível de impacto nos locais da unidade de conservação foi mensurado através do Indice de Impacto Humano (IIH). Os parâmetros da assembleia de peixes conhecidos por responderem aos impactos antrópicos de longo prazo como sobrepesca e a destruição de habitats (estrutura da assembleia de peixes, riqueza, abundância, e diversidade de grupos tróficos) foram registrados. Análises multivariadas de variância permutacional e Análises de Coordenadas Principais (PCO) foram utilizadas para testar e explorar a variação espacial nos parâmetros da assembleia de peixes entre recifes (próximos, intermediários e distantes da costa) e entre períodos (2010 vs. 2019 e 2010/2011 vs. 2015). A estrutura da assembleia de peixes não variou entre períodos nos locais mais próximos da costa, enquanto mudanças significativas foram registradas para os locais intermediários e distantes (PERMANOVA; P < 0,01). Uma marcante mudança na composição da assembleia de peixes recifais entre o período de 2010 e 2019 foi observada, principalmente nos locais intermediários da costa (Ilha de Búzios). As espécies alvo da pesca recreativa e subaquática foram as mais afetadas, com destaque para Epinephelus marginatus (Garoupa- verdadeira), Mycteroperca acutirostris (Badejo-mira) e Sparisoma frondosum (peixe Papagaio), que não foram registradas em 2019 nos locais intermediários. Os grupos tróficos também diferiram entre os periodos, com maior destaque para carnívoros, herbívoros raspadores e predadores de invertebrados vágeis. O valor de IIH foi maior nos locais próximos da costa (Ilha do Sandri e Ilha da Samambaia), seguido pelos locais intermediários (Ilha dos Búzios). A assembleia de peixes recifais mudou de uma estrutura mais diversa, com maior número de espécies e abundância de grupos chave e importantes para a pesca para uma comunidade menos diversa, dominada principalmente por predadores de invertebrados vágeis. A redução na abundância de mesopredadores e herbívoros raspadores alvos da pesca destaca a urgência de implementar planos de recuperação de espécies e intensificar as ações de proteção na ESEC Tamoios. Essas ações são fundamentais para restaurar a funcionalidade dos recifes e prevenir que recifes distantes sofram o mesmo declínio observado nos recifes próximos e intermediários da costa.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectmudança espaço-temporalpt_BR
dc.subjectÁreas Marinhas Protegidaspt_BR
dc.subjectassembleia de peixespt_BR
dc.subjectgrupos tróficospt_BR
dc.subjectimpactos antropogênicospt_BR
dc.subjectSpatio-temporal changept_BR
dc.subjectMarine Protected Areaspt_BR
dc.subjectfish assemblagespt_BR
dc.subjecttrophic groupspt_BR
dc.subjectanthropogenic impactspt_BR
dc.titleDinâmicas espaciais e temporais da assembleia de peixes recifais da baía da Ilha Grande, RJ.pt_BR
dc.title.alternativeSpatial and temporal dynamics in reef fish assemblages of Ilha Grande bay – RJ.en
dc.typeDissertaçãopt_BR
dc.description.abstractOtherReef environments are threatened by multiple disturbances that operate at different spatial and temporal scales, promoting changes in the diversity, structure and functioning of ecosystems. Understanding how reef fish assemblages respond to environmental and anthropogenic influences over space and the long term is essential for implementing management strategies and reducing the effects of biodiversity loss in reef environments. The aim of this study was to investigate temporal changes in the structure and composition of reef fish assemblages in the bay of Ilha Grande across a gradient of distance from the coast, contrasting inland and adjacent to the fully protected Tamoios Ecological Station. Underwater visual surveys were carried out at sites close (<2km) and intermediate (~4.5km, area protected by the ESEC) to the coast in 2010 and 2019, as well as at more distant sites (non-protected area) in 2010/2011 and 2015. The level of impact on the sites of the conservation unit was measured using the Human Impact Index (HII). Fish assemblage parameters known to respond to long-term anthropogenic impacts such as overfishing and habitat destruction (fish assemblage structure, richness, abundance, and trophic group diversity) were recorded. Multivariate