Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/16398
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gregori, Stefani Rosario | |
dc.date.accessioned | 2023-12-18T17:39:36Z | - |
dc.date.available | 2023-12-18T17:39:36Z | - |
dc.date.issued | 2022-08-01 | |
dc.identifier.citation | GREGORI, Stefani Rosario. Morfología, remodelación tisular y angiogénesis en placentas de yeguas mestizas. 2022. 141 f. Tese (Doutorado em) - Universidade Federal Rural do Rio de Janeiro, 2022. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/16398 | - |
dc.description.abstract | La placenta forma la interfase entre el feto y la madre, siendo un factor determinante y una fuente de moléculas de señalización para mantener un ambiente propicio y lograr una preñez exitosa. Estas funciones son posibles gracias a la formación de una extensa red vascular desde el endometrio hacia la placenta, denominado angiogénesis. La placenta equina se clasifica histológicamente como epiteliocorial microcotiledonaria difusa y adecidua. El objetivo de este estudio fue describir la morfología placentaria, desarrollo tisular y expresión de factores angiogénicos en yeguas. Para ello se utilizaron 15 yeguas mestizas sanas de la región central Argentina y se obtuvieron los úteros gestantes. Los tercios de preñez se determinaron como primer tercio (0 al 120 día de gestación), segundo tercio (120 a los 240 días) y tercer tercio (240 días al parto). Las muestras de interfase materno fetal y copas endometriales fueron destinadas al análisis estructural y ultraestructural, estudio inmunohistoquímico de los principales factores angiogénicos y hormona gonadotrofina coriónica equina, evaluación de la remodelación celular placentaria y estudio histomorfométrico de los vasos sanguíneos. En la gestación temprana el epitelio luminal del endometrio se encontró formado por células cúbicas con formación de pliegues endometriales poco profundos y glándulas en la superficie apical del endometrio materno. A medida que avanza la gestación, se van formando surcos endometriales más profundos que se corresponden físicamente con las proyecciones coriónicas desarrolladas del lado fetal. A partir del día 60 continúa el proceso de plegamiento en vellosidades secundarias y terciarias hasta la formación de microcotiledones organizados (unidad primaria de intercambio hemotrófico) desde el día 100 hasta el día 240 de gestación. A partir del segundo tercio de preñez la capa de células coriónicas de las vellosidades se halló más delgada, permitiendo el reconocimiento de abundantes capilares inmersos en el escaso tejido conectivo que los sostiene, inmediatamente debajo de los epitelios coriónico y endometrial, confirmado por MOAR y por TEM. Los resultados de apoptosis celular junto con una importante actividad mitótica durante el periodo temprano de la preñez, evidencian una activa remodelación tisular, proceso indispensable en la gestación equina, ya que antes de la implantación y previo a la formación de los microcotiledones la nutrición del embrión es histotrófica. La presencia en este órgano de los factores angiogénicos como VEGF, Ang-2 y sus receptores Flk-1 y Tie-2 indican que actuarían complementariamente en el desarrollo vascular, ejercerían su acción en sinergismo y serian una parte esencial de las vías de señalización celular paracrina y autocrina sobre las células endoteliales de los capilares, favoreciendo su crecimiento y estrecha ubicación hacia la superficie epitelial, disminuyendo la distancia interhemal. El estudio histomorfométrico nos permitió identificar que el aumento del área y perímetro vascular de la placenta sumado a la ausencia de inmunomarcación del sistema VEGF/Ang y sus receptores en los endotelios al final de la gestación evidencia que no hay nueva formación de vasos durante este periodo y sumado a un mantenimiento de la inmunomarcación moderada de los factores angiogénicos en las glándulas endometriales, afirma el protagonismo de las mismas en asumir el dominio en la conducción del desarrollo y crecimiento capilar tanto fetal como materno, que se daría en las etapas finales de la gestación. Se determinó que existe muerte por apoptosis en las células trofoblásticas especializadas de las copas endometriales durante todo su desarrollo y cabe resaltar que es el primer estudio en describir y profundizar la angiogénesis en placentas equinas. | por |
dc.description.sponsorship | CONICET | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | placenta | por |
dc.subject | angiogênese | por |
dc.subject | produção equina | por |
dc.title | Morfología, remodelación tisular y angiogénesis en placentas de yeguas mestizas | por |
dc.type | Tese | por |
