Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/16397
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Giordano, Damián Francisco | |
dc.date.accessioned | 2023-12-18T17:39:34Z | - |
dc.date.available | 2023-12-18T17:39:34Z | - |
dc.date.issued | 2022-07-04 | |
dc.identifier.citation | GIORDANO, Damián Francisco. Control de la viruela tardía del maní causada por Nothopassalora personata mediante la aplicación de microorganismos solos o combinados con fungicidas. 2022. 183 f. Tese (Doutorado em Ciência, Tecnologia e Inovação em Agropecuária) - Pró-Reitoria de Pesquisa e Pós-Graduação, Universidad Nacional de Rio Cuarto/Universidade Federal Rural do Rio de Janeiro, Argentina/Brasil, 2022. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/16397 | - |
dc.description.abstract | Argentina se posiciona entre los principales productores y exportadores de maní (Arachis hypogaea L.), la mayor parte de la producción se desarrolla en la provincia de Córdoba, aunque el cultivo se ha ido desplazando debido principalmente a las enfermedades fúngicas que afectan su producción. La viruela tardía (Nothopassalora personata), es una de las enfermedades más importantes a nivel mundial, con pérdidas que pueden ser elevadas bajo condiciones ambientales favorables y falta de medidas de manejo adecuadas. La principal herramienta para su control es la aplicación de fungicidas, sin embargo se han encontrado escapes de la enfermedad, posiblemente por el surgimiento de subpoblaciones del patógeno resistentes a ciertos principios activos, a lo que se suma la mayor presión social y de los países importadores por reducir el uso de pesticidas y apuntar hacia un manejo integrado. Dentro de este esquema, el control biológico es una herramienta con gran potencial, que se viene estudiando fuertemente en diferentes patosistemas. Con el objetivo de aportar herramientas para el manejo integrado de la enfermedad, se estudiaron las cepas Trichoderma harzianum ITEM 3636 y Pseudomonas putida RC-93 y la aplicación de fungicidas químicos. En ensayos de laboratorio y mediante microscopía electrónica, se evaluó la aplicación de ITEM 3636 a las semillas, y su comportamiento luego de la germinación, mediante microscopía confocal. Se llevaron a cabo ensayos de invernadero para estudiar el efecto de la aplicación de ambas cepas en la emergencia, crecimiento y producción de las plantas, sobre la intensidad de viruela tardía y posibles cambios en enzimas relacionadas con la inducción de defensas. Finalmente, en ensayos a campo, se evaluó el efecto de estos microorganismos inoculados en las semillas y la aplicación foliar de fungicidas, frente a la enfermedad y su impacto en el rendimiento. La aplicación de ITEM 3636 a las semillas, fue compatible con el uso de fungicidas curasemillas y el adherente utilizado permitió su correcta dispersión; a su vez, se pudo comprobar su comportamiento como endófito de las raíces de maní. Ninguna de las cepas generó problemas en la emergencia y RC-93 logró un mayor crecimiento de las raíces en condiciones de invernadero, donde ambas cepas disminuyeron la intensidad de la enfermedad, sin encontrar diferencias en la actividad enzimática evaluada. A campo, la enfermedad disminuyó solamente con los fungicidas, entre los que resaltó la aplicación de clorotalonil y una mezcla que contenía una carboxamida; en cuanto al rendimiento, sólo se observó mayor producción de granos calidad confitería con la aplicación de ITEM 3636 en dos ensayos respecto al testigo. Estas cepas representan una potencial herramienta para incluir dentro de un programa de manejo integrado de viruela tardía del maní, es importante continuar con la investigación para encontrar la mejor forma de aplicación y descifrar los mecanismos involucrados en el biocontrol. | por |