analyses of permutational variance and Principal Coordinate Analyses (PCO) were used to test and explore spatial variation in fish assemblage parameters between reefs (near, intermediate and far shore) and between periods (2010 vs. 2019 and 2010/2011 vs. 2015). The structure of the fish assembly did not vary between periods at the sites closest to the coast, while significant changes were recorded for the intermediate and distant sites (PERMANOVA; P < 0.01). A marked change in the composition of the reef fish assemblage between the period 2010 and 2019 was observed, especially at the intermediate sites on the coast (Ilha de Búzios). The species targeted by recreational and underwater fishing were the most affected, especially Epinephelus marginatus (Dusky grouper), Mycteroperca acutirostris (Whiting) and Sparisoma frondosum (Parrotfish), which were not recorded in 2019 at the intermediate sites. Trophic groups also differed between periods, with carnivores, scraping herbivores and predators of fragile invertebrates standing out. The HII value was higher at sites close to the coast (Sandri Island and Samambaia Island), followed by intermediate sites (Búzios Island). The reef fish assemblage changed from a more diverse structure, with a greater number of species and abundance of key groups important for fishing, to a less diverse community, dominated mainly by predators of fragile invertebrates. The reduction in the abundance of mesopredators and scraping herbivores targeted by fisheries highlights the urgency of implementing species recovery plans and intensifying protection actions in the Tamoios ESEC. These actions are fundamental to restoring the functionality of the reefs and preventing distant reefs from suffering the same decline observed in reefs near and intermediate to the coast.en
dc.contributor.advisor1Neves, Leonardo Mitrano-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9490750242360258pt_BR
dc.contributor.referee1Neves, Leonardo Mitrano-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9490750242360258pt_BR
dc.contributor.referee2Tubino, Rafael de Almeida-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-3175-4724pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3833439576748268pt_BR
dc.contributor.referee3Skinner, Luis Felipe-
dc.contributor.referee3IDhttps://orcid.org/0000-0003-0971-4870pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9748284881593806pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-3230-1356pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2064931309031261pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Ciências Biológicas e Da Saúdept_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpt_BR
dc.relation.referencesAlbuquerque, T., Loiola, M., José de Anchieta, C. C., Reis-Filho, J. A., Sampaio, C. L., & Leduc, A. O. In situ effects of human disturbances on coral reef-fish assemblage structure: temporary and persisting changes are reflected as a result of intensive tourism. Marine and Freshwater Research, v. 66, n. 1, p. 23-32, 2014. https://doi.org/10.1071/MF13185 Anderson, A. B., Bonaldo, R. M., Barneche, D. R., Hackradt, C. W., Felix-Hackradt, F. C., García-Charton, J. A., & Floeter, S. R. Recovery of grouper assemblages indicates effectiveness of a marine protected area in Southern Brazil. Marine Ecology Progress Series, v. 514, p. 207- 215, 2014. https://doi.org/10.3354/meps11032 Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (2008). Primer-E, Plymouth, UK, p. 214, 2008. Arias‐González, J. E. Trophic models of protected and unprotected coral reef ecosystems in the South of the Mexican Caribbean. Journal of fish Biology, v. 53, p. 236-255, 1998. https://doi.org/10.1111/j.1095-8649.1998.tb01030.x Babcock, R. C., Shears, N. T., Alcala, A. C., Barrett, N. S., Edgar, G. J., Lafferty, K. D., ... & Russ, G. R. Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proceedings of the National Academy of Sciences, v. 107, n. 43, p. 18256- 18261, 2010. https://doi.org/10.1073/pnas.0908012107 Banha, T. N. S., Capel, K. C. C., Kitahara, M. V., Francini-Filho, R. B., Francini, C. L. B., Sumida, P. Y. G., & Mies, M. Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs, v. 39, p. 515-521, 2020. https://doi.org/10.1007/s00338-019-01856-y Begossi, A., May, P. H., Lopes, P. F., Oliveira, L. E., Da Vinha, V., & Silvano, R. A. Compensation for environmental services from artisanal fisheries in SE Brazil: Policy and 52 technical strategies. Ecological Economics, v. 71, p. 25-32, 2011. https://doi.org/10.1016/j.ecolecon.2011.09.008 Begossi, A., Richerson, P. J. Biodiversity, family income and ecological niche: a study on the consumption of animal foods on Búzios Island (Brazil). Ecology of Food and Nutrition, v. 30, n. 1, p. 51-61, 1993. https://doi.org/10.1080/03670244.1993.9991322 Bellier, E., Neubauer, P., Monestiez, P., Letourneur, Y., Ledireach, L., Bonhomme, P., & Bachet, F. Marine reserve spillover: Modelling from multiple data sources. Ecological informatics, v. 18, p. 188-193, 2013. https://doi.org/10.1016/j.ecoinf.2013.09.004 Bellwood, D. R., Hoey, A. S., Ackerman, J. L., & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Global Change Biology, v. 12, n. 9, p. 1587-1594, 2006. https://doi.org/10.1111/j.1365-2486.2006.01204.x Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. Confronting the coral reef crisis. Nature, v. 429, n. 6994, p. 827-833, 2004. https://doi.org/10.1038/nature02691 Bender, M. G., Machado, G. R., Silva, P. J. D. A., Floeter, S. R., Monteiro-Netto, C., Luiz, O. J., & Ferreira, C. E. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS One, v. 9, n. 10, p. e110332, 2014. https://doi.org/10.1371/journal.pone.0110332 Bender, M. G., Floeter, S. R., Mayer, F. P., Vila-Nova, D. A., Longo, G. O., Hanazaki, N., ... & Ferreira, C. E. L. Biological attributes, and major threats as predictors of the vulnerability of species: a case study with Brazilian reef fishes. Oryx, v. 47, n. 2, p. 259-265, 2013. https://doi.org/10.1017/S003060531100144X Benedetti-Cecchi, L., Bates, A. E., Strona, G., Bulleri, F., Horta e Costa, B., Edgar, G. J., ... & Aspillaga, E. Marine protected areas promote stability of reef fish communities under climate warming. Nature Communications, v. 15, n. 1, p. 1822, 2024. https://doi.org/10.1038/s41467- 024-44976-y Bonaldo, R. M., Pires, M. M., Guimarães, P. R., Hoey, A. S., & Hay, M. E. Small marine protected areas in Fiji provide refuge for reef fish assemblages, feeding groups, and corals. PloS one, v. 12, n. 1, p. e0170638, 2017. https://doi.org/10.1371/journal.pone.0170638 Bonaldo, R. M.; Hoey, A. S.; Bellwood, D. R. The ecosystem roles of parrotfishes on tropical reefs. Oceanography and Marine Biology: An Annual Review, v. 52, p. 81-132, 2014. https://www.researchgate.net/publication/264973910 Brasil. Portaria Interministerial SEAP-PR/MMA No 63, de 31 de dezembro de 2018. Define regras para o uso sustentável e a recuperação dos estoques das espécies Sparisoma axillare (budião-cinza), Sparisoma frondosum (budião-cinza) e Scarus zelindae (budião-banana). Brasília: Diário Oficial da União (DOU). Publicado no D.O.U de 03 de janeiro de 2019. Disponível em: https://www.in.gov.br/. Acesso em: 18 fev. 2022. Cardoso, C. D. D. P., Formiga-Johnsson, R. M., Lima, R. P. D., & Campos, R. D. O. Monitoring Human Activities in the Tamoios Ecological Station-Rio de Janeiro: Management Challenges. Ambiente & Sociedade, v. 23, 2020. https://doi.org/10.1590/1809- 4422asoc20190112r2vu2020L5AO Carvalho-Filho, A. Peixes: Costa Brasileira. São Paulo: Editora Melro, 1999 Chaves, L. D. C. T., & Feitosa, J. L. L. Impactos diretos e indiretos das atividades humanas sobre 53 ambientes recifais e a ictiofauna associada. In book: Ecologia de peixes recifais em Pernambuco, Cap 2, p. 84-140, 2018. Choat, J. H., Clements, K. D., & Robbins, W. The trophic status of herbivorous fishes on coral reefs. Marine Biology, v. 140, n. 3, p. 613-623, 2002. https://doi.org/10.1007/s00227-001-0715- 3 Coutinho, R., Yaginuma, L. E., Siviero, F., dos Santos, J. C. Q., López, M. S., Christofoletti, R. A., ... & Zalmon, I. R. Studies on benthic communities of rocky shores on the Brazilian coast and climate change monitoring: status of knowledge and challenges. Brazilian Journal of Oceanography, v. 64, p. 27-36, 2016. https://doi.org/10.1590/S1679-875920161015064sp2 