Please use this identifier to cite or link to this item: http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/23233
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZilli, Jerri Édson-
dc.date.accessioned2025-09-17T12:50:59Z-
dc.date.available2025-09-17T12:50:59Z-
dc.date.issued2001-02-16-
dc.identifier.citationZILLI, Jerri Édson. Caracterização e seleção de estirpes de rizóbio para inoculação de caupi (Vigna unguiculata (L) Walp) em áreas de Cerrado. 2001. 126 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2001.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/23233-
dc.description.abstractO caupi (V. unguiculata) é uma importante leguminosa para muitos países da África, Ásia, assim como para o Brasil, onde é cultivado principalmente no nordeste do país. Historicamente, esta cultura apresenta baixa produtividade, devido às condições de cultivos sem adoção de tecnologias avançadas. Isto porque, em condições de experimentos e lavouras melhor tecnificadas, o caupi tem apresentado alto potencial produtivo, que em geral não tem sido explorado. A produtividade desta cultura poderia ser aumentada, além, é claro da melhoria das condições de cultivo, com o uso de inoculantes de rizóbios eficientes, que poderiam suprir as necessidades de N da planta. A simbiose caupi/rizóbio, no entanto, é de baixa especificidade, o que se torna uma barreira à introdução de novos inoculantes, pois estirpes nativas ou naturalizadas estão adaptadas às condições edafoclimáticas do local e acabam competindo com as estirpes selecionadas, restringindo a contribuição das mesmas para a FBN. Frente a esta situação, sobressaem-se estratégias que avaliam a composição e a contribuição para a FBN de estirpes de rizóbio do local onde se pretende introduzir o novo inoculante. Com vista a selecionar inoculantes para a cultura do caupi em áreas de Cerrado dos estados do Piauí e Maranhão obteve-se uma coleção de rizóbio a partir de diversas áreas do Cerrado, manejadas diferentemente. Esta coleção foi estudada tanto em nível morfológico, como genotípico, através da técnica de ARDRA1 . Representantes desta coleção, assim como também outras estirpes pertencentes a coleção de culturas da Embrapa Agrobiologia, foram avaliados quanto a contribuição na FBN em caupi. Os resultados da caracterização morfológica e ARDRA revelaram que a população de rizóbio do solo foi grandemente influenciada pelos cultivos de soja e/ou caupi, sendo a diversidade de grupos morfológicos de rizóbio inversamente proporcional ao número de cultivos de leguminosas. Na área de Cerrado Clímax, provavelmente pelo baixo requerimento de N do sistema, há um baixo número de rizóbios capazes de nodular caupi, sendo esta população composta somente por Bradyrhizobium elkanii. À medida que o solo foi manejado e cultivado com arroz, observou-se aumento da diversidade de grupos morfológicos de rizóbio, provavelmente pelas alterações físicas e químicas do solo. Os resultados revelaram também que 90% dos isolados recuperados de uma área sabidamente inoculada com B. japonicum apresentaram características morfológicas e genotípicas semelhante a B. japonicum, mostrando o estabelecimento desta espécie. A análise de correspondência realizada demonstrou que áreas onde houve o cultivo de soja e não de caupi, o perfil morfo-genotípico da população de rizóbio foi semelhante. Ao passo que áreas onde havia ocorrido o cultivo de caupi, este perfil apresentou uma distribuição aleatória, demonstrando, desta forma, que esta leguminosa foi capaz de nodular com uma população de rizóbio geneticamente diversa. A eficiência simbiótica de 12 estirpes de rizóbio provenientes do Cerrado e as estirpes BR2001, BR3262 e BR3267 inoculadas na cultivar de caupi BR17, em casa de vegetação, mostrou não haver diferenças na contribuição da FBN entre estirpes de B. japonicum e B. elkanii. Oito das estirpes testadas contribuíram significativamente igual à estirpe BR2001, tanto na produção de matéria seca, como na acumulação de N nas plantas de caupi. No entanto, como observado anteriormente, a estirpe BR2001 não foi capaz de estabelecer nodulação no experimento de campo. Enquanto as estirpes BR3262 e 1B13 ocuparam pelo menos 60% dos nódulos formados por plantas de caupi no campo, em área onde a população de rizóbio estabelecida era da ordem de 6x103 células.g-1 de solo e apresentam excelente capacidade de recuperação da atividade da nitrogenase após um choque térmico. Estes resultados abrem a possibilidade de implementação de experimentos de campo para testar a contribuição destas estirpes na FBN e produtividade do caupi.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectRizóbiopt_BR
dc.subjectCaupipt_BR
dc.subjectCerradopt_BR
dc.subjectDiversidadept_BR
dc.subjectEficiência Simbióticapt_BR
dc.subjectOcupação Nodularpt_BR
dc.subjectRhizobiumpt_BR
dc.subjectCowpeapt_BR
dc.subjectDiversitypt_BR
dc.subjectSymbiotic Efficiencypt_BR
dc.subjectNodules Occupancypt_BR
dc.titleCaracterização e seleção de estirpes de rizóbio para inoculação de caupi (Vigna unguiculata (L) Walp) em áreas de Cerradopt_BR