dc.description.abstractOther | The placenta forms the interface between the embryo/fetus and the mother, being a determining factor and a source of signaling molecules to maintain a favorable environment and achieve a successful pregnancy. These functions are possible through the formation of an extensive vascular network from endometrium to placenta, term angiogenesis. The equine placenta is classified histologically as diffuse and adeciduate microcotyledonary epitheliochorial. The aim of this study was to describe the placental morphology, tissue development and expression of angiogenic factors in mares. 15 healthy crossbreed mares from the central Argentina region were used and the pregnant uterus were obtained. Pregnancy thirds were determined as first third (0 to 120 days of gestation), second third (120 to 240 days) and third third (240 days to delivery). The samples from the maternal-fetal interface and endometrial cups were used for structural and ultrastructural analysis, immunohistochemical study of the main angiogenic factors and equine chorionic gonadotrophin hormone (eCG), evaluation of placental cell remodeling, and histomorphometric study of blood vessels. In early gestation, the luminal epithelium of the endometrium was found to be formed by cuboidal cells with the formation of shallow endometrial folds and glands on the apical surface of the maternal endometrium. As the pregnacy progresses, deeper endometrial sulci form that physically correspond to the developed chorionic projections on the fetal side. From day 60, the folding process in secondary and tertiary villi continues until the formation of organized microcotyledons (primary unit of hemotrophic exchange) from day 100 to day 240 of gestation. From the second third of pregnancy, the chorionic cell layer of the villi was found to be thinner, allowing the recognition of abundant capillaries immersed in the scarce connective tissue that supports them, immediately below the chorionic and endometrial epithelia, confirmed by MOAR and by TEM. The results of cell apoptosis together with an important mitotic activity during the early period of pregnancy, show an active tissue remodeling, an essential process in equine gestation, since before implantation and prior to the formation of microcotyledons, the nutrition of the embryo it is histotrophic. The presence in this organ of angiogenic factors such as VEGF, Ang-2 and their Flk-1 and Tie-2 receptors indicate that they would act complementary in vascular development, would exert their action in synergy and they would be an essential part of the paracrine and autocrine cell signaling pathways on the endothelial cells of the capillaries, favoring their growth and close location towards the epithelial surface, reducing the interhemal distance. The histomorphometric study allowed us to identify that the increase in the vascular area and perimeter of the placenta, added to the absence of immunostaining of the VEGF/Ang system and its receptors in the endothelium at the end of gestation, shows that there is no new formation of vessels during this period and added to a maintenance of the moderate immunostaining of the angiogenic factors in the endometrial glands, affirms the protagonism of the same in assuming dominance in the conduction of both fetal and maternal capillary development and growth, which would occur in the final stages of gestation. It was determined that there is death by apoptosis in the specialized trophoblastic cells of the endometrial cups throughout their development and it should be noted that this is the first study to describe and deepen angiogenesis in equine placentas. | eng |
dc.contributor.advisor1 | Romanini, María Cristina | |
dc.contributor.advisor1ID | DNI 13.727. | por |
dc.contributor.advisor-co1 | Rodríguez, Nancy | |
dc.contributor.advisor-co2 | Almeida, Fernando Queroiz de | |
dc.contributor.advisor-co2ID | 579.744.627-87 | por |
dc.creator.ID | DNI 33.814..834 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Pró-Reitoria de Pesquisa e Pós-Graduação | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência, Tecnologia e Inovação em Agropecuária | por |
dc.relation.references | -Abd-Elnaeim, M.M.M., Leiser, R., Wilsher, S., Allen, W.R. (2006). Structural and Haemovascular Aspects of Placental Growth throughout Gestation in Young and Aged Mares. Placenta. 27:1103-1113. -Abd-Elnaeim, M.M.M., Leiser R, Allen W.R. (2003). Structural and haematological aspects of the equine placenta in mid-pregnancy. Havemeyer Foundation Monograph Series 10: 39-42. -Amoroso, E.C. (1952). Placentation. Marshall´s Physiology of Reproduction, 127-311. -Amoroso, E.C., Hancock J.L., Rowlands I.W. (1948). Ovarian activity in the pregnant mare. Nature 161: 355–56. -Antczak, D.F., De Mestre, A.M., Wilsher, S. y Allen, W.R. (2013) The Equine Endometrial Cup Reaction: A Fetomaternal Signal of Significance. Annu. Rev. Anim. Biosci. 1:419–442 -Alsat, E., Marcotty, C., Gabriel, R., Igout, A., Frankenne F., Hennen, G. y Evain-Brion, D. (1995). Molecular approach to intrauterine growth retardation: an.overview of recent data. Reproduction, Fertility and Development 7: 1457-1464 -Albrecht, E.D., Babischkin, J.S., Lidor, Y., Anderson, L.D., Udoff, L.C., Pepe G.J. (2003) Effect of estrogen on angiogenesis in co-cultures of human endometrial cells and microvascular endothelial cells. Hum Reprod: 18:2039–47. -Albrecht, E.D., Robb, V.A, Pepe G.J. (2004) Regulation of placental vascular endotelial growth/permeability factor expression and angiogenesis by estrogen during early baboon pregnancy. J Clin Endocrinol Metab;89: 5803-9. -Al-zi'abi, M.O., Watson, E.D., Fraser, H.M. (2003) Angiogenesis and vascular endothelial growth factor expression in the equine corpus luteum. Reproduction: 125: 259–270 -Ahmed, A., Dunk, C., Kniss, D., Wilkes, M. (1997). Role of VEGF receptor-1 (Flt-1) in mediating calcium-dependent nitric oxide release and limiting DNA synthesis in human trophoblast cells. Lab Invest.:76 (6):779-91. -Allen, W.R. (2011). Factores que influencian el establecimiento, mantenimiento y la falla de la gestación en la yegua. Congreso Argentino de Reproducción Equina II. Mendoza 2011 pp 273-297 Ed. UNRC. -Allen, W.R., (1982). Immunological aspects of the endometrial cup reaction and the effect of xenogeneic pregnancy in horses and donkeys. J. Reprod. Fertil. Suppl. 