dc.description.sponsorship | Secretaría de Ciencia y Técnica, UNRC (PPI 2016-2019 y 2019-2022) | por |
dc.description.sponsorship | CONICET (PIP 11220170100718CO 2017-2019) | por |
dc.description.sponsorship | Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (PICT-2018-04057, 2019-2022 – PICT-2017-2740, 2018-2022) | por |
dc.description.sponsorship | Ministerio de Ciencia y Tecnología (PID 2019-2021) | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | biocontrol | spa |
dc.subject | manejo integrado | spa |
dc.subject | Viruela tardia del mani | spa |
dc.subject | Arachishypogaea | spa |
dc.subject | Trichoderma harzianum ITEM 3636 | spa |
dc.subject | Pseudomonas putida RC-93 | spa |
dc.title | Control de la viruela tardía del maní causada por Nothopassalora personata mediante la aplicación de microorganismos solos o combinados con fungicidas | por |
dc.type | Tese | por |
dc.description.abstractOther | Argentina is one of the main peanuts (Arachis hypogaea L.) producing and exporting countries, the major production of this crop takes place in Cordoba province. Lately the production area has migrated mainly because of the peanut fungal diseases. Late leaf spot (Nothopassalora personata) is one of the most important diseases worldwide, reaching high yield losses under favorable weather conditions and lack of proper management measures. The main tool for its control is the application of fungicides, however it has been observed that this tool can lose its effectiveness, possibly due to the emergence of fungal subpopulations which are resistant to certain active ingredients. In addition to this, there is a high pressure from society and the peanut importing countries to reduce the use of pesticides and to aim towards a integrated disease management. In this approach, biological control is a tool with big potential, which has been studied hardly in different pathosystems. With the goal of contributing with some integrated management tools for this disease, the isolates Trichoderma harzianum ITEM 3636 and Pseudomonas putida RC-93 and the application of chemical fungicides were studied. In laboratory assays and through electron microscopy, it was tested the application of ITEM 3636 on seeds and its behavior after germination, by means of laser scanning confocal microscopy. Experiments in greenhouse were carried out in order to study the effect of the application of both isolates on the plant emergency, growth and production, late leaf spot intensity and possible changes in the activity of enzymes related with defense induction. Finally, the effect on the disease and the impact on crop yield of the microorganisms application on seeds and fungicides foliar application were evaluated through field assays. The application of ITEM 3636 on seeds were compatible with the use of chemical fungicides on it and the adherent used allowed a correct dispersion; furthermore, the behavior of the isolate as endophyte in peanut roots was confirmed. None of the isolates caused problems on peanut emergency, and RC-93 achieved a bigger root growth under greenhouse conditions. Both isolates were able to decrease the disease intensity, but no differences on the enzymatic activity were found. On field tests, the disease only decreased with the use of fungicides, standing out chlorothalonil and a mixture that contained a carboxamide; regarding the yield, a greater production of confectionary quality grains was obtained only with the application of ITEM 3636 in two assays when comparing with the control. These isolates represent a potential tool to be included in an integrated management program of peanut late leaf spot, it is important to continue the research in order to find the best application form and to decipher the mechanisms involved in the biocontrol. | eng |