dc.title.alternativeCharacterization and selection of rhizobium strains for cowpea (Vigna unguiculata (L.) Walp.) inoculation in the Brazilian Cerradoen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherCowpea (V. unguiculata) is an important grain legume for many countries of Africa, Asia, as well as in Brazil, where it is cultivated mainly in the northeast. Usually, this crop presents low yield, due to the lack of appropriate technologies at farmer’s field. In contrast, high crop yields are often obtained in experimental conditions, indicating that the genetic crops potential, has not been explored. Cowpea yield could be increased, by use improved management conditions, and efficient rhizobium inoculants, that would be supply the major part of N requirement. The promiscuity of the cowpea/rhizobium symbiosis, however, becomes a barrier to a introduction of new inoculant, as native or naturalized rhizobium adapted to the edaphoclimatic conditions compete with the selected strains, compromising their potential BNF contribution. Therefore, an evaluation of the composition and the contribution of local rhizobium populations to the BNF of cowpea plants is important prior to the introduction of novel inoculant strains. In this work, we have studied a rhizobium collection obtained from several Cerrado areas subjected to different soil management, to select efficient inoculants for the cowpea into Cerrado areas of Piauí and Maranhão states. This collection was studied regarding their morphological, as well genotypic characteristics by ARDRA technique. Some isolates of this collection, as well as other strains belonging to Embrapa Agrobiologia collection cultures were analyzed to the BNF efficiency in cowpea plants. The morphological and ARDRA characterization results revealed that soil rizhobium populations were largely influenced by soybean and cowpea cultivation. In the local Cerrado climax area, low number of rizhobium were capable of nodulating cowpea, probably, because of the low N requirement in this stable system. The rhizobium populations in this area was comprised only of B. elkanii. In area 2, where rice was previously cultivated, an increase in rhizobium diversity groups was observed, probably because of the physical and chemical disturbance of soil by management. In the other hand, the results also revealed that 90% of the isolates recovered from an area where B. japonicum strains were used as inoculant presented morphological and genotypics characteristics similar to B. japonicum, showing establishment of this species in the soil. The correspondence analysis also demonstrated that areas where soybean has been cultivated, but not cowpea, showed similar rhizobium populations profiles. However, the opposite occurred in areas where cowpea was introduced. In these areas, populations profiles distributed randomically, demonstrating that this legume is capable of being nodulated by a heterogeneous rhizobium population. The symbiotic efficiency of the 12 rhizobium strains from the Cerrado soils and strains BR2001, BR3262 and BR3267 showed that no differences in BNF contribution to the BR17 cowpea cultvar between strains of B. japonicum and B. elkanii exist. Eight of the strains tested were similar to BR2001 in relation to dry matter production and N accumulation in cowpea plants. BR2001 is currently recommended to inoculation of cowpea and, as observed previously, it was not capable of nodulating cowpea under field conditions. However, strains BR3262 and 1B13 formed at least 60% of the nodules in cowpea plants in the field, with an estimated overall rhizobium population of 6x103 cells-1 .g of soil. These strains also presented excellent capacity to recover nitrogenase activity after a thermal shock. These results open the possibility of field experiments to test the contribution of these strains as inoculants for cowpea.en
dc.contributor.advisor1Neves, Maria Cristina Prata-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3106076644053263pt_BR
dc.contributor.advisor2Rumjanek, Norma Gouvêa-
dc.contributor.advisor2IDhttps://orcid.org/0000-0002-2174-1137pt_BR
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/7961822026608333pt_BR
dc.contributor.referee1Manfio, Gilson Paulo-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-5093-0439pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8090184805342318pt_BR
dc.contributor.referee2Caballero, Segundo Sacramento Urquiaga-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-3601-1233pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0525790556695433pt_BR
dc.contributor.referee3Neves, Maria Cristina Prata-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3106076644053263pt_BR
dc.creator.IDhttps://orcid.org/0000-0003-2138-3488pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4935993716536909pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Agronomiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopt_BR
dc.relation.referencesAKKERMANS, W. M. Molecular ecology of microbes: A review of promisses, pitfalls and true progress. Feems Microbiolology Reviews, Amsterdam, v. 15, p. 185 - 194, 1994. AMARGER, N.; BOURS, M.; REVOY, F.; ALLARD, M. R.; LAGURRE, G. Rhizobium tropici nodulates field-grown Phaseulus vulgaris in France. Plant and Soil, Dordrecht, v. 161, p. 147 - 156, 1994. AMARGER, N.; MACHERET, V.; LAGUERRE, G. Rhizobium gallicum sp. nov. and R. giardinii sp. nov., from Phaseolus vulgaris nodules. International Journal of Systematic Bacteriology, Washington, v. 47, p. 996-1006, 1997. ANKOMAH, A.B.; ZAPATA, F.; HARDSON, G. Yeld, nodulation, and N2 fixation by cowpea cultivars at different phosphorus levels. Biology and Fertily of Soils, Berlin, v. 22, p. 10-15, 1996. ANUÁRIO ESTATÍSTICO DA AGRICULTURA BRASILEIRA. Agrianual 98. São Paulo, FNP Consultoria & Comércio, 1998. p.247-253. ANYANGO, B.; WILSON, K.J.; BEYNON, J.L.; GILLER, K.E. Diversity of rhizobia nodulating Phaseulus vulgaris L. in two Kenyan soils with contrasting pHs. Applied and Environmental Microbiology, Washington, v. 61, p. 4016-4021, 1995. ARAÚJO, J.P.P; VATT, E.E. O caupi no Brasil. Brasília, IITA/EMBRAPA, 1988, 722p. AVÍLIO ANTÔNIO FRANCO, comunicação pessoal. AWONAIKE, K.O.; KUMARASINGLE, K.S.; DANSO, S.K.A. Nitrogen fixation and yeld of cowpea (Vigna unguiculata) as influenced by cultivar and Bradyrhizobium strains. Field Crop Research, Amsterdan, v. 24, p. 163 – 171, 1990. BARRERA, L.L., TRUJILLO, M.E.; GOODFELLOW, M.; GARCÍA, F.J; HERNÁNDEZ- LUCAS, I.; DÁVILA, G.; van BERKUM, P.; MARTÍNEZ-ROMERO, E. Biodiversity of bradyrhizobia nodulating Lupinus spp. International Journal of Systematic Bacteriology, Washington, v. 47, p. 1086-1091, 1997. BEZERRA, A.A. de C. Variabilidade e diversidade genética em caupi (Vigna unguiculata, L.Walp.) precoce, de crescimento determinado e porte ereto e semi-ereto, Recife: Universidade Federal Rural de Pernambuco, 1997. 