31: 57–94. -Allen, W.R, Gower, S., Wilsher, S. (2007). Immunohistochemical localisation of vascular endothelial growth factor (VEGF) and its two receptors (Flt-I and KDR) in the endometrium and placenta of the mare during the oestrous cycle and pregnancy. Reproduction in Domestic Animals 42: 516-526. -Allen, W.R., (1975). The influence of fetal genotype upon endometrial cup development and PMSG and progestagen production in equids. J. Reprod. Fertil. Suppl. 23: 405–13. -Allen, W.R, Moor, R.M. (1972). The origin of the equine endometrial cups. I. Production of PMSG by fetal trophoblast cells. J Reprod Fertil; 29: 313–6. -Allen, W.R, Kydd, J.H., Boyle, M.S., Antczak, D.F. (1987). Extraspecific donkey-in-horse pregnancy as a model of early fetal death. J. Reprod. Fertil. Suppl.: 35:197–209. -Allen, W.R, Moor, R.M. (1973). The origin of the equine endometrial cups. I. Production of PMSG by fetal trophoblast cells. J Reprod Fertil. 29: 313–316. -Allen, W.R, Stewart, F., (2001) Equine placentation Reprod. Fertil. Dev (13); 623–634 -Allen, W.R y Wilsher, S. (2009). A Review of Implantation and Early Placentation in the Mare. Placenta, 30: 1005–1015. -Allen, W.R, Gower, S., Wilsher, S. (2017). Localisation of epidermal growth factor (EGF), its specific receptor (EGF-R) and aromatase at the materno-fetal interface during placentation in the pregnant mare. Placenta 50: 53-59. -Aurich, C., (2011) Reproductive cycles of horses. Anim Reprod Sci 124: 220-228. -Babischkin, J., Suresch, D., Pepe, G., Albrecht, E. (2007). Differential Expression of Placental Villous Angiopoietin-1 and -2 During Early, Mid and Late Baboon Pregnancy. Placenta: 28: 212-218. -Bairagi, S., Quinn, K., Crane, A., Ashley, R., Borowicz, P., Caton, J. y Reynolds, L. (2016). Maternal environment and placental vascularization in small ruminants. Theriogenology: 86(1), 288-305. - Barbero, E.E. (2016). El caballo como industria: Descripción del subsistema de la carne de équidos en la Argentina. Tesis de Magister de la Universidad de Buenos Aires, Área Agro negocios y Alimentos. -Battut, I., Colchen, S., Fieni, F., Tainturier, D., Bruyas, J.F. (1997). Success rate when attempting to non surgically collect equine embryos at 144, 156 and 168 hours after ovulation. Equine Vet J; 25:60–2. -Benirschke, K., y Kaufmann, P. (2000). Pathology of the Human Placenta. (4ta ed.) New York, USA: Springer-Verlag. -Bergfelt, D.R., (2000). Estrous synchronization. In: Equine breeding management and artificial insemination. Samper, JC (ed.) Saunders Company, Philadelphia:165-177. -Betteridge, K. J., (1989). The structure and function of the equine capsule in relation to embryo manipulation and transfer. Equine Vet. J.:8;92–100. -Bjorkman N., G. Bloom, (1957) On the fine structure of the foetal-maternal junction in the bovine placentome, Z. Zellforsch. Mikrosk. Anat. 45: 649-659. -Bogic, L., Brace, R., Cheung, C., (2000). Cellular Localization of Vascular Endothelial Growth Factor in Ovine Placenta and Fetal Membranes. Placenta: 21: 203–209. -Boos, A., Janssen, V., Mulling, C., (2003). Proliferation and apoptosis in bovine placentomes during pregnancy and around induced and spontaneous parturition as well as in cows retaining the fetal membranes. Reproduction:126: 469–480. -Borowicz, P., Arnold, D., Johnson, M., Grazul-Bilska, A., Redmer, D. y Reynolds, L. (2007). Placental growth throughout the last two thirds of pregnancy in sheep: vascular development an angiogenic factorexpression. Biology of Reproduction: 76, 259-267. -Bracher, V., Mathias, S., Allen, Wr. (1996). Influence of chronic endometritis (endometrosis) on placental development in the mare. Equine Veterinary Journal: 28 (3): 180-188. -Bulmer, J.N, Morrison, L. y Johnson, P.M. (1988). Expression of the proliferation markers Ki67 and transferrin receptor by human trophoblast populations. Journal of Reproductive Immunology 14: 291-302 -Burton, G.J., Jauniaux, E., Charnock-jones, D.S. (2007) Human early placental development: potential roles of the endometrial glands. Placenta 28, 21: 64-69 -Burton, G.J, Hempstock y Jauniaux, E. (2003) Endometrial secretions and development of the human fetoplacental unit during early pregnancy. Havemeyer Foundation Monograph 10: 20-22. -Boos, A., Janssen, V. and. Mulling, C. (2003). Proliferation and apoptosis in bovine placentomes during pregnancy and around induced and spontaneous parturition as well as in cows retaining the fetal membranes. Reproduction:126: 469–480. -Camozzato, G.C., Martinez, M.N., Bastos, H.B.A, Fiala-Rechsteiner, S., Meikle, A., Jobim, M.I.M., Gregory, R.M., Mattos, R.C. (2019). Ultrastructural and histological characteristics of the endometrium during early embryo development in mares. Theriogenology 123: 1-10 -Carter, A.M., Enders, A.C. (2016). Early studies of placental ultrastructure by electron microscopy. Placenta 41: 10-13 -Castro, G.G., Zanuzzi, C., Merkis, C., Barbeito, C., Diessler, M. (2019). Apoptosis y proliferación en placenta canina. Placenta: 83: e70-e71 -Chavatte-Palmer, P., Derisoud E., Robles M. (2022). Pregnancy and placental development in horses: an update. Domestic Animal Endocrinology: 