dc.description.abstractOther | A Argentina está entre os principais produtores e exportadores de amendoim (Arachis hypogaea L.), a maior parte da produção está localizada na província de Córdoba, embora a cultura tenha migrado principalmente devido a doenças fúngicas que afetam sua produção. A mancha preta do amendoim (Nothopassalora personata), é uma das doenças mais importantes a nível mundial, com perdas que podem ser elevadas em condições ambientais favoráveis e na falta de medidas adequadas. A principal ferramenta para o seu controle é a aplicação de fungicidas, porém sua eficiência pode sofrer redução, possivelmente devido ao surgimento de subpopulações de patógenos resistentes a determinados princípios ativos, além da maior pressão social e dos países importadores para reduzir o uso de pesticidas e visando o manejo integrado. Nesse contexto, o controle biológico é uma ferramenta com grande potencial, que vem sendo bastante estudada em diferentes patossistemas. Com o objetivo de fornecer ferramentas para o manejo integrado da doença, foram estudadas as cepas Trichoderma harzianum ITEM 3636 e Pseudomonas putida RC-93 e a aplicação de fungicidas químicos. Em testes de laboratório e por microscopia eletrônica, a aplicação da ITEM 3636 nas sementes, e seu comportamento após a germinação, foi avaliada por microscopia confocal. Testes em estufa foram realizados para estudar o efeito da aplicação de ambas as linhagens na emergência, crescimento e produção das plantas, na intensidade da mancha preta e possíveis alterações nas enzimas relacionadas à indução de defesas. Por fim, em ensaios de campo, avaliou-se o efeito desses microrganismos inoculados nas sementes e a aplicação foliar de fungicidas contra a doença e seu impacto na produtividade. A aplicação da ITEM 3636 nas sementes foi compatível com o uso de fungicidas de tratamento de sementes e o aderente utilizado permitiu sua correta dispersão; além disso, verificou-se seu comportamento como endófito de raízes de amendoim. Nenhuma das linhagens gerou redução na emergência e a RC-93 obteve maior crescimento radicular em estufa, onde ambas as linhagens diminuíram a intensidade da doença, sem observar diferenças na atividade enzimática avaliada. Em campo, a doença foi reduzida apenas com a utilização de fungicidas, entre os quais se destacou a aplicação de clorotalonil e uma mistura contendo uma carboxamida. Em termos de produtividade, uma maior produção de grãos de qualidade para confeitaria só foi observada com a aplicação da ITEM 3636 em dois ensaios em relação ao controle. Essas cepas representam uma potencial ferramenta a ser incluída em um programa de manejo integrado da mancha preta do amendoim. Por este motivo, é importante continuar com as pesquisas para encontrar a melhor forma de aplicação e decifrar os mecanismos envolvidos no biocontrole dessa doença. | por |
dc.contributor.advisor1 | Torres, Adriana Mabel | |
dc.contributor.advisor1ID | DNI 16.330.436 | por |
dc.contributor.advisor-co1 | Oddino, Claudio Marcelo | |
dc.contributor.advisor-co1ID | DNI 24.119.489 | por |
dc.contributor.advisor-co2 | Coelho, Irene da Silva | |
dc.contributor.advisor-co2ID | 044.355.796-93 | por |
dc.creator.ID | DNI 35.915.292 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Pró-Reitoria de Pesquisa e Pós-Graduação | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência, Tecnologia e Inovação em Agropecuária | por |