Christensen, V., Guenette, S., Heymans, J. J., Walters, C. J., Watson, R., Zeller, D., & Pauly, D. Hundred‐year decline of North Atlantic predatory fishes. Fish and fisheries, v. 4, n. 1, p. 1-24, 2003. https://doi.org/10.1046/j.1467-2979.2003.00103.x Creed, J. C., Oliveira, A. E. S., Pires, D. O., Figueiredo, M. D. O., Ferreira, C. E. L., Ventura, C. R. R., ... & Serejo, C. S.RAP Ilha Grande-um levantamento da biodiversidade: histórico e conhecimento da biota. Biodiversidade Marinha da Baía da Ilha Grande. MMA/SBF, Brasília, p. 43-63, 2007. Crowder, L. B., Hazen, E. L., Avissar, N., Bjorkland, R., Latanich, C., & Ogburn, M. B. The impacts of fisheries on marine ecosystems and the transition to ecosystem-based management. Annual Review of Ecology, Evolution, and Systematics, v. 39, p. 259-278, 2008. https://doi.org/10.1146/annurev.ecolsys.39.110707.173406 Dias, C. D. O., & Bonecker, S. L. C. Long-term study of zooplankton in the estuarine system of Ribeira Bay, near a power plant (Rio de Janeiro, Brazil). Hydrobiologia, v. 614, n. 1, p. 65-81, 2008. https://doi.org/10.1007/s10750-008-9537-3 Dias-Neto, J. Pesca no Brasil e seus aspectos institucionais-um registro para o futuro. Revista CEPSUL-Biodiversidade e Conservação Marinha, v. 1, n. 1, p. 66-80, 2010. https://doi.org/10.37002/revistacepsul.vol1.30066-80 Dulvy, N. K., Sadovy, Y., & Reynolds, J. D. Extinction vulnerability in marine populations. Fish and fisheries, v. 4, n.1, p. 25-64, 2003. https://doi.org/10.1046/j.1467-2979.2003.00105.x Edgar, G. J., Stuart-Smith, R. D., Thomson, R. J., & Freeman, D. J. Consistent multi-level trophic effects of marine reserve protection across northern New Zealand. PLoS One, v. 12, n. 5, p. e0177216, 2017. https://doi.org/10.1371/journal.pone.0177216 Edgar, G. J., Stuart-Smith, R. D., Willis, T. J., Kininmonth, S., Baker, S. C., Banks, S., ... & Thomson, R. J. Global conservation outcomes depend on marine protected areas with five key features. Nature, v. 506, n. 7487, p. 216-220, 2014. https://doi.org/10.1038/nature13022 Eklöv, P., & Diehl, S. Piscivore efficiency and refuging prey: the importance of predator search mode. Oecologia, v. 98, p. 344-353, 1994. https://doi.org/10.1007/BF00324223 PMID: 28313911 Freitas, M. O., Previero, M., Leite, J. R., Francini-Filho, R. B., Minte-Vera, C. V., & Moura, R. L. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish, Scarus trispinosus Valenciennes, 1840. PeerJ, v. 7, p. e7459, 2019. https://doi.org/10.7717/peerj.7459 Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P., & Joyeux, J. C. Trophic structure 54 patterns of Brazilian reef fishes: a latitudinal comparison. Journal of Biogeography, v. 31, n. 7, p. 1093-1106, 2004. https://doi.org/10.1111/j.1365-2699.2004.01044.x Ferreira, C. E. L., Gonçalves, J. E. A., Coutinho, R., & Peret, A. C. Herbivory by the dusky damselfish Stegastes fuscus (Cuvier, 1830) in a tropical rocky shore: effects on the benthic community. Journal of Experimental Marine Biology and Ecology, v. 229, n. 2, p. 241-264, 1998. https://doi.org/10.1016/S0022-0981(98)00056-2 Ferreira, C. E., Goncçalves, J. E., & Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environmental biology of fishes, v. 61, n. 4, p. 353-369, 2001. https://doi.org/10.1023/A:1011609617330 Ferreira, C. M., Coni, E. O. C., Medeiros, D. V., Sampaio, C. L., Reis-Filho, J. A., Barros, F., ... & Nunes, J. D. A. C. D. C. Community structure of shallow rocky shore fish in a tropical bay of the southwestern Atlantic. Brazilian Journal of Oceanography, v. 63, p. 379-396, 2015. https://doi.org/10.1590/S1679-87592015074706304 Floeter, S. R., Guimarães, R. Z., Rocha, L. A., Ferreira, C. E. L., Rangel, C. A., & Gasparini, J. L. Geographic variation in reef‐fish assemblages along the Brazilian coast. Global Ecology and Biogeography, v. 10, n. 4, p. 423-431, 2001. https://doi.org/10.1046/j.1466-822X.2001.00245.x Floeter, S. R., Krohling, W., Gasparini, J. L., Ferreira, C. E., & Zalmon, I. R. Reef fish community structure on coastal islands of the southeastern Brazil: the influence of exposure and benthic cover. Environmental Biology of Fishes, v. 78, n. 2, p. 147-160, 2007. https://doi.org/10.1007/s10641-006-9084-6 Floeter, S. R.; Halpern, Benjamin