105p. Dissertação de Mestrado. 78 BODDEY, L.H.; HUNGRIA, M. Phenotypic grouping of brazilian Bradyrhizobium strains which nodulate soybean. Biology and Fertily of Soils, Berlin, v. 25, p. 407-415, 1997. BODDEY, L.H.; HUNGRIA, M.; SANTOS, M.A.; VARGAS, M.A.T. Capacidade de fixação de nitrogênio e ocupação nodular de estirpes de Bradyrhizobium japonicum e B. elkanii. In: XXVI Congresso Brasileiro de Ciências do solo, CD-ROOM, Rio de Janeiro, 1997. BODDEY, R.M.; URQUIAGA, S.; NEVES, M.C.P.; SUHET, A. R.; PERES, J.R. Quantification of the contribuition of N2 fixation to field-grown grain legume – a strategy for the practical application of the 15N isotope diluition techinique. Soil Biology and Bochementry, Oxford, v. 22, p. 649-655, 1990. BONO, J.; GRESSEN, F.; NIEBEL, F.; RANJEVA, A.; BONO, J.; CULLIMORE, J. Perception of lipo-chitooligosaccharidic Nod factors in the legume-rhizobia symbiosis. In: PEDROSA, F.O.; HUNGRIA, M., YATOS, M.G.; NEWTON, W., ed. Nitrogen fixation: from molecules to crop productivity; procedings of the 12th International Congress on Nitrogen Fixation, Foz do Iguaçu, Paraná, Brazil, 12-17 setembro, 1999. Kluwer Academic publishers, 2000, p. 213-217. BULL, A.T; GOODFELLOW, M.; SLATER, J.H. Biodiversity as a source of innovation in biotechnology. Annual Review of Microbiology, Palo Alto, v. 46, p. 219-252, 1992. BURTON, J.C. Rhizobium species. In: In: PEPLER, H.J.; PERLMAN, D., ed. Microbial Technology, 2nd ed., Vol. 1 Microbial process. New York. Academic Press. Inc. 1979. p. 29-58. CARPENTER, P.L. Immunology and serology. 3a edição, Sanders College Publishing, Filadélfia, 1975, 346p. CASSMAN, K.G.; MUNNS, D. N. BECK, D. P. Growth of rhizobium strains at low concentration of phosphate. Soil Society of America Journal, Madison, v. 45, p. 520-523, 1981. CHATEL, D.L.; GREENWOOD, R.M.; PARKER, C.A. Saprophytic competence as an important character in selection of Rhyzobium for inoculation. In: 9th Int. Congress in Soil Science Society. Adelaide, v. 2. p. 65-73, 1968. 79 CHEN, W. X.; LI, G. S.; QI, Y.L. WANG, E. T.; YUAN, H. L.; LI, J.L. Rhizobium huakii sp nov. isolated from the nodules of Astragalus sinicus. International Journal of Systematic Bacteriology, Washington, v. 41, p. 275-280, 1991. CHEN, W.E.; WANG, E.; WANG, S.; CHEN, X.; LI, Y. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slow growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. International Journal of Systematic Bacteriology, Washington, v. 43, p. 153-159, 1995. CHEN, W.X,; TAN, Z.Y.; GAO, J. LI, Y.; WANG, E.T. Rhizobium hainanense sp. nov., isolated from tropical legumes. International Journal of Systematic Bacteriology, Washigton, v. 47, p. 870-873, 1997. CHEN, W.X.; YAN, G.H.; Li, J.L. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. International Journal of Systematic Bacteriology, Washington, v. 38, p. 392-397, 1988. CILIA, V. LAFAY, B.; CHRISTEN, R. Sequences heterogeneities among 16S ribossomal RNA sequences and their effect on phylogenetic analyses at species level. Molecular Biology and Evolution, Chicago, v. 13, p. 451-461, 1996. CODON, C.; PHILIPS, J.; FU, Z.Y.; SQUIRES, C.; SQUIRES, C.L. Comparison of the expression of the seven ribosomal RNA operons in Escherichia coli. EMBO Journal, Oxford, v. 11, p. 4175-4185, 1992. COUTINHO, H.L.L.; KAY, H.E.; MANFIO, G.P.; NEVES, M.C.P.; RIBEIRO, J.R.A.; RUMJANEK, N.G.; BERINGER, J. Molecular evidence for shifts in poly saccaride composition associated with adaptation of soybean Bradyrhizobium strains to the Brazilian Cerrado soils. Environmental Microbiology, Washington, v. 1, p. 401-408, 1999. DANSO, S.K.A.; OWIREDU, J.D.; Competitiveness of introduced and indegenous cowpea Bradyrhizobium strains for nodule formation on cowpea (Vigna unguiculata (L.) Walp) in three soil. Soil Biology and Biochemistry, Oxford, v. 20, p. 305-310, 1988. de FARIA, S.M.; FRANCO, A.A.; JESUS, R.M.; MENANDRO, M. de S.; BAITELLO, J.B.; MUCCI, E. S.F.; DÖBEREINER, J.; SPRENT, J.I. New nodulating legume trees from Suth-East Brazil. New Phytologist, Oxford, v. 98, p. 317-328, 1984. 80 de LAJUDIE, P.; LAURENT-FULELE, E.; WILLEMS, A.; TORK, U.; COOPMAN, R.; COLLINS, M.D.; KERSTERS, K.; DREYFUS, B.; GILLIS, M. Allorhizobium undicola gen. nov., sp. nov. nitrogen-fixing bacteria that efficiency nodulate Neptunia natans in Senegal. Internacional Journal of Systematic Bacteriology, v, 48, p. 1270–1290, 1998a. de LAJUDIE, P.; WILLEMS, A.; POT, B.; DEWETTINCK, D; MASTROJUAN, G.; NEYRA, M., COLLINS, M.D., DREYFUS, B. KERSTERS, K.; GILLIS, M. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Internacional Journal of Systematic Bacteriology, v. 44, p. 715-733, 1994. de LAJUDIE, WILLEMS, A., NICK, G.; MOREIRA, F.; MOLOUBA, F.; HOSTE, B.; TORCK, U.; NEYRA, M.; COLLINS, M. D.; LINDSTRÖM, K.; DREYFUS, B.; GILLIS, M. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. International Journal of Systematic Bacteriology, Washington, v. 48, p. 369- 382, 1998b. de OLIVEIRA, V.M. Diversidade genética de rizóbios em amostras ambientais através do uso de sondas moleculares e primers específicos. Campinas, Universidade Estadual de Campinas, 1999, 170p. Tese de doutorado. DE-POLLI, H.; FRANCO, A.A. Inoculação de leguminosas. Rio de Janeiro, EMBRAPA- UAPNBS, 1985, circular técnica. DÖBEREINER, J. Biological nitrogen fixation in the tropics: social and economic contribution. Soil Biology and Biochemistry, Oxford, v.29, p.771-774, 1997. DREYFUS, B.L.; GARCIA, J.L.; GILLIS, M. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen fixing bacterium isolated from Sesbania rostrata. Internacional Journal of Systematic Bacteriology, Washington, v. 38, p. 89-98, 1988. EHLERS, J.D.; FOSTER, K.W. Introgression of agronomic characteres from exotic cowpea gerplasm into blackeye bean. Field Crop Research, Amsterdan, v. 35, p. 43–50, 1992. 81 EHLERS, J.D.; HALL, A.E. Cowpea (Vigna unguiculata L. Walp.). Field Crop Research, Amsterdan, v. 53, p. 1870–204, 1997. FAHRAEUS, G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. Journal of General Microbiology, London, v. 16, 347-381, 1957. FERNANDEZ, G. C.; CREIGHTON, J. M. Interation between rhizobia inoculation and fertilizer nitrogen in five cowpea cultivars. HortScience, Alexandria, v. 21, p. 1345–1348, 1986. FERREIRA, E.P.B.; ZILLI, J.E.; RUMJANEK, N.G.; NEVES, MC.P. Diversidade de rizóbio nativo em área da Mata Atlântica sob diferentes sistemas. In: XX Congresso Brasileiro de Microbiologia, p. 303, Salvador, 1999. FERREIRA, M.G.; HUNGRIA, M. Soybean bradyrhizobia strains isolates from Brazilian soil under native vegetation. In: PEDROSA, F.O.; HUNGRIA, M., YATOS, M.G.; NEWTON, W., ed. Nitrogen fixation: from molecules to crop productivity; proccedings of the 12th International Congress on Nitrogen Fixation, Foz do Iguaçu, Paraná, Brazil, 12- 17 setembro, 1999. Kluwer Academic publishers, 2000, p. 192. FOX, G.E.; WISOTZKEY, J.D.; JURTSHUK J.R.P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic Bacteriology, Washington, v. 42, p. 166-170, 1992. FRED, E.B.; WAKSMAN, S.A. Yeast Extract – Mannitol agar for laboratory manual of general microbiology. New York, McGraw Hill, 1928, 145p. FREIRE FILHO, F.R.; RIBEIRO, V.Q.; BARRETO, P.D.; SANTOS, C.A. Melhoramento genético de caupi (Vigna unguiculata (L.) Walp.) na região do Nordeste. Embrapa Semi- Árido. Workshop, 1998. GARCÍA–de los SANTOS, A.; BROM, S.; ROMERO, D. Rhizobium plasmids in bacteria- legume interactions. World Journal of Microbiology & Biotechnology, Oxford, v. 12, p. 119-125, 1996. GRAHAM, P.H.; SADOWSKI, M.J.; KEYSER, H.H.; BARNET, Y.M.; BRADLEY, R.S.; COOPER, J.E.; de LEY, D.J.; JARVIS, B.D.W.; ROSLYCKY, E.B. STRIJDOM, B.W.; YOUNG, J.P.W. Proposed minimal standars for the description of new genera and species 82 of root and stem-nodulating bacteria. International Journal of Systematic Bacteriology, Washington, v. 41, p. 582-587, 1991. HAM, G.E. Inoculation of legumes with Rhizobium in competition with naturalized strains. P. 131-138. In W. E. Newton and W. H. Orme-Johnson, ed., Nitrogen fixation. V. II. University Park Press, Baltimore, Madisson, 1980. HARRIS, R.F. Effect of water potencial on microbial growth and activity. In: PARR, J.F.; GARDNER, W.R.; ELLIOT, L.F., ed. Water Potencial Relations in Soil Microbiology. Madison, Soil Science Society of America, p. 23-95, 1981. HAUKKA, K. Genetic diversity and phylogeny of rhizobia isolated from tropical tree legumes. Helsinki: University of Helsinki, 1997. 94p. Tese de doutorado. HIRSCH, P.R. Population dynamics of indigenous and genetically modified rhizobia in the field. The New Phytologist, London, v. 133, p. 159-171, 1996. HIRSCH, P.R.; JONES, M.J.; MCGRATH, S.P.; GILLER, K.E. Heavy metals from past aplication of sewage decrease the genetic diversity of Rhizobium leguminosarum bv. trifolii population. Soil Biology and Biochemistry, Oxford, v. 25, p. 1485-1490, 1993. HIRSCH, A. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Current opinion in Plant Biology, Amsterdan, v. 2, p. 320-326, 1999. JARVIS, B.D.W. DOWNER, J.L.; YOUNG, J.P.W. Phylogeny of fast-growing soybean- nodulating rhizobia supports synonymy of Shinorhizobium & Bradyrhizobium and assignmentt Rhizobium fredii. International Journal of Systematic Bacteriology, Washington, v. 42, p. 93-96, 1992. JARVIS, B.D.W.; PANKUHURST, C.; PATEL, J.J. Rhizobium loti, a new species of legume root nodule bacteria. International Journal of Systematic Bacteriology, Washington, v. 32, p. 378-380, 1982. JARVIS, B.D.W.; van BERKUM, P. CHEN, W.X.; NOUR, S.M. FERNANDEZ, M.P.; CLEYET-MAREL, J.C.; GILLIS, M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum and Rhizobium tianshanense to Mesorhizobium gen nov. International Journal of Systematic Bacteriology, Washington, v. 47, p. 895-898, 1997. 