79:2-12. -Cristofolini, A., Sanchis, G., Moliva, M., Alonso, L., Chanique, A., Koncurat, M., Merkis, C. (2013). Cellular remodelling by apoptosis during porcine placentation. Reproduction in domestic animals: 48: 584–590. -Cristofolini, A., Merkis, C., Barroso, F., Vaquer, V., Lloret, M., Moschetti, E. y Koncurat M. (2008). Detección de fibrinógeno, FAS B-10, FAS ZB4 y FAS C-20 durante la placentación porcina. Revista Electrónica de veterinaria (REDVET), IX (7): 1-10. -Cristofolini, A., Fiorimanti, M., Campos, M., Sanchis, E., Diaz, T., Moschetti, E., Merkis, C. (2018) Morphometric study of the porcine placental vascularization. Reprod Dom Anim. 53:217–225. -Charnock-Jones, D., Clark, D., Licence, D., Day, K., Wooding, F., Smith, S. (2001) Distribution of vascular endothelial growth factor (VEGF) and its binding sites at the maternal–fetal interface during gestation in pigs. Reproduction, 122: 753–760. -Charnock-Jones, D., Kaufman, P., Mayhew, T. (2004). Aspects of human fetoplacental vasculogenesis and angiogenesis. I Molecular regulation. Placenta: 25: (2-3):103-113. -Cheung, C., Singh, M., Ebaugh, M., Brace, R. (1995). Vascular endothelial growth factor gene expression in ovine placenta and fetal membranes. Am. J Obstets. Gynec.: 173: 753-759. -Clegg, M.T., Boda, J.M., Cole, H.H. (1954). The endometrial cups and allantochorionic pouches in the mare with emphasis on the source of equine gonadotrophin. Endocrinology, 54: 448–63 -Crowell-Davis, S.L. (2007). Sexual behavior of mares. Horm Behav (52); 12-17. -Crump, A., Donaldson, W. L., Miller, J. M., Kydd, J. H., Allen, W. R., and Antczak, D. F. (1987). Expression of major histocompatibility complex (MHC) antigens on horse trophoblast. J. Reprod. Fertil. (35); 379–88. -Cole, H.H. y Goss, H. (1943). The source of equine gonadotropin. In Essays in Biology in Honor of HerbertM Evans, pp. 107–19. Berkeley: Univ. Calif. Press -Cole, H.H., Howell, C.E., Hart, G.H. (1931). The changes occurring in the ovary of the mare during pregnancy. Anat. Rec. (49);199–209. -Cortés-Vidauri, Z., Aréchiga-Flores, C., Rincón-Delgado, M., Rochín-Berumen, F., López-Carlos, M., Flores-Flores, G. (2018). Mare Reproductive Cycle: A Review. ABANICO VETERINARIO 8(3):14-41. -Daels, P.F., De Moraes, J.J, Stabenfeldt, G.H, Hughes, J.P, Lasley, B.L. (1991) The corpus luteum: source of oestrogen during early pregnancy in the mare. J. Reprod. Fertil. Suppl.; 44:501–508. -Daels, P.F y Hughes J.P (1993). The normal estrous cycle. Equine Reproduction. Lea and Febiger. Philadelphia, London. -Dempsey, E.W., Wislocki, G.B., Amoroso, E.C (1955). Electron microscopy of the pig's placenta, with especial reference to the cell membranes of the endometrium and chorion, Am. J. Anat. 96: 65-101. -Diaz, T., Merkis, C., Cots, D., Sanchis, E., Cristofolini, A., Romanini, M.C., Rolando, A. (2015). Angiogenesis at different stage of pregnancy in goat placenta. Journal of Life Sciences: 9:391–398. -Di Rienzo, J., Casanoves, A., Balzarini, M., Gonzalez, L., Tablada, M., Robledo, C., 2020. InfoStat Group, Facultad De Ciencias Agropecuarias. Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar. -Djonov, V., Schmid, M., Tschanz, S.A., Burri P.H. (2000). Intussusceptive angiogenesis: its role in embryonic vascular network formation, Circ. Res. 86: 286– 292. -Donaldson, W. L., Zhang, C. H., Oriol, J. G., and Antczak, D. F. (1990). Invasive equine trophoblast expresses conventional class I major histocompatibility complex antigens. Development (110); 63–71. -Drevs, J., Einführung. In: Drevs, J. (2005), Tumor angiogenese–Grundlagen und therapeutische Ansätze, 1st ed. UNI-MED Verlag 13–16. -Dunk, C., Shams, M., Nijjar, S., Rhaman, M., Qiu, Y., Bussolati. B., Ahmed, A., (2000). Angiopoietin-1 and Angiopoietin-2 Activate Trophoblast Tie-2 to Promote Growth and Migration during Placental Development. American Journal of Pathology, 156 (6): 2185-2199 -Er, H., Acar, N., Kipmen-Korgun, D., Celik-Ozenci, C., Ustunel I., Asar, M., Korgun, E T. (2015). Determination of PCNA, cyclin D3, p27, p57 and apoptosis rate in normal and dexamethasone-induced intrauterine growth restricted rat placentas. Acta Histochem.: 117(2):137-47. -Enders, A.C y Liu I.K.M. (1991a). Lodgement of the equine blastocyst in the uterus from fixation through endometrial cup formation. Journal of Reproduction and Fertility Supplement 44: 427-138 -Enders, A.C. y Liu I.K.M. (1991b). Trophoblast-uterine interactions during equine chorionic girdle cell maturation, migration and transformation. American Journal of Anatomy 192: 366-381 -Espinosa, C.R. (2011). Angiogénesis placentaria. Rev. vet.: 2 (22): 131-138. -Espinosa, M.B. (2014). Apoptosis, muerte celular fisiológica, reseña histórica y actualidad. Revista de Educación en Biología: 16 (2): 153-159 -Eklund, L., Saharinen P. (2013). Angiopoietin signaling in the vasculature. Exp. Cell. Res.: 319(9):1271-1280 -Ellenberger, C., Muller, K., Schoon, H.A, Wilsher, S., Allen, WR. (2009). Histological and Immunohistochemical Characterization of Equine Anovulatory Haemorrhagic Follicles (AHFs). Reprod. Dom. Anim.: 44: 395–405 -Evans, H.M, Gustus, E.L, Simpson, M.E. (1933). Concentration of the gonadotropic hormone in pregnant mare’s serum. J. Exp. Med. (58);569–74. -Fagiani, E., Christofori, G., 2013. Angiopoietins in angiogenesis. Cancer Lett. 328: 18–26. -Ferrara, N., Gerber, H., Le Couter, J. (2004). The biology of VEGF and its receptors. Nat. Med. 9: 669 – 