S.; FERREIRA, C. E. L. Effects of fishing and protection on Brazilian reef fishes. Biological Conservation, v. 128, n. 3, p. 391-402, 2006. https://doi.org/10.1016/j.biocon.2005.10.005 Fonseca, M. S., Araújo, F. G., Teixeira-Neves, T. P., Corrêa, C., Pereira-Filho, G. H., & Neves, L. M. Drivers of distribution of the parrotfish Sparisoma frondosum (agassiz, 1831) in Southwest Atlantic rocky reefs: Insights for management and conservation. Ocean & Coastal Management, v. 209, p. 105642, 2021. https://doi.org/10.1016/j.ocecoaman.2021.105642 Francini-Filho, R. B., & Moura, R. L. D. Evidence for spillover of reef fishes from a no-take marine reserve: An evaluation using the before-after control-impact (BACI) approach. Fisheries Research, v. 93, n. 3, p. 346-356, 2008. https://doi.org/10.1016/j.fishres.2008.06.011 Francini-Filho, R. B., Ferreira, C. M., Coni, E. O. C., De Moura, R. L., & Kaufman, L. Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: influence of resource availability and interference competition. Journal of the Marine Biological Association of the United Kingdom, v. 90, n. 3, p. 481-492, 2010. https://doi.org/10.1017/S0025315409991147 Freire, K. M., Pauly, D. Fishing down Brazilian marine food webs, with emphasis on the east Brazil large marine ecosystem. Fisheries Research, v. 105, n. 1, p. 57-62, 2010. https://doi.org/10.1016/j.fishres.2010.02.008 García-Charton, J.A.; Pérez Ruzafa, A. Spatial pattern and the habitat structure of a Mediterranean rocky reef fish local assemblage. Marine Biology, v. 138, p. 917– 934. 2001. https://doi.org/10.1007/s002270000524 García-Charton, J. A., Pérez-Ruzafa, A., Sánchez-Jerez, P., Bayle-Sempere, J. T., Reñones, O., & Moreno, D. Multi-scale spatial heterogeneity, habitat structure, and the effect of marine 55 reserves on Western Mediterranean rocky reef fish assemblages. Marine Biology, v. 144, n. 1, p. 161-182, 2004. https://doi.org/10.1007/s00227-003-1170-0 Gaines, S. D., White, C., Carr, M. H., & Palumbi, S. R. Designing marine reserve networks for both conservation and fisheries management. Proceedings of the National Academy of Sciences, v. 107, n. 43, p. 18286-18293, 2010. https://doi.org/10.1073/pnas.0906473107 Gibran, F. Z. Activity, habitat use, feeding behavior, and diet of four sympatric species of Serranidae (Actinopterygii: Perciformes) in southeastern Brazil. Neotropical Ichthyology, v. 5, n. 3, p. 387-398, 2007. https://doi.org/10.1590/S1679-62252007000300018 Gibran, F. Z., & Moura, R. L. D. The structure of rocky reef fish assemblages across a nearshore to coastal islands' gradient in Southeastern Brazil. Neotropical Ichthyology, v. 10, n. 2, p. 369- 382, 2012. https://doi.org/10.1590/S1679-62252012005000013 Giglio, Vinicius J.; Luiz, Osmar J.; Ferreira, Carlos EL. Ecological impacts and management strategies for recreational diving: A review. Journal of environmental management, v. 256, p. 109949, 2020. https://doi.org/10.1016/j.jenvman.2019.109949 Guidetti, P., Terlizzi, A., Fraschetti, S., & Boero, F. Spatio‐temporal variability in fish assemblages associated with coralligenous formations in south eastern Apulia (SE Italy). Italian Journal of Zoology, v. 69, n. 4, p. 325-331, 2002. https://doi.org/10.1080/11250000209356477 Guidetti, P.; Boero, F. Desertification of Mediterranean rocky reefs caused by datemussel, Lithophaga lithophaga (Mollusca: Bivalvia), fishery: effects on adult and juvenile abundance of a temperate fish. Marine Pollution Bulletin, v. 48, p. 978–982. 2004. https://doi.org/10.1016/j.marpolbul.2003.12.006 Graham, N. A., Bellwood, D. R., Cinner, J. E., Hughes, T. P., Norström, A. V., & Nyström, M. Managing resilience to reverse phase shifts in coral reefs. Frontiers in Ecology and the Environment, v. 11, n. 10, p. 541-548, 2013. https://doi.org/10.1890/120305 Graham, N. A., Jennings, S., MacNeil, M. A., Mouillot, D., & Wilson, S. K. Predicting climate- driven regime shifts versus rebound potential in coral reefs. Nature, v. 518, n. 7537, p. 94-97, 2015. https://doi.org/10.1038/nature14140 Graham, N. A., Wilson, S. K., Jennings, S., Polunin, N. V., Bijoux, J. P., & Robinson, J. Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the National Academy of Sciences, v. 103, n. 22, p. 8425-8429, 2006. https://doi.org/10.1073/pnas.0600693103 Gratwicke, B., & Speight, M. R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of fish biology, v. 66, n. 3, p. 650-667, 2005. https://doi.org/10.1111/j.0022-1112.2005.00629.x Hauzy, C., Tully, T., Spataro, T., Paul, G., & Arditi, R. Spatial heterogeneity and functional response: an experiment in microcosms with varying obstacle densities. Oecologia, v. 163, p. 625-636, 2010. https://doi.org/10.1007/s00442-010-1585-5 PMID: 20213153 Halpern, B. S. The impact of marine reserves: do reserves work and does reserve size matter? Ecological applications, v. 13, n. sp1, p. 117-137, 2003. https://doi.org/10.1890/1051- 0761(2003)013[0117:TIOMRD]2.0.CO;2 Halpern, B. S., & Warner, R. R. Marine reserves have rapid and lasting effects. Ecology letters, v. 5, n. 3, p. 361-366, 2002. https://doi.org/10.1046/j.1461-0248.2002.00326.x 56 Halpern, B. S., Lester, S. E., & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environmental Conservation, v. 36, n. 4, p. 268-276, 2009. https://doi.org/10.1017/S0376892910000032 Halpern, B. S., Longo, C., Hardy, D., McLeod, K. L., Samhouri, J. F., Katona, S. K., ... & Zeller, D. An index to assess the health and benefits of the global ocean. Nature, v. 488, n. 7413, p. 615- 620, 2012. https://doi.org/10.1038/nature11397 Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L., ... & Willis, B. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current biology, v. 17, n. 4, p. 360-365, 2007. https://doi.org/10.1016/j.cub.2006.12.049 ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade. Um ano de monitoramento das atividades humanas em áreas da Estação Ecológica de Tamoios: a baía de Ilha Grande suporta uma unidade de conservação de proteção integral? Relatório anal. Paraty, 2009. ICMBio. Cadastro Nacional de Unidades de Conservação. In: Instituto Chico Mendes de Proteção a Natureza [Internet]. 17 de junho de 2023 [citado em 20 de julho de 2023]. Disponível: https://www.gov.br/mma/pt-br/assuntos/ecossistemas-1/ecossistemas-costeiros-e- marinhos/unidades-de-conservacao-costeiras-e-marinhas Ignacio, B. L., Julio, L. M., Junqueira, A. O., & Ferreira-Silva, M. A. Bioinvasion in a Brazilian bay: filling gaps in the knowledge of southwestern Atlantic biota. PLoS One, v. 5, n. 9, p. e13065, 2010. https://doi.org/10.1371/journal.pone.0013065 Johnsson, R. M. F., & Ikemoto, S. M. Diagnóstico do setor costeiro da Baía da Ilha Grande: Subsídios à elaboração do zoneamento ecológico-econômico costeiro. Rio de Janeiro: Instituto Estadual do Ambiente, 2015. Langlois, T. J., Harvey, E. S., Meeuwig, J. J. Strong direct and inconsistent indirect effects of fishing found using stereo-video: Testing indicators from fisheries closures. Ecological Indicators, v. 23, p. 524-534, 2012. https://doi.org/10.1016/j.ecolind.2012.04.030 Lecchini, D., Adjeroud, M., Pratchett, M. S., Cadoret, L., & Galzin, R. Spatial structure of coral reef fish communities in the Ryukyu Islands, southern Japan. Oceanologica acta, v. 26, n. 5-6, p. 537-547, 2003. https://doi.org/10.1016/S0399-1784(03)00048-3 Ledlie, M. H., Graham, N. A. J., Bythell, J. C., Wilson, S. K., Jennings, S., Polunin, N. V., & Hardcastle, J. Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs, v. 26, n. 3, p. 641-653, 2007. https://doi.org/10.1007/s00338-007-0230-1 Lester, S. E., Halpern, B. S., Grorud-Colvert, K., Lubchenco, J., Ruttenberg, B. I., Gaines, S. D., ... & Warner, R. R. Biological effects within no-take marine reserves: a global synthesis. Marine Ecology Progress Series, v. 384, p. 33-46, 2009. https://doi.org/10.3354/meps08029 Lomolino, M. V. Ecology's most general, yet protean pattern: the species-area relationship. Journal of Biogeography, p. 17-26, 2000. https://www.jstor.org/stable/2655979 Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., ... & Jackson, J. B. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, v. 312, n. 5781, p. 1806-1809, 2006. https://doi.org/10.1126/science.1128035 Krajewski, J. P., & Floeter, S. R. Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): the influence of exposure and benthic 57 composition. Environmental Biology of Fishes, v. 92, n. 1, p. 25-40, 2011. https://doi.org/10.1007/s10641-011-9813-3 Malcolm, H. A., Jordan, A., Smith, S. D. Biogeographical and cross-shelf patterns of reef fish assemblages in a transition zone. Marine Biodiversity, v. 40, n. 3, p. 181-193, 2010. https://doi.org/10.1007/s12526-010-0042-3 Malcolm, H. A., & Ferrari, R. Strong fish assemblage patterns persist over sixteen years in a warming marine park, even with tropical shifts. Biological conservation, v. 232, p. 152-163, 2019. https://doi.org/10.1016/j.biocon.2019.02.005 Martín-García, L., Sangil, C., Brito, A., & Barquín-Diez, J. Identification of conservation gaps and redesign of island marine protected areas. Biodiversity and conservation, v. 24, n. 3, p. 511- 529, 2015. https://doi.org/10.1007/s10531-014-0833-0 Micheli, F., Mumby, P. J., Brumbaugh, D. R., Broad, K., Dahlgren, C. P., Harborne, A. R., ... & Sanchirico, J. N. High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs. Biological Conservation, v. 171, p. 186-194, 2014. https://doi.org/10.1016/j.biocon.2013.12.029 Ministério do Meio Ambiente - MMA. Biodiversidade Brasileira: Avaliação e identificação de áreas e ações prioritárias para a conservação, utilização sustentável e repartição de benefícios da biodiversidade Brasileira. Fundação Bio-RIO, SECTAM, IDEMA, SNE, Brasília, 2002. Mouillot, D., Graham, N. A., Villéger, S., Mason, N. W., & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends in ecology & evolution, v. 28, n. 3, p. 167-177, 2013. https://doi.org/10.1016/j.tree.2012.10.004 Mora, C., Aburto-Oropeza, O., Ayala Bocos, A., Ayotte, P. M., Banks, S., Bauman, A. G., ... & Zapata, F. A. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS biology, v. 9, n. 4, p. e1000606, 2011. https://doi.org/10.1371/journal.pbio.1000606 Mumby, P. J., Steneck, R. S., Edwards, A. J., Ferrari, R., Coleman, R., Harborne, A. R., & Gibson, J. P. Fishing down a Caribbean food web relaxes trophic cascades. Marine Ecology Progress Series, v. 445, p. 13-24, 2012. https://doi.org/10.3354/meps09450 Mumby, P. J., Dahlgren, C. P., Harborne, A. R., Kappel, C. V., Micheli, F., Brumbaugh, D. R., ... & Gill, A. B. Fishing, trophic cascades, and the process of grazing on coral reefs. science, v. 311, n. 5757, p. 98-101, 2006. https://doi.org/10.1126/ciência.1121129 Munday, P. L. Does habitat availability determine geographical-scale abundances of coral- dwelling fishes? Coral Reefs, v. 21, n. 1, p. 105-116, 2002. https://doi.org/10.1007/s00338-001- 0200-y Neves, L. M., Teixeira-Neves, T. P., Pereira-Filho, G. H., & Araujo, F. G. The farther the better: effects of multiple environmental variables on reef fish assemblages along a distance gradient from river influences. PloS one, v. 11, n. 12, p. e0166679, 2016. https://doi.org/10.1371/journal.pone.0166679 Nogueira CR, Bonecker ACT, Bonecker SLC, Santos CC. Studies of zooplankton near the Nuclear Power Plant—Angra I. Preoperational conditions (RJ- Brazil). In Magoon O, editor. Coastal Zone ‘91—Beach, Vol. 4. American Society of Civil Engineering, New York; 1991. pp. 3221–3233, 1991. 58 Padovani-Ferreira, B., Rocha, L.A., Ferreira, C.E., Francini-Filho, R., Moura, R., Gaspar, A.L., Feitosa, C., Choat, J.H., Myers, R. & Russell, B. 2012. Sparisoma frondosum. The IUCN Red List of Threatened Species 2012: e.T190724A17784768. https://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T190724A17784768. Acesso em: 18 fev. 2022. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres Jr, F. Fishing down marine food webs. Science, v. 279, n. 5352, p. 860-863, 1998. https://doi.org/10.1126/science.279.5352.860 Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V., & Graham, N. A. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity, v. 3, n. 3, p. 424-452, 2011. https://doi.org/10.3390/d3030424 Pinheiro, H. T., Martins, A. S., & Joyeux, J. C. The importance of small-scale environment factors to community structure patterns of tropical rocky reef fish. Journal of the Marine Biological Association of the United Kingdom, v. 93, n. 5, p. 1175-1185, 2013. https://doi.org/10.1017/S0025315412001749 R Core Team. R Language for Statistical Computing. In: R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2021 [cited 8 nov 2021]. Available: https://www.R-project.org/ Reynolds, J. D., Dulvy, N. K., Goodwin, N. B., & Hutchings, J. A. Biology of extinction risk in marine fishes. Proceedings of the Royal Society B: Biological Sciences, v. 272, n. 1579, p. 2337-2344, 2005. https://doi.org/10.1098/rspb.2005.3281 Ribeiro, F. P. A pesca de peixes demersais com armadilhas no nordeste do Brasil. In: Ferreira, B. P., & Maida, M. (Eds). Monitoramento dos recifes de coral do Brasil. Brasília, DF: MMA, Secretaria de Biodiversidade e Florestas, p.71-72. 