83 JORDAN, D.C. Family III Rhizobiaceae. CONN. 1983. In: KRIEG, N.R. ed., Bergey’s Manual of Systematic Bactereology. Baltimore, Williams and Wilkins, 1984. P. 234-256. JORDAN, D.C. Transfer of Rhizobium japonicum, Bucchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminosus plants. International Journal of Systematic Bacteriology, Washington, v. 32, p. 136-139, 1982. KISHINEVSKY, B.; LOBEL, R.; FRIENDMAN, Y. Symbiotic performance and efficiency avaluation of different peanut Rhizobium strins under field conditions. Oleagineux, Paris, v. 39, p. 417-421, 1984. KUYKENDALL, L.D. Influence of Glycine max nodulation on the persistence in soil of genetically marked Bradyrhizobium japonicum strain. Plant and Soil, Dordrecht v. 161, p. 275-277, 1989. KUYKENDALL, L.D., SAXENA, B., DEVINE, T.E.; UDELL, S.E. Genetic diversity in Bradyrhizobium japonicum Jordam 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Canadian Journal Microbiology, Montreal, v.38, p.501-505,1992. KUYKENDALL, L.D.; SAXENA, B.; ROY, M.A.; O’NEILL, J.J.; DEVINE, T.E. Fatty acids, antibiotic resistense, and deoxyribonucleic acid homology groups of B. japonicum. International Journal of Systematic Bacteriology, Washigton, v. 38, p. 358-361, 1988. LABES, G.; ULRICH, A.; LENTZCH, P. Influence of bovine slurry deposition on the structure of nodulating Rhizobium leguminosarum bv. viceae soil population in a nature habitat. Applied and Environmental Microbiology, Washington, v. 62, p. 1717–1722, 1996. LAGUERRE, G.; ALLARD, M-R.; REVOY, F.; & AMARGER, N. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Applied and Environmental Microbiology, Washington, v. 62, p. 56-63, 1994. LAGUERRE, G.; FERNANDEZ, M.P., EDEL, V.; NORMAND, P.; AMARGER, N. Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris. International Journal of Systematic Bacteriology, Washington, v. 43, p. 761-767, 1993. 84 LAGUERRE, G.; MAVINGUI, P.; ALLARD, M. R.; CHARNAY, M.P.; LOUVRIER, P.; MAZURIER, S. I.; RIGOTTIER-GOIS, L., AMARGER, N. Typing of rhizobia by PCR DNA fingerprinting and PCR restriction length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Applied and Environmental Microbiology, Washington, v.60, p.2029–2036, 1996. LIAO, C.F.H. Devarda’s allow methods for total nitrogen determination. Soil Science Society of American Journal, Madison, v. 45, p. 852-855, 1981. LIE, T.A.; GOKTAN, D.; ENGIN, M.; PIJNENBORG, J.; ANLARSAL, E. Co-evolution of the legume-Rhizobium association. Plant and Soil, Dordrecht, v. 100, p. 171-181, 1987. LINDSTRÖM, K. Rhizobium galegae, a new species of legume root nodule bacteria International Journal of Systematic Bacteriology, Washington, v. 39, p. 365-367, 1989. LOPES, L.H. de O.; FARIAS, C.M.B. Recomendações técnicas para o cultivo de feijão-de- corda. Petrolina, Embrapa-CPATSA, 1995, 13p. LOWENDORF, H.S. Factors affecting survival of Rhizobium in soil. Advances in Microbial Ecology, New York, v. 4, p. 87-123, 1980. MAGUE, T.H.; BURRIS, R.H. Reduction of acetylene and nitrogen by fiel-grown soybeans. The New Phytologist, London, v. 71, p. 275-286, 1972. MAGURRAN, A.E. Ecological diversity and its measurement. New Jersey, Princeton University Press, 1988, 179p. MARTINAZZO, A.F. Potencial de Fixação em N2 em (Vigna unguiculata L. Walp) em diferentes condições ambientais. Rio de Janeiro: Universidade Federal Rural Rio de Janeiro, 1989, 154p. Dissertação de mestrado. MARTÍNEZ-ROMERO, E.; SEGOVIA, L.; MERCANTE, F.M. FRANCO, A.A. GRAHAM, P.; PARDO, M.A. Rhizobium tropici, a novel species nodulating Phaseulus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology, Washington, v. 41, p. 417-426, 1991. 85 MARTINS, L.M.V. Características ecológicas e fisiológicas de rizóbios de caupi (Vigna unguiculata (L.) Walp) isolados a partir de solos da região Nordeste do Brasil. Seropédica: Universidade Federal do Rio de Janeiro, 1996, 213p. Tese de mestrado. MARTINS, L.M.V.; NEVES, M.C.P,.; RUMJANEK, N.G. Characteristics of cowpea rhizobia isolates from the northeast region of Brazil. Soil Biology and Biochemistry, Oxford, v. 5/6 p. 1005-1010, 1997. MERCANTE, F. Diversidade genética de rizóbio que nodula o fejoeiro e troca de sinais moleculares na simbiose com plantas hospedeira. Seropédica: Universidade Federal do Rio de Janeiro, 1997, 195p. Tese de doutorado. MIETHLING, R.; WIELAND, G.; BACKHAUS, H.; TEBBE, C.C. Variation of microbial rizosphere commmunities in response to crop species, soil origen, and innoculation with Sinorhizobium meliloti L33. Microbial Ecology, New York, v. 40, p. 45-56, 2000. MODY, B.; MODY, R; MODI, V. Peanut agglutinin-induced structural changes in cowpea rhizobia as revealed by freeze-etching. Current Microbiology, New York, v. 21, p. 243- 247, 1990. MPEPEREKI, S. WOLLUM, A.G.; MAKONESE, F. Diversity in symbiotic specificity of cowpea rhizobia indigenous to Zimbabwean soils. Plant and Soil, Dordrecht, v. 186, p. 167-171, 1998. MUNNS, D.N.; KEYSER, H.H. Response of Rhizobium strains to acid aluminium stress. Soil Biology and Biochemistry, Oxford, v. 13, p. 115-118, 1981. NEVES, M.C.P.; COUTINHO, H.L.C.; RUMJANEK, N.G. Adaptation of soybean bradyrhizobia to the brazilian edaphic savannahs. In: COLWELL, R.R.; SIMIDU, R.R.; OHWADA, K., ed. Microbial Diversity in Time and Space. New York, Plenum Press, 1996, p. 109-114. NEVES, M.C.P.; Energy cost of biological nitrogen fixation, biological nitrogen fixation for tropical agriculture. Cali, Centro Internacional de Agricultura tropical, 1982, p. 77-92. NEVES, M.C.P.; RAMOS, M.L.G.; MARTINAZZO, A.F.; BOTELHO, G.R.; DÖBEREINER, J. Adaptation of more efficient soybean and cowpea rhizobia to replace established population. In: MULONGOY, K.; GUEYNE, M.; SPENCER, D.S.C., ed. 86 Biological Nitrogen Fixation and Sustainability of Tropical Agriculture, Ibadan, Trinity Press, 1992, p. 219-233. NEVES, M.C.P.; RUMJANEK, N.G. Diversity and adaptability of soyben and cowpea rhizobia in tropical soils. Soil Biology and Biochemistry, Oxford, v. 29, p. 889-895, 1997. NEVES, M.C.P.; URQUIAGA-CABALLERO, S.S.; PERES, J.R.; SUHET, A.R. E BODDEY, R.H. Aplicação da técnica da diluição isotópica de 15N na quantificação da fixação biológica de N2 em caupi, soja e amendoim. In: Congresso Brasileiro de Ciências do solo, 21, Campinas, 1987, p. 39. NICK, G.; de LAJUDIE, P.; EARDLY, B. D.; SUOMALAINEN, S.; PAULIN, L.; ZHANG, X.; GILLIS, M.; LINDSTRTÖM, K. Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. International Journal of Systematic Bacteriology, Washington, v. 49, p. 1359-1368, 1999. NISHI, C.Y.M.; BODDEY, L.H.; VARGAS, M.A.T.; HUNGRIA, M. Morphological, physiological and genetic characterization of two new Bradyrhizobium strains recently recommended as Brazilain commercial inoculants for soybean. Symbiosis, Philadelphia, v. 20, p. 177-162, 1996. NOUR, S.M.; CLEYET-MAREL, J.C.; BECK, D. EFFOSSE, A.; FERNANDEZ, M.P. Genotypic and phenotiyopic diversity of Rhizobium isolated from chickpea (Cicer arietinum L.). Canadian Journal of Microbiology, Ottawa, v. 40, p. 345-354, 1994. NOUR, S.M.; CLEYT-MAREL, J.C.; NORMAND, P.; FERNANDEZ, M.P. Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizoium mediterraneum sp. nov. International Journal of Systematic Bacteriology, Washington, v. 45, p. 640-648, 1995. ODUM, E. P. Ecologia (tradução). Editora Guanabara, RJ. 1988, 434p. OKELEYE, K.A.; OKELANA, M.A.O. Effect of phosphorus fertilizer on nodulation, growth and yield of cowpea (Vigna unguiculata) varieties. Indian Journal of Agricultural Sciences, New Delhi, v. 67, p. 10-12, 1997. 87 OLIVEIRA, L.A. DE; VIDOR, C. Seleção de estirpes de Rhizobium japonicum em soja. II. Capacidade competitiva por sítios de nódulos. Revista Brasileira de Ciências do solo, Campinas, v. 8, p. 43-47, 1984. OLSEN, G.J.; WOESE, C.R.; OVERBEEK, R. The winds of (evolutionary) change: breathing new life into microbiology. Journal of Bacteriology, Washington, v. 176, p. 1-6, 1994. OSONUBI, O.; MULONGOY, K.; A.W.O, O.O.ATAYESE, M.O.; OKALI, D.U.U. Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drougth tolerance of four leguminous woody seedlings. Plant and Soil, Dordrecht, v. 135, p. 131-143, 1991. OTHMAN, W.M.W; LIE. T.A; -`t-MANNETJE, L. WASSINK, G.Y.; WAN-OTHMAN, W.M; MANNETJE-L- -`t-. Low level phosphorus suplly affecting nodulation, N2 fixation and growth cowpea (Vigna unguiculata L. Walp). Plant and Soil, Dordrecht, v.135, p. 67- 74, 1991. PADMANABHAN, S.; HIRTZ, R.D.; BROUGHTON, W.J. Rhizobia in tropical legumes: cultural characteristics of Bradyrhizobium and Rhizobium sp. Soil Biology and Bochementry, Oxford, v. 22, p. 23-28, 1990. RALPH, D.; MCCLELLAND, M.; WELSH, J.; BARANTON, G.; PEROLAT, P. Leptospira species categorized by arbitrarily primed polymerase chain reaction (PCR) and by maped restriction polymorphism in PCR-amplified rRNA genes. Journal of Bacteriology, Washington, v. 175, p. 973-981, 1994. REIS, V.M.; CRUZ, G.B.; FERREIRA, A., FERREIRA, M.; FERREIRA, A.C.; REIS, F.B.; RIBEIRO, J.R.A.; SALLES, J.F.; WEBWER, O.B. Produção e caracterização de soros policlonais para a detecção de bactérias diazotróficas. Seropédica, Embrapa CNPAB, 1997, 9p., documentos n0 30. RIBEIRO, J.R.A. Aplicação da técnica de ELISA no estudo ecológico de Rhizobium sp. isolados de nódulos de caupi (Vigna unguiculata L. Walp) originários da região nordeste brasileira. Rio de Janeiro: Universidade Federal do Rio de Janeiro, 1999, 120p. Dissertação de mestrado. ROHLF, F.J. NTSYS-pc – Numerical taxonomy and multivariate analysis sistem. New York, Staet Unversity of New York, 1994. 88 ROMANO VALICHESKI, dados não publicados ROME, S.; FERNANDEZ, M.P.; BRUNEL, B.; NORMAND, P.; CLEYTEL-MAREL, J.C. Shinorhizobium medicae sp. nov. isolated from annual Medicago spp. International Journal of Systematic Bacteriology, Washington, v. 46, p. 972-980, 1996. ROUGHLEY, R.J.; BLOWES, W.M.; HERRIDGE, D.G. Nodulation of Trifolium subterraneum by introduced rhizobia in competition with naturalized strains. Soil Biology and Biochemistry, Oxford, v. 8, p. 403-407, 1976. RUMJANEK, N.G.; DOBERT, R.C.; van BERKUM, P; TRIPLETT, E.W. Common soybean inoculant strain in Brazil are members of Bradyrhizobium elkanii. Applied and Environmental Microbiology, Washington, v. 59, p. 4371-4373, 1993. SAITO, S.M.T. Avaliação em campo da capacidade de fixação simbiótica de estirpes de Rhizobium phaseoli. Pesquisa Agropecuária Brasileira, Brasília, v. 17, p. 999-1006, 1982. SANGINGA, N.; MULONGOY. K.; SWIFT, M.J. Contribuition of soil organisms to the sustentability and productive systems in the tropics. Agriculture, Ecosystem and Environment, Amsterdan, v. 41, p. 135-152, 1992. SANGINGA, N.; VANLAUWE, S.; DANSO, S.K.A. Management of biological N2 fixation in alley cropping systems: estimation and contribution to N balance. Plant and Soil, Dordrecht, v. 174, p. 119-141,1995. SANJUAN, J.; HERRERA-CERVERA, J.A.; SANJUAN-PINILLA, J.M.; MUNÕZ, S.; NOGALES, J. OLIVARES, J. In: PEDROSA, F.O.; HUNGRIA, M., YATOS, M.G.; NEWTON, W., ed. Nitrogen fixation: from molecules to crop productivity; procedings of the 12th International Congress on Nitrogen Fixation, Foz do Iguaçu, Paraná, Brazil, 12- 17 setembro, 1999. Kluwer Academic publishrs, 2000, p. 593-594. SCHLAMAN, H.R.M.; OKKER, R.J.H.; LUGTENBERG, B.J.J. Regulation of nodulation gene expression by nodD in rhizobia. Journal of Bactriology, Washigton, v. 174, p. 5177– 5182, 1992. SCHOLLA, M.H.; MOOOREFIELD, J.A.; ELKAN, G.H. Deoxyribonucleic acid homology between fast-growing soybean-nodulating bacteria and other rhizobia. International Journal of Systematic Bacteriology, Washington, v. 34, p. 283-286, 1984. 