76. -Fiorimanti, M., Rabaglino, M.B., Cristofolini, A., Merkis, C. (2018). Immunohistochemical determination of Ang-1, Ang-2 and Tie-2 in placentas of sows at 30, 60 and 114 days of gestation and validation through a bioinformatic approach. Animal Reproduction Science: 195: 242–250 -Fraser, A. y Eva, G. (1996). A license to kill. Cell: 85:781-784. -Franciolli A. L., Cordeiro B.M., Fonseca E. T., Rodrigues M. N., Sarmento C.A., Ambrosio C. E, Carvalho A.F, Miglino M.A, Silva L.A (2011). Characteristics of the equine embryo and fetus from days 15 to 107 of pregnancy. Theriogenology (76); 819-832. -Franciolli, A.L.R, da-Silva-Nunes-Barreto, R., Carvalho, R.C., de- Oliveira, F.D, de-Carvalho, A.F, Ferraz, A.C. (2020). Characteristics of the equine placenta at first trimester. Int J Morphol 38:1018–25. -Gale, N., Thurston, G., Hackett, S., Renard, R., Wang, Q., McClain, J., Martin, C., Witte, C., Witte, M., Jackson, D. (2002). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev. Cell :3: 411–423. -Ginther, O.J, Beg, M.A., Neves, A.P., Mattos, R.C., Petrucci, B.P., (2008). Miniature ponies: 2. Endocrinology of the oestrous cycle. Reprod Fertil Dev (20); 386-390. -Ginther, O.J. (1998). Equine Pregnancy: Physical Interactions between the Uterus and Conceptus. AAEP Proceedings (44);73-104. -Ginther, O.J. (1992). Reproductive biology of the mare – basic and applied aspects. 2nd ed. Cross Plains: Equiservices. -Genbacev, O., Schubach, S.A y Miller, R.K (1992). Villous culture of first trimester human placenta model to study extravillous trophoblast (EVT) differentiation. Placenta 13: 439-61 -Gerstenberg, C., Allen, W.R. y Stewart, F. (1999) Cell proliferation pattern in the equine endometrium throughout the non-pregnant reproductive cycle. J Reprod. Fertil. :117: 143-52 -Gosporodowicz, D. (1972). Purification and physiochemical properties of the pregnant mare serum gonadotrophin (PMSG). Endocrinology (91); 101-106. -Grant, S.F. (2005). Alteraciones del aparato reproductor. En: Medicina interna equina. Reed S.M Editorial intermedica. -Grazul-Bilska, A. T., Johnson, M. L., Borowicz, P. P., Minten, M., Bilski, J. J., Wroblewski, R., Reynolds, L. P. (2011). Placental development during early pregnancy in sheep: cell proliferation, global methylation, and angiogenesis in the fetal placenta. Reproduction, 141(4): 529–540. -Guimarães G., Alves L., Betarelli R., Guimarñaes C., Helmo F., Pereira Júnior C., Correa R., Zangeronimo M. (2017). Expression of vascular endothelial growth factor (VEGF) and factor VIII in the gilt placenta and its relation to fetal development. Theriogenology: 92 :63-68. -Gowdak Wolff, L.E. y Krieger, J.E. (2018). Cap.5: Vascular Growth Factors, Progenitor Cells, and Angiogenesis. En. Da Luz P. L. (1ra ed.), Endothelium and Cardiovascular Diseases: 49-62. EE. UU Elsevier. -Hamilton, D. W, Allen, W. R y Moor, R.M (1973). The origin of equine endometrial cups. III. Light and electron microscopic study of fully developed equine endometrial cups. Anatomical Record 177: 503-518 -Hanahan D., (1997). Signaling vascular morphogenesis and maintenance. Science :277: 48–50. -Hayes, A, Huang, W, Mallah, J, Yang D, Lippman, M., Li, L. (1999). Angiopoietin 1 and its receptor Tie2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvascular Researchn (58); 224-237. -Heap, R.B, Hamon, M., Allen, W.R (1982). Studies on oestrogen synthesis by the preimplantation equine conceptus. Journal of Reproduction and Fertility: (32): 343–352. -Heazell, A., Crocker, I. (2008). Live and Let Die. Regulation of villous trophoblast apoptosis in normal and abnormal pregnancies. Placenta: 29: 772-783. -Hyttel. P., Sinowatz F., Vejlsted M. (2010). Essentials of Domestic Animal Embryology. Saunders Elsevier -Holtan, D.W., Squires, E.L, Lapin, D.R., Ginther, O.J. (1979). Effect of ovariectomy on pregnancy in mares. J. Reprod. Fertil:(27) ;457–63. -Huppertz, B., Kadyrov, M., Kingdom, J.C. (2006). Apoptosis and its role in the trophoblast. Am. J. Obstet. Gynecol.: 195: 29-39. -Jerzak, M. y Bischof, P. (2002). Apoptosis in the first trimester human placenta: the role in maintaining immune privilege at the maternal-foetal interface and in the trophoblast remodelling. Eur. J. Obstet. Gynecol. Reprod. Biol.: 100(2):138-42. -Kaczmarek, M., Kiewisz, J., Schams, D., Ziecik, A. (2009). Expression of VEGF-receptor system in conceptus during peri-implantation period and endometrial and luteal expression of soluble VEGFR-1 in the pig. Theriogenology: 71: 1298-1306 -Kar, M., Ghosh, D. y Sengupta, J. (2007). Histochemical and morphological examination of proliferation and apoptosis in human first trimester villous trophoblast. Human Reproduction: 22: 2814–2823. -Kaufmann y Burton G. (1994). Anatomy and genesis of the placenta.En: The Physiology of Reproduction. (2da Ed) 441-484. Eds E Knobil and JD Neill. Raven Press Ltd, New York -Kamemori, Y., Wakamiya, K., Nishimura, R., Hosaka, Y., Ohtani, S., Okuda, K. (2011). Expressions of apoptosis regulating factors in bovine retained placenta. Placenta: 32:20-26 -Klein, C. (2016). Early pregnancy in the mare: old concepts revisited. Domestic Animal Endocrinology 56: S212-S217 -Korgun, E., Celik-Ozenci, C., Acar, N., Cayli, S., Desoye, G., Demir, R. (2006). Location of cell cycle regulators cyclin B1, cyclin A, PCNA, Ki67 and cell cycle inhibitors p21, p27 and p57 in human first trimester placenta and deciduas. Histochem Cell Biol.: 125: 615-624. -Korkmaz, C., Sakinci, M., Akyol, S.N., Korgun, E.T., Ozogul, C. (2013). Location of proliferating cell nuclear antigen and p53 protein in human first trimester and 541 term placenta. Anal Quant. Cytol. Histol. 