Por favor, use este identificador para citar o enlazar este ítem:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/16419
metadata.dc.type: | Tese |
Título: | Modelagem de curto prazo de séries temporais climáticas utilizando redes neurais artificiais, modelos aditivos generalizados e sazonais autoregressivos integrados de médias móveis em Ariquemes (RO) |
Otros títulos: | Short-Term modeling of climatic time series using artificial neural networks, generalized additives models and sazonal autoregressive integrated moving average in Ariquemes (RO) |
Autor: | Carvalho, Roberto Luís da Silva |
metadata.dc.contributor.advisor1: | Delgado, Angel Ramon Sanchez |
metadata.dc.contributor.referee1: | Querino, Carlos Alexandre Santos |
metadata.dc.contributor.referee2: | Gomes, Daniel Takata |
metadata.dc.contributor.referee3: | Ventura, Sérgio Drumond |
metadata.dc.contributor.referee4: | Tassinari, Wagner de Souza |
Resumen: | Rondônia encontra-se numa fase de grande expansão agrícola e nesse cenário Ariquemes contribui com a produção do estado, com seus principais cultivos: milho, café, feijão e soja. As variáveis meteorológicas são extremamente importantes para o entendimento do clima de uma determinada região, pois é possível, por exemplo, mapear os riscos de eventos extremos climáticos ou identificar melhores épocas de plantio, entre outros. Nesse sentido, o objetivo geral é apresentar abordagens computacionais para caracterizar e analisar as séries temporais associadas à temperatura do ar, umidade, precipitação pluviométrica e evapotranspiração de referência (ETo) no município de Ariquemes (RO). Especificamente, trata-se de caracterizar o comportamento dessas séries temporais univariadas e comparar as metodologias de ajuste de séries temporais (SARIMA - Sazonal Autoregressivo Integrado de Médias Móveis com as Redes Neurais Artificiais - RNA do tipo GMDH – Método de Grupo de Manipulação de Dados) e, no contexto multivariado, identificar as relações existentes entre as séries através dos modelos Redes Neurais Artficiais Perceptron Multicamadas (RNA-MLP) e modelos Aditivos Generalizados (MAG). O estudo foi dividido em quatro capítulos, no primeiro foram identificadas as principais características da produção agropecuária do município de Ariquemes (RO) no contexto do desenvolvimento socioeconômico local. Especificamente, buscou-se descrever os principais processos agrícolas e pecuários desenvolvidos na região, no período de 1990 a 2014, e por outro lado, faz-se uma análise dos indicadores do desenvolvimento socioeconômico, dos anos 1991, 2000 e 2010 e, por fim, avalia-se o índice de bem-estar humano, através do barômetro de sustentabilidade, para o ano de 2010. Nesse capítulo permite-se conhecer as particularidades da produção agrícola de Ariquemes, visto que a motivação e o desenvolvimento agrícola foram marcados por fases distintas, que interferiram na procura bem como no método de produção. No segundo capítulo, buscou-se avaliar a climatologia, estimar a evapotranspiração de referência (ETo) do munícipio de Ariquemes (RO) e comparar as estimativas dos métodos Penman-Monteith-FAO e Hargreaves-Samani, para o período de 2011 a 2013. No terceiro, o objetivo foi modelar as séries temporais climáticas univariadas pelas técnicas SARIMA (Sazonal Autoregressivo Integrado de Médias Móveis) e Redes Neurais tipo GMDH (Group Method Data Handling) comparando as previsões em cinco dias a frente com os dados observados no período 2011 a 2013. Dentre os resultados, foi possível identificar que a modelagem por redes neurais tipo GMDH apresentou resultados satisfatórios para as séries de umidade do ar, temperaturas média, mínima e máxima diárias e evapotranspiração de referência constituindo-se assim, numa opção para previsão destas séries temporais climáticas. No quarto capítulo, o objetivo foi modelar por redes neurais artificias RNA-MLP a evapotranspiração de referência 𝐸𝑇0, em função das variáveis climáticas. Especificamente, buscou-se comparar o modelo ajustado com o método de estimação padrão FAO, com os resultados de modelos MAG e de regressão linear múltipla (RLM), com resposta univariada. Dentre os resultados, os modelos, MAG e RNA-MLP, obtiveram melhores ajustes do que o modelo RLM. Por fim, foram descritas as conclusões do estudo abarcando os melhores os resultados, bem como as expectativas para estudos futuros. |
Palabras clave: | Climatologia Séries temporais Estimativas RNA MAG SARIMA Climatology Time series Estimates ANN GAM |
metadata.dc.subject.cnpq: | Matemática |
metadata.dc.language: | por |
metadata.dc.publisher.country: | Brasil |
Editorial: | Universidade Federal Rural do Rio de Janeiro |
metadata.dc.publisher.initials: | UFRRJ |
metadata.dc.publisher.department: | Pró-Reitoria de Pesquisa e Pós-Graduação |
metadata.dc.publisher.program: | Programa de Pós-Graduação em Ciência, Tecnologia e Inovação em Agropecuária |
Citación: | CARVALHO, Roberto Luís da Silva. Modelagem de curto prazo de séries temporais climáticas utilizando redes neurais artificiais, modelos aditivos generalizados e sazonais autoregressivos integrados de médias móveis em Ariquemes (RO). 2019. 127 f. Tese (Doutorado em Ciência, Tecnologia e Inovação em Agropecuária) - Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019. |
metadata.dc.rights: | Acesso Aberto |
URI: | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/16419 |
Fecha de publicación: | 28-mar-2019 |
Aparece en las colecciones: | Doutorado em Ciência, Tecnologia e Inovação em Agropecuária |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2019 - Roberto Luís da Silva Carvalho.pdf | 3.51 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.