89 SCOTTI, M.R.M.M.L.; CARVALHO-SILVA, D.R.; VARGAS, M.A.T.; NEVES, M.C.; DÖBEREINER, J. Changes in electrophoretic profile of lipopolysaccharides from competitve strains of Bradyrhizobium spp. induced by soybean roots. Journal of Applied Microbiology, Cambridge, v. 83, p. 552-560, 1997. SCOTTI, M.R.M.M.L.; NEVES, M.C.P.; PAIVA, E.; DÖBEREINER, J. Effect of soybean roots on strians competitivity and protein profile of Bradyrhizobium japonicum adapted to Cerrado soils. Anais da Academia Brasileira de Ciência, Rio de Janeiro, v. 65, p. 427- 438, 1993. SEGOVIA, L.; YOUNG, J.P.W.; MARTÍNEZ-ROMERO, E. Reclassification of american Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. International Journal of Systematic Bacteriology, Washington, v. 43, p. 374-377, 1993. SILVA, F.V. Diversidade de rizóbio em áreas sob diferentes coberturas vegetais do programa SHIFT localizado na região amazônica. Rio de Janeiro: Universidade Federal do Rio de Janeiro, 1999, 85p. Tese de mestrado. SINGLETON, P.W.; TAVARES, J.W. Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium population. Applied and Environment Microbiology, Washington, v. 51, p. 1013-1018, 1986. SINGLETON. P.W.; BOHLOOL, B.B.; NAKAO, P.L. Legume response to rhizobial inoculation in the tropics: myths and realities. In: Myphis and Science of Soils in the tropics. Mandison, Soil Science Society of American, p. 135-155. (SSSA Special Publication, 29), 1992. SOUZA, V.; EGUIARTE, L.; AVILA, G., CAPPELLO, R.; GALLARDO, C.; MONTOYA, J.; PIÑERO, D. Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultured bean plants (Phaseolus vulgaris and Phaseolus coccineus) in Morales, México. Applied and Environmental Microbiology, Washington, v. 60, p. 1260-1268, 1994 . SPRENT, J.I. Evolution and diversity in the legume-rhizobium symbiosis: chaos theory?. Plant and Soil, Dordrecht, v. 161, p. 1-10, 1994. SPRENT, J.I. Evolution, structure and fuction of nitrogen-fixing root nodules: confessions of ignorance. In: GRESSHOFF, P.M., ROTH, L.E., STACEY, G.; NEWTON, W.E., ed. 90 Nitrogen fixation: achievements and objectives. Chapman and Hall, p. 45-54 New York, 1990. STACEY, G. Nod factor reception. In: PEDROSA, F.O.; HUNGRIA, M., YATOS, M.G.; NEWTON, W., ed. Nitrogen fixation: from molecules to crop productivity; procedings of the 12th International Congress on Nitrogen Fixation, Foz do Iguaçu, Paraná, Brazil, 12- 17 setembro, 1999. Kluwer Academic publishers, 2000, p. 211-212. STACKEBRANDT , E.; LIESACK, W.; WITT, D. Ribosomal RNA and rRNA sequence analysis. Gene. Amsterdam, v. 115, p. 255-260, 1992. STAMFORD, N.P.; CHAMBER, P.M.; CAMACHO, M.M. Symbiotic effectiveness of several tropical Bradyrhizobium strains on cowpea under a long-term exposure to nitrate: relationships between nitrogen and nitrate reduction activities. Journal of Plant Physiology, Stuttgart, v. 147, p. 378-382, 1995. STRALIOTTO, R.; RUMJANEK, N.G. Aplicação e evolução dos métodos moleculares para o estudo da biodiversidade de rizóbio. Seropédica, Embrapa Agrobiologia, nov. 1999. 70p. (Embrapa Agrobiologia. Documentos, 93). SWARAJ, K.; BISHNOI, N. R. Effects of salt stress on nodulation and nitrogen fixation in legumes. Indian Journal of Experimental Biology, New Delhi, v. 37, p. 843–848, 1999. TEANEY, G.B.; FUHRMANN, J.J. Soybean response to nodulation by bradyrhizobia differing in rhizobitoxine phenotype. Plant and soil, Dordrecht, v. 145, p. 275-285, 1992. THIES, J.E.; BOHLOOL, B.; SINGLETON, P.W. Subgroups of the cowpea miscellany: symbiotic specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseulus lunatus, Arachis hypogaeae, Macroptilium atropurpureum. Applied and Environmental Microbiology, Washington, v. 57, p. 1540-1545, 1991a. THIES, J.E.; SINGLETON, P.W.; BOHLOOL, B. Influence of the size of indigenus rhizobial populatin on establishment and symbiotic performance of introduced rhizobia on field-crop legumes. Applied and Environmental Microbiology, Washington, v. 57, p. 19- 28, 1991b. THIOLOUSE, J.; CHESSEL, D.; DOLÉDEC, S.; OLIVER, J.M. ADE-4 multivariate analysis and graphical display software. Statistics and Computing, Lyon, v. 7, p. 75-83, 1997. 91 TIGHE, S.W.; de LAJUDIE, P.; DIPIETRO, K.; LINDSTRÖM, K.; NICK, G.; JARVIS, B.D.W. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using Sherlock Microbial Identification System. International Journal of Systematic and Evolutionary Micorbiology, Washington, v. 50, p. 787-801, 2000. TORO, N. Nodulation competitiveness in Rhizobium-legume symbiosis. World Journal of Microbiology & Biotechnology, Oxford, v. 12, p. 157-162, 1996. UGOZARA, S. G.; OFUYA, Z. M. Processing and utilization of cowpeas in developing countries: a review. Journal of Food and Preservation, Trumbull, v. 16, p. 105 – 147, 1992. van BERKUM, P.; BEYENE, D.; BAO, G.; CAMPEBEL, T.A.; EARDLY, B.D. Rhizobium mongolense sp. nov. is one of the three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica. International Journal of Systematic Bacteriology, Washington, v. 48, p. 13-22, 1998. van BERKUM, P.; BEYENE, D.; EARDLY, B.D. Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). International Journal of Systematic Bacteriology, Washington, v. 46, p. 240-244, 1996. van BERKUM, P.; FUHRMANN, J.J.; EARDLY, B. Phylogeny of rhizobia. In: PEDROSA, F.O.; HUNGRIA, M., YATOS, M.G.; NEWTON, W., ed. Nitrogen fixation: from molecules to crop productivity; proccedings of the 12th International Congress on Nitrogen Fixation, Foz do Iguaçu, Paraná, Brazil, 12-17 setembro, 1999. Kluwer Academic publishers, 2000, p. 165. VARGAS, M.; HUNGRIA, M. Legume inoculantion in cerrrado soils. In: PEDROSA, F.O.; HUNGRIA, M., YATOS, M.G.; NEWTON, W., ed. Nitrogen fixation: from molecules to crop productivity; proccedings of the 12th International Congress on Nitrogen Fixation, Foz do Iguaçu, Paraná, Brazil, 12-17 setembro, 1999. Kluwer Academic publishers, 2000, p. 187 - 188. VARGAS, M.A.T.; MENDES, I.C.; SUHET, A.R.; PERES, J.R.R. Inoculation