35: 335-343. -Lefranc, A.C. y Allen, W.R. (2007a). Influence of breed and oestrous cycle on endometrial gland density in the mare. Equine Vet J 39: 506-510 -Lefranc A.C. y Allen W.R. (2007b). Endometrial gland surface density and hyperaemia of the endometrium during early pregnancy in the mare. Equine Vet J 39: 511-515. -Lefranc, A.C., Neto, V., Buff, S., Guérin, P., Pohl, O. (2014). Ultrastucture of the equine endometrium during natural and artificially induced prolongued dioestrus. J Equine Vet Sci 34; 182-183 -Linares, P.M., Chaparro, M., Gilbert,J.P. (2014). Angiopoietins in inflammation and their implication in the development of inflammatory bowel disease. Journal of Crohn's and Colitis: 8(3):183-190. -Loke, Y.M. (1990). Experimenting with human extravillous trophoblast: a personal view. American Journal of Reproductive Immunology 24: 22-28 -López Albors, O., Olsson, F., Llinares, A.B., Gutiérrez, H., Latorre, R., Candanosa, E., Guillén-Martínez, A., Izquierdo, Ma. J. (2017). Expression of the vascular endothelial growth factor system (VEGF) in the porcine oviduct during the estrous cycle. Theriogenology: 93:46-54 -Lopez Merlo, M., Faya, M., Priotto, M., Barbeito, C., Gobello, C. (2017). Development and proliferation of feline endometrial glands from fetal life to ovarian cyclicity. Theriogenology: 99 119-123 -Losordo, D.W., Isner, J.M. (2001). Estrogen and angiogenesis: a review. Arterioscler Thromb Vasc Biol 21:6–12. -Loux, S.C., Ball, B.A. (2018). The proteome of fetal fluids in mares with experimentally-induced placentitis. Placenta; 64:71–8. -Macdonald A. A, Chavatte P., and Fowden A. L, (2000). Scanning electron microscopy of the microcotyledonary placenta of the horse (Equus caballus) in the latter half of gestation. Placenta (21);565-574. -Ministerio de agroindustria presidencia de la nación. Agroindustria apoya el fortalecimiento de los oficios del sector equino. Recuperado el 12 de febrero de 2022 en https://www.magyp.gob.ar/sitio/areas/equinos/informacion_estadistica/ -Maisonpierre, P.C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Yancopoulos, G. D. (1997). Angiopoietin-2, a Natural Antagonist for Tie2 That Disrupts in vivo Angiogenesis. Science :277 (5322): 55-60 -Meresman., G. (2011). Relevancia de la apoptosis en la reproducción femenina. Invest. Clin.: 52(3): 274 – 290 -Merkis, C., Cristofolini, A., Franchino, M., Sanchis, E., Moschetti, E., & Koncurat, M. (2006). Angiogénesis placentaria durante la gestación porcina. Redvet, 7(4), 1–4. -Merkis, C., Cristofolini, A., Sanchis, E., Koncurat, M. (2010). Expression of death cellular receptors FAS/CD95 and DR4 during porcine placentation. International Journal of Morphology: 28(3): 829-834. -Moliva, M., Cristofolini, A., Alonso, L., Sanchis, G., Chanique, A., Merkis C. (2011). High Score of VEGF receptors, Flt-1 and Flk-1, during porcine gestation. Preliminar study. Biocell: 35(3): A291. -Müller, K., Ellenberger, C., Schoon, H.A. (2009). Histomorphological and immunohisto-chemical study of angiogenesis and angiogenic factors in the ovary of the mare. Research in Veterinary Science: 87: 421–443. -Müller, K., Ellenberger, C., Hoppen, H.O., Schoon, H.A. (2012). Immunohistochemical study of angiogenesis and angiogenic factors in equine granulosa cell tumours. Research in Veterinary Science: 92: 471–477 -Naryzhny, S.N. (2008). Proliferating cell nuclear antigen: a proteomics view. Cell. Mol. Life. Sci.: 65(23):3789-808 -Noden, D.M y De Lahunta, A. (1990). Membranas extraembrionarias y placentacion, Embriología de los animales domésticos.:53-64. Editorial ACRIBIA S.A. -Norwitz, E.R, Schust, D.J y Fisher, S.J. (2001) Implantation and the survival of early pregnancy. N Engl J Med.;345(19):1400-1408. -Okano, A., Ogawa, H., Takahashi, H., Geshi, M. (2007). Apoptosis in the porcine uterine endometrium during the estrous cycle, early pregnancy and post partum. J. Reprod. Dev.: 53(4): 923-930. -Olvera, M., Harris, S., Amezcua, C., McCourty., A, Rezk., S, Koo, C., Felix., J, Brynes R. (2001). Immunohistochemical expression of cell cycle proteins E2F-1, Cdk-2, Cyclin E, p27kip1, and Ki-67 in normal placenta and gestational trophoblastic disease. Mod Pathol, 14(10): 1036-1042. -Oriol, J.G., Betteridge, K.J., Clarke, A.J, Sharom, F.J. (1993). Mucin-like glycoproteins in the equine embryonic capsule. Mol Reprod Dev (34); 255–65. -Oriol, J.G, Sharom, F.J, Betteridge, K.J. (1993). Developmentally regulated changes in the glycoproteins of the equine embryonic capsule. J Reprod 653–64. -Özgen, S., Schoon, H.