2006. SBN: 8587166867 Rice, K. R. Vulnerability of parrotfish functional diversity and coral reef health in transitioning island socio-ecosystems. PeerJ Preprints, v. 4, p. e2657v1, 2016. https://doi.org/10.7287/peerj.preprints.2657v1 Roberts, C. M., Ormond, R. F. Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Marine Ecology Progress Series, p. 1-8, 1987. https://www.jstor.org/stable/24827453 Rolim, F. A., Langlois, T., Rodrigues, P. F., Bond, T., Motta, F. S., Neves, L. M., & Gadig, O. B. Network of small no-take marine reserves reveals greater abundance and body size of fisheries target species. PLoS One, v. 14, n. 1, p. e0204970, 2019. https://doi.org/10.1371/journal.pone.0204970 Rolim, F. A., Rodrigues, P. F. C., Gadig, O. B. F. Peixes de recife rochoso: Estação Ecológica de Tupinambás. São Paulo: Anolis Books; 2017. Roos, N. C., Pennino, M. G., Carvalho, A. R., & Longo, G. O. Drivers of abundance and biomass of Brazilian parrotfishes. Marine Ecology Progress Series, v. 623, p. 117-130, 2019. https://doi.org/10.3354/meps13005 Roos, N. C., Longo, G. O., Pennino, M. G., Francini-Filho, R. B., Carvalho, A. R. Protecting nursery areas without fisheries management is not enough to conserve the most endangered parrotfish of the Atlantic Ocean. Scientific reports, v. 10, n. 1, p. 1-10, 2020. https://doi.org/10.1038/s41598-020-76207-x 59 Sala, E., Lubchenco, J., Grorud-Colvert, K., Novelli, C., Roberts, C., & Sumaila, U. R. Assessing real progress towards effective ocean protection. Marine Policy, v. 91, p. 11-13, 2018. https://doi.org/10.1016/j.marpol.2018.02.004 Sale, P. F. Maintenance of high diversity in coral reef fish communities. The American Naturalist, v. 111, n. 978, p. 337-359, 1977. https://doi.org/10.1086/283164 SNUC (2000) Sistema Nacional de Unidades de Conservação da Natureza. Brasília. Lei 9.985/00. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/l9985.htm. Acessado em 18 de fevereiro de 2022. Schultz A. L, Malcolm H. A, Bucher D. J, Linklater M, Smith S. D. A. Depth and medium-scale spatial processes influence fish assemblage structure of unconsolidated habitats in a subtropical marine park. PloS one, v. 9, n. 5, p. e96798, 2014. https://doi.org/10.1371/journal.pone.0096798 Stuart‐Smith, R. D., Barrett, N. S., Stevenson, D. G., & Edgar, G. J. Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming. Global Change Biology, v. 16, n. 1, p. 122-134, 2010. https://doi.org/10.1111/j.1365-2486.2009.01955.x Teixeira-Neves, T. P., Neves, L. M., & Araújo, F. G. Hierarchizing biological, physical and anthropogenic factors influencing the structure of fish assemblages along tropical rocky shores in Brazil. Environmental Biology of Fishes, v. 98, n. 6, p. 1645-1657, 2015. https://doi.org/10.1007/s10641-015-0390-8 Van Nguyen, L., Kim Phan, H. Distribution and factors influencing on structure of reef fish communities in Nha Trang Bay Marine Protected Area, South-Central Vietnam. Environmental Biology of Fishes, v. 82, n. 3, p. 309-324, 2007. https://doi.org/10.1007/s10641-007-9293-7 Westneat, M. W., Alfaro, M. E. Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Molecular phylogenetics and evolution, v. 36, n. 2, p. 370-390, 2005. https://doi.org/10.1016/j.ympev.2005.02.001 Willis, T. J., Millar, R. B., Babcock, R. C., & Tolimieri, N. Burdens of evidence and the benefits of marine reserves: putting Descartes before des horse? Environmental conservation, v. 30, n. 2, p. 97-103, 2003. https://doi.org/10.1017/S0376892903000092pt_BR
dc.subject.cnpqBiologia Geralpt_BR
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
Maria Dávila Rodrigues Maciel.pdf2.3 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.