of soybean in Cerrado soils with established population of Bradyrhizobium japonicum. Revista Brasileira de microbiologia. São Pulo, v. 25, p. 245-250, 1994a. 92 VARGAS, M.A.T.; SUHET, A.R.; MENDES, I.C.; PERES, J.R.R. SOJA. Fixação Biológica de Nitrogênio em Solos de Cerrado. Brasília, EMBRAPA – CPAC/SPI, 1994b, 25p. VARGAS, M.T.A.; HUNGRIA, M. Legume inoculation in cerrado soils. PEDROSA, F.O.; HUNGRIA, M., YATOS, M.G.; NEWTON, W., ed. Nitrogen fixation: from molecules to crop productivity; procedings of the 12th International Congress on Nitrogen Fixation, Foz do Iguaçu, Paraná, Brazil, 12-17 setembro, 1999. Kluwer Academic publishrs, 2000, p. 587-588. VARGAS, M.T.A.; PERES, J.R.R.; SUHET, A. R. Fixação biológica de nitrogênio atmosférico pela soja em solos de Cerrados. Informe Agropecuário, Brasília, v. 17, p. 20- 23, 1982 VINCENT, J.M. A manual for the pratical study of root nodule bacteria. Oxford, Blackkwell Scientific, 1970, 164p. VLASSAK, K.; VANDERLEYDEN, J.; FRANCO, A. A. Competition and persistence of Rhizobium tropici and Rhizobium etli in tropical soil during sucessive bean (Phaseulus vulgaris L.) cultures. Biology and Fertility of Soils, Berlin, v. 21, p. 61 - 68, 1996. WANG, E.T.; van BERKUM, P.; BEYENE, D.; SUI, X.-H.; DORADO, O.; CHEN, W.X.; MAERTÍNEZ-ROMERO, E. Rhizobium huatlense sp. nov. a symbiont of Sesbania hebaceae that has a close phylogenetic relationship with Rhizobium galegae. International Journal of Systematic Bacteriology, Washington, v. 48, p. 687-699, 1998. WANG, E.T.; van BERKUM, P.; SUI, X. H.; BEYENE, D.; CHEN, W. X.; MARTINEZ- ROMERO, E. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description Mesorhizobium amorphae sp. nov. International Journal of Systematic Bacteriology, Washington, v. 49, p. 51 - 65, 1999. WANI, S.P.; RUPELA, O.P.; LEE, K.K. Sustainable agriculture in the semi-arid tropics through biological nitrogen in grain legumes. Plant and Soil, Dordrecht v. 174, p. 29-49, 1995. 93 WEAVER, R.W.; FREDERICK, L.R.; DUMENIL, L.C. Effect of sybean cropping and soil properties on number of Rhizobium japonicum in Iowa soils. Soil Science, Baltimore, v. 114, p. 137-141. WOESE, C.R. Bacterial evolution. Microbiological Rewiews, Washington, v. 51, p. 221- 271, 1987. WOLFF, A.B.; STREIT, W.; KIPE-NOLT, J.A.; Vargas, H.; WERNER, D. Competitiveness of Rhizobium leguminosarum bv. phaseoli strins in relation to environmental stress and plant defense mechanisms. Biology and Fertility of Soils, Berlin, v. 12, p. 170 - 176, 1991. WOOMER, P.; SINGLETON, P.; AND BOHLOOL, B.B. Ecological indicators of native rhizobia in tropical soils. Applied and Environment Microbiology, Washington, v. 54, p. 1112-1116, 1988. WOOMER, P.L. Most probable number counts. In: WEAVER, P.W.; ANGLE, J.S.; BOTTOMELY, P.S., ed. Methods of soil analysis. Soil Science Society of American Book, Madison, Wiscosin, USA, 1994, p. 59-79. XAVIER, G. R. Estudo da ocupação nodular de genótipos de caupi (Vigna unguiculata) agrupados pela técnica de RAPD, Rio de Janeiro: Universidade Federal Rural Rio de Janeiro, 2000, 113p. Dissertação de mestrado. XAVIER, G.R.; MARTINS, L.M.M.; NEVES, M.C.P.; RUMJANEK, N.G. Edaphic factors as determinants for the distribuition of intrinsic antibiotic resistence in cowpea rhizobia population. Biology and Fertily of Soils, Berlin, v. 27, p. 386-392, 1997. XU, L.M.; GE, C., CUI, Z., LI, J.; FAN, H. Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. International Journal of Systematic Bacteriology, Washington, v. 45, p. 706-711, 1995. YOUNG, J. M. Correction to the authority of Rhizobium leguminosarum. International Journal of Systematic Bacteriology, Washington, v. 49, p. 1943, 1999. YOUNG, J.P.W. All those new names: an overview of the molecular phylogeny of plant- associated bacteria. In: DANIELS, M.J.; OSBOURN, A.E., ed. Advances in molecular genetics of plant-microbe interactions. Dordrecht, Kluwer, 1994, p. 73-80. 94 YOUNG, J.P.W.; DOWNER, H.L.; EARDLY, B.D. Phylogeny of the phototropic rhizobium strain BTAIL by polymerase chain reaction sequencing of a 16S rDNA gene segment. Journal of Bactriology, Washington v. 173, p. 2271 – 2277, 1991. YOUNG, J.P.W.; HAUKKA, K. Diversity and phylogeny of rhizobia. The New Phytologist, London, v. 133, p. 87-94, 1996. YOUNG. J.P.W. Phylogeny and taxonomy of rhizobia. Plant and Soil, Dordrecht, v. 186, p. 45 – 52, 1996. YOURSELF, A.N.; AL-NASSIRI, S.K.; AZAWI, A.L.; ABDUL-HUSSAIN, N. Abundance of peanut rhizobia as affected by environment conditions in Iraq. Soil Biology and Bochementry, Oxford, v.19, p. 319-396, 1987. ZABLOTOWICH, R.M.; FOCHT, D.D. Physiological characteristics of cowpea rhizobia: evaluation of symbiotic efficiency in Vigna unguiculata. Applied and Environmental Microbiology, Washington, v. 41, p. 679-685, 1981 . ZILLI, J.E.; CAMARA, A.F.S.; NEVES, M.C.P.; RUMJANEK, N.G. Diversidade de rizóbio nativo em área da Mata Atlântica sob diferentes sistemas. In: XX Congresso Brasileiro de Microbiologia, p. 302, Salvador, 1999. ZILLI, J.E.; FERREIRA, E.P.B.; NEVES, M.C.P.; RUMJANEK, N.G. Efficiency of fast- growing rhizobia capable of nodulating cowpea. Anais da Academia Brasileira de Ciência, Rio de Janeiro, v. 71, p. 553-560, 1999. ZILLI, J.E.; NEVES, M.C.P.; RUMJANEK, N.G. Biodiversidade de rizóbio em área de um sistema integrado de produção agroecológica em Seropédica RJ. In: XXVI Congresso Brasileiro de Ciências do solo, CD-ROOM, Rio de Janeiro, 1997.pt_BR
dc.subject.cnpqAgronomiapt_BR
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2001 - Jerri Édson Zilli.pdf489.22 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.