-A., Aupperle, H., Sieme, H., Klug, E. (2002). Etiopathogenesis of equine intrauterine fluid accumulation. Pferdeheilkunde 18: 594–599. -Özgen, S., Sieme, H., Oldenhofb, H., Kassensb, A., Ertmerb, F., Rodec, K., Müllerd, K., Klosed, K., Rohne, K., Schoond, H.A., Meinecke, B. (2016). Equine endometrial vascular pattern changes during thee strous cycle examined by Narrow Band Imaging hysteroscopy. Animal Reproduction Science: 166 :80–89. -Pazdzior, K., Rapacz, A., Rotkiewicz, T., Ras, A. (2012). Proliferation and Apoptosis in Fetal Membranes and Endometrium During Placental Retention in Heavy Draft Mares. Journal of Equine Veterinary Science: 32: 80-84 - Pazinato, F.M, da Curcio, B.R, Fernandes, C.G, Santos, C.A, Feijó, L.S, Varela, A.S. (2017). Histomorphometry of the placental vasculature and microcotyledons in Thoroughbred mares with chronic laminitis. Theriogenology; 91:77–81. -Perry, J.S., Heap, R.B., y Amoroso, E.C (1973). Steroid hormone production by pig blastocysts. Nature (245); 45–47. -Pinzón, C. E., Serrano M.L, Sanabria M. C. (2009). Papel de la vía fosfatidilinositol 3 kinasa (PI3K/Akt) en humanos Role of phosphatidylinositol 3-kinase pathway (PI3K/Akt) in humans. Rev. Cienc. Salud. Bogotá: 7 (2): 47-66. -Plendl, J., 2000. Angiogénesis and vascular regression in the ovary. Anatomia, Histologia, Embryologia 29: 257–266. -Regúnaga, M.; Cetrangolo, H. y Mozeris, G. (2006). El impacto de las cadenas agroindustriales pecuarias en la Argentina. Evolución y potencial. Biogénesis- Bagó. -Reynolds, L.P. y Redmer, D.A. (1995). Utero-placental vascular development and placental function. J Anim Sci. 73: 1839–1851. -Reynolds L., Borowicz P., Vonnahme K., Johnson M., Grazul-Bilska A., Wallace J., Caton J., Redmer D. (2005). Animal Models of Placental Angiogenesis. Placenta (26); 689-708. -Rizov, M., Andreeva, P., Dimova, I. (2017). Molecular regulation and role of angiogenesis in reproduction. Taiwanese Journal of Obstetrics and Gynecology :56 (2):127-132 -Roa, I.; Smok, S. C. & Prieto, G. R. (2012) Placenta; anatomía e histología comparada. Int. J. Morphol., 30(4):1490-1496, -Robles, M., Peugnet, P.M., Valentino, S.A., Dubois, C., Dahirel, M., Aubriere, M.-C., Reigner, F., Serteyn, D., Wimel, L., Tarrade, A., Chavatte-Palmer. P. (2018). Placental structure and function in different breeds in horses. Theriogenology (108); 136-145. -Rodríguez, M., Couve, C., Egaña, G., Chamy, V. (2011). Apoptosis placentaria: mecanismos moleculares en la génesis de la preclampsia. Rev. Chil. Obstet. Ginecol.:76 (6): 431 – 438. -Rutland, C. S., Latunde-Dada, A.O, Thorpe, A., Plant, R, Langley-Evans, S, Leach, L. (2007). Effect of Gestational Nutrition on Vascular Integrity in the Murine Placenta. Science Direct. Placenta (28); 734 -742. -Saharinen, P., L. Eklund, K. Pulkki, P. Bono, K. Alitalo (2011). VEGF and angiopoietin signaling in tumor angiogenesis and metastasis, Trends Mol. Med. 17: 347–362. -Saharinen, P., Bry, M., Alitalo, K. (2010), How do angiopoietins Tie in with vascular endothelial growth factors?, Curr Opin. Hematol. 17: 198–205. -Samuel Ca, Allen Wr, Steven Dh. (1974). Studies on the equine placenta I. Development of the microcotyledons. J Reprod Fert (41); 441-445. -Samuel, C., Allen, W, Steven, D. (1976). Studies on the equine placenta. II. Ultrastructure of the placental barrier. J Reprod Fert (48); 257-64. -Samuel, C., Allen, W., Steven, H. (1975). Ultrastructural development of the equine placenta. J Reprod Fert., 23; 575-578. -Samuel, C. A., Allen, W. R., and Steven, D. H. (1977). Studies on the equine placenta. III. Ultrastructure of the uterine glands and the overlying trophoblast. J. Reprod. Fertil. (51); 433–7. -Sanchis, E. G., Cristofolini, A., & Merkis, C. (2015). Porcine placental immunoexpression of vascular endothelial growth factor, placenta growth factor, Flt-1 and Flk-1. Biotechnic & Histochemistry :90 (7): 486–494. -Schauder, W. (1912). Untersuchungen uber die eithaute und Embryotrophe des pferdes. Arch. Anat. Physiol. (192);259–302. -Schiessl, B., Innes, B., Bulmer, J., Otun, H., Chadwick, T., Robson, S., Lash, G. (2009). Localization of angiogenic growth factors and their receptors in the human placental bed throughout normal human pregnancy. Placenta :30: 79–87. -Seval, Y., Sati, L., Celik-Ozenci, C., Taskin, O., Demir, R. (2008). The Distribution of Angiopoietin-1, Angiopoietin-2 and Their Receptors Tie-1 and Tie-2 in the Very Early Human Placenta. Placenta: 29: 809-815. -Shore, V., Wang, T., Wang, C., Torry, R., Caudle, M., Torry, D. (1997). Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta: 18(8): 657-665. -Silva, LA., Klein, C., Ealy, AD., Sharp, D.C. (2011). Conceptus-mediated endometrial vascular changes during early pregnancy in mares: an anatomic, histomorphometric, and vascular endothelial growth factor receptor system immunolocalization and gene expression study. Reproduction:142(4): 593-603. -Souza A.M., Winter G.H.Z., Cazales N., Miglino M.A., Mattos R.C. (2014). Endometrial surface adaptive changes during first half of pregnancy in mares. Journal of Equine Veterinary Science 34: 204 -Squires, E.L., (1993). Embryo transfer en: Equine Reproduction. McKinnon AO, Voss, JL (eds.) Lea & Febiger, Philadelphia. -Stenhouse, C., Hogg, C.O., Ashworth, C J. (2018). Associations between fetal size, sex and both proliferation and apoptosis at the porcine feto-maternal interface. Placenta 70: 15–24 -Steven, D.H y Morris, G. (1975). Development of the foetal membranes en: Steven DH (ed) Comparative Placentation, New York: Academic Press 214-67. -Stewart, F., Allen, W.R, Moor, R.M. (1976). Pregnant mare serum gonadotrophin: ratio of folliclestimulating hormone and luteinizing hormone activities measured by radioreceptor assay. J. Endocrinol. (71);471–82. -Stouffer, R.L., Martinez-Chequer, J.C., Molskness, T.A., Xu, F., Hazzard, T.M., (2001). Regulation and action of angiogenic factors in the primate ovary. Archives of Medical Research 32: 567–575. -Stout, S. S., Stewart, F. y Allen, W. R. (2003). Development of the equine chorionic girdle: A role for allantoic mesenchyme?. Workshop on Embryonic And Fetal Nutrition 10: 36-38 -Takahashi, T. y Caviness, V. S. Jr. (1993). PCNA-binding to DNA at the G1/S transition in proliferating cells of the developing cerebral Wall. Journal of Neurocytology 22: 1096–1102 -Turiello, M.P., Cristofolini, A., Fiorimanti, M., Diaz, T., Cavaglieri, L., Merkis. C. (2019). Effect of prepubertal nutrition on cellular apoptosis and proliferation in at term placenta of Anglo‐Nubian goats. Reprod. Dom. Anim.: 54:560–570. -Unek, G, Ozmena, A., Ozekincib, M., Sakincib, M., Korguna, E. T. (2014a) Immunolocalization of cell cycle proteins (p57, p27, cyclin D3, PCNAand Ki67) in intrauterine growth retardation (IUGR) and normalhuman term placentas. Acta Histochem.: 116(3):493-502 -Unek, G., Ozmen, A., Mendilcioglu, I., Simsek, M., Korgun, E.T. (2014b). The expression of cell cycle related proteins PCNA, Ki67, p27 and p57 in normal and preeclamptic human placentas. Tissue Cell.: 46(3):198-205. -Van Niekerk, C.H.I., (1965). Early clinical diagnosis of pregnancy in mares. J S Afr Vet Med Ass (36);55–8. -Vonnahme, K., Arndt, W., Johnson, M., Borowicz, P. y Reynolds L. (2008). Effect of morphology on placentome size, vascularity, and vasoreactivity in late pregnant sheep. Biology of Reproduction:79: 976–982. -Wang, Q., Lash, G. (2017). Angiopoietin 2 in placentation and tumor biology: the yin and yang of vascular biology. Placenta: 56 :73–78. -Watson, E.D. & Cross, J.C.C. (2005) Development of structures and transport functions in the mouse placenta. Physiology. (20); 180-193. -Weber, J.A., Freeman, D.A., Vanderwall, D.K., Wood, G.L. (1991a). Prostaglandin E2 secretion by oviductal transport-stage equine embryos Biology of Reproduction (45): 540–543. -Weber, J.A., Freeman, D.A., Vanderwall, D.K., Wood, G.L. (1991b). Prostaglandin E2 hastens oviductal transport of equine embryos Biology of Reproduction (45): 544–546. -Weber, J.A., Woods, G.L., Freeman, D.A., Vanderwall, D.K. (1992). Prostaglandin E2-specific binding to the equine oviduct Prostaglandins (43): 61–65. -Weber, J.A., Woods, G.L, Lichtenwalner, A.B. (1995). Relaxatory effect of prostaglandin E2 on circular smooth muscle isolated from the equine oviductal isthmus. Biology of Reproduction Monograph (1): 125–130. -Wei Chen, Chen, J., Menghao X, Zhiyan Z., Zhang Q., Wei Yang., Guangying H. (2019). Electroacupuncture facilitates implantation by enhancing endometrial angiogenesis in a rat model of ovarian hyperstimulation. Biology of Reproduction: 100(1): 268–280 -Wei, P., Jin, X., Zhang, X.S., Hu, Z.Y., Han, C.S., Liu, Y.X. (2005) Expression of Bcl-2 and p53 at the fetal–maternal interface of rhesus monkey. Reproductive Biology and Endocrinology 3-4 -Weitlauf, H.M. (1994). En: Biology of implantation. The Physiology of Reproduction. (2da Ed.) 391-429 Eds E Knobil and JD Neill. Raven Press Ltd, New York -Winther, H., Ahmed, A., Dantzer, V. (1999). Immunohistochemical localization of Vascular Endothelial Growth Factor (VEGF) and its two specific receptors, Flt-1 and KDR, in the porcine placenta and non-pregnant uterus. Placenta, 20: 35-43. -Wooding, F.B.P, Morgan, G., Fowden, A.L y Allen, W.R (2001). A structural and immunological study of chorionic gonadotrophin production by equine trophoblast girdle and cup cell. Placenta (22): 749-767. -Wooding, F.B.P. (1982). The role of the binucleate cell in ruminant placental structure Journal of Reproduction and Fertility Supplement (31) 31–39. -Wooding, P. y Burton, G. (2008). Comparative placentation: structure, functions and evolution. Springer. Verlag Berlin Heidelberg.: 1-291. -Woudwyk, M., Zanuzzi, C., Nishida, F., Gimeno, E.J., Soto, P., Monteavaro, C., Barbeito, C.G. (2015) Apoptosis and cell proliferation in the mouse model of embryonic death induced by Tritrichomonas foetus infection. Experimental parasitology :156: 32 - 36 -Wulff, C., Wilson, H., Dickson, S., Wiegand, S., Fraser H. (2002) Hemochorial placentation in the primate: expression of vascular endothelial growth factor, angiopoietins, and their receptors throughout pregnancy. Biol. Reprod.: 66: 802-812. -Xue, W., Khoo., U, Ngan, H., Chan, K., Chiu, P., Tsao, S., Cheung, A. (2003). Minichromosome maintenance protein 7 expression in gestational trophoblastic disease: correlation with Ki67, PCNA and clinicopathological parameters. Histopathology, 43: 485-490. -Zhang, X., Barile, G. y Chang, S., Hays, A., Pachydaki, S., Schiff, W., Sparrow, J. (2005). Apoptosis and Cell Proliferation in Proliferative Retinal Disorders: PCNA, Ki-67, Caspase-3, and PARP Expression. Current Eye Research: 30:395–40 | por |
dc.subject.cnpq | Medicina Veterinária | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/72184/2022%20-%20Stefani%20Rosario%20Gregori.Pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6330 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-02-15T18:37:37Z No. of bitstreams: 1 2022 - Stefani Rosario Gregori.Pdf: 7599845 bytes, checksum: cc69307888a23a71876a71eed4256904 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-02-15T18:37:37Z (GMT). No. of bitstreams: 1 2022 - Stefani Rosario Gregori.Pdf: 7599845 bytes, checksum: cc69307888a23a71876a71eed4256904 (MD5) Previous issue date: 2022-08-01 | eng |
Appears in Collections: | Doutorado em Ciência, Tecnologia e Inovação em Agropecuária |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Stefani Rosario Gregori.Pdf | 7.42 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.