dc.relation.references | Albrecht, T., Argueso, C.T. (2016). Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth–defence trade-off. Annals of Botany: 119 (5): 725-735. https://doi.org/10.1093/aob/mcw211 Anand, T., Chandrasekaran, A., Kuttalam, S., Raguchander, T., Prakasam, V., Samiyappan, R. (2007). Association of some plant defense enzyme activities with systemic resistance to early leaf blight and leaf spot induced in tomato plants by azoxystrobin and Pseudomonas fluorescens. Journal of Plant Interactions: 2 (4): 233-244. https://doi.org/10.1080 /17429140701708985 Anand, S., Jayarama, R. (2009). Biocontrol potential of Trichoderma sp. against plant pathogens. International Journal of Agriculture Science: 1 (2): 30-39. Anco, D. (2018). Peanut disease management. En: Marshal, M. (Ed.) South Carolina pest management handbook for field crops. (pp 195-205): Universidad Clemson, Carolina del Sur, Estados Unidos. Anco, D.J., Thomas, J.S., Jordan, D.L., Shew, B.B., Monfort, W.S., Mehl, H.L., Small, I.M., Wright, D.L., Tillman, B.L., Dufault, N.S., Hagan, A.K., Campbell, H.L. (2020a). Peanut yield loss in the presence of defoliation caused by late or early leaf spot. Plant Disease: 104 (5): 1390-1399. https://doi.org/10.1094/PDIS-11-19-2286-RE Anco, D.J., Thomas, J.S., Wright, D.L., Dufault, N.S., Small, I.M. (2020b). Sixty-one years following registration, phorate applied in-furrow at planting suppresses development of late leaf spot on peanut. Plant Disease: 104: 2885-2890. https://doi.org/10.1094/PDIS-03-20-0547-RE Andrés, J.A., Pastor, N.A., Ganuza, M., Rovera, M., Reynoso, M.M., Torres, A. (2016). Biopesticides: An ecofriendly approach for the control of soil-borne pathogens in peanut. Microbial Inoculants in Sustainable Agricultural Productivity: 161-179. https://doi.org/10.1007/978-81-322-2647-5_9 Anil, K., Podile, A.R. (2012). HarpinPss-mediated enhancement in growth and biological control of late leaf spot in groundnut by a chlorothalonil-tolerant Bacillus thuringiensis SFC24. Microbiological Research: 167 (4): 194-198. https://doi.org/10.1016/j.micres.2011.07.002 Anzuay, M.A., Ruiz Ciancio, M.G., Ludueña, L.M., Angelini, J.G., Barros, G., Pastor, N., Taurian, T. (2017). Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides. Microbiological Research: 199: 98-109. http://dx.doi.org/10.1016/j.micres.2017.03.006 Ardila, H., Higuera, B.L. (2005). Inducción diferencial de polifenoloxidasa y β-1,3-glucanasa en clavel (Dianthus caryophyllus) durante la infección por Fusarium oxysporum f. sp. dianthi raza 2. Acta Biológica Colombiana: 10 (2): 61-74. Arya, S.S., Salve, A.R., Chauhan, S. (2016). Peanuts as functional food: a review. Journal of food science and technology: 53 (1): 31-41. https://doi.org/10.1007/s13197-015-2007-9 Backman, P.A., Crawford, M.A. (1984). Relationship between yield loss and severity of early and late leafspot diseases of peanuts. Phytopathology: 74: 1101-1103. https://doi.org/10.1094/Phyto-74-1101 Bagnall, D.J., King, R.W. (1991). Response of peanut (Arachis hypogaea) to temperature, photoperiod and irradiance 1. Effect on flowering. Field Crops Research: 26 (3-4): 263-277. https://doi.org/10.1016/0378-4290(91)90004-F Bakker, P.A.H.M., Pieterse, C.M.J., vanLoon, L.C. (2007). Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology: 97 (2): 239-243. https://doi.org/10.1094 /phyto-97-2-0239 Balasubramanian, V., Vashisht, D., Cletus, J., Sakthivel, N. (2012). Plant b-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnolgy Letters: 34: 1983-1990. https://doi.org/10.1007/s10529-012-1012-6 Baldessari, J.J. (2017). Mejoramiento Genético. En: Fernandez, E.M., Giayetto, O. (Eds.), El cultivo del maní en Córdoba. (pp. 41-54). Rio Cuarto, Argentina: Universidad Nacional de Río Cuarto. ISBN 978-987-42-3736-1. Barakat, I., Chtaina, N., Grappin, P., El Guilli, M., Ezzahiri, B., Aligon, S., Neveu, M., Marchi, M. (2019). "Induced Systemic Resistance (ISR) in Arabidopsis thaliana by Bacillus amyloliquefaciens and Trichoderma harzianum Used as Seed Treatments" Agriculture: 9 (8): 166. https://doi.org/10.3390/agriculture9080166 Benhamou, N., Kloepper, J.W., Quadt-Hallman, A., Tuzu, S. (1996). Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology: 112 (3): 919-929. https://doi.org/10.1104/pp.112.3.919 Benitez, T., Rincon, A.M., Limon, M.C., Codon, A.C. (2004). Biocontrol mechanism of Trichoderma strains. International Microbiology: 7 (4): 249-260. Bianco, C.A., Kraus, T.A., Nuñez, C.O. (2006). Botánica Agrícola (2da ed). Río Cuarto, Argentina: Universidad Nacional de Río Cuarto. ISBN 978-950-665-400-9. Bishi, S.K., Kumar, L., Mahatma, M.K., Khatediya, N., Chauhan, S.M., Misra, J.B. (2015). Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chemistry: 167: 107–114. https://doi.org/10.1016/j.foodchem.2014.06.076 Boller, T., Mauch, F. (1988). Colorimetric assay for chitinase. Methods in Enzymology: 161: 430-435. Boote, K.J. (1982). Growth Stages of Peanut (Arachis hypogaea L.). Peanut science: 9 (1): 35-40. https://doi.org/10.3146/i0095-3679-9-1-11 Bourgeois, G., Boote, K.J. (1992). Leaflet and canopy photosynthesis of peanut affected by late leaf spot. Agronomy journal: 84 (3): 359-366. https://doi.org/10.2134/agronj1992.000219 62008400030002x Brotman, Y., Landau, U., Cuadros-Inostroza, A., Landau, U., Cuadros-Inostroza, A., Takayuki, T., Fernie, A.R., Chet, I., Viterbo, A., Willmitzer, L. (2013). Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens: 9 (3): e1003221. https://doi.org/10.1371/journal.ppat.1003221 CAM. 2021. Cámara Argentina del Maní. Recuperado el 23 de diciembre de 2021. En https://camaradelmani.org.ar/cluster-manisero/ Calzada, J., Rozadilla, B. (2018). Argentina líder en exportaciones del complejo de Maní. Informativo Semanal de la Bolsa de Comercio de Rosario. Recuperado el 16 de diciembre de 2021. En https://bcr.com.ar/es/print/pdf/node/72852 Cappiello, F., March, G., Marinelli, A., García, J., Tarditi, L., D´Eramo, L., Ferrari, S., Rago, A., Oddino, C. (2012). Producción de maní según intensidad de viruela (Cercosporidium personatum). En March, G. (Ed.), Ciencia y Tecnología de los cultivos industriales. Maní. (pp. 281- 287). Córdoba, Argentina: INTA-CIAP. ISSN 1853-7677. Carrero-Carrón, I., Trapero-Casas, J.L., Olivares-García, C., Monte, E., Hermosa, R., Jiménez-Díaz, R.M. (2016). Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae. Crop Protection: 88: 45-52. https://doi.org/10.1016/j.cropro.2016.05.009 Carrillo, P., Woo, S.L., Comité, E., El-Nakhel, C., Rouphael, Y., Fusco, G.M., Assunta Borzacchiello, A., Lanzuise, S., Vinale, F. (2020). Application of Trichoderma harzianum, 6-pentyl-pyrone and plant biopolymer formulations modulate plant metabolism and fruit quality of plum tomatoes. Plants: 9 (6): 771. https://doi.org/10.3390/plants9060771 Carro-Huerga, G., Compant, S., Gorfer, M., Cardoza, R.E., Schmoll, M., Gutiérrez, S., Casquero, P.A. (2020). Colonization of Vitis vinifera L. by the endophyte Trichoderma sp. strain T154: biocontrol activity against Phaeoacremonium minimum. Frontiers in Plant Science: 11: 1170. https://doi.org/10.3389/fpls.2020.01170 Carsolio, C., Benhamou, N., Haran, S., Cortés, C., Gutiérrez, A., Chet, I., & Herrera-Estrella, A. (1999). Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Applied and environmental microbiology: 65 (3): 929-935. https://doi.org/10.1128 /AEM.65.3.929-935.1999 CASAFE. (2021). Cámara de Seguridad Agropecuaria y Fertilizantes. Guía Online de Productos Fitosanitarios. Recuperado el 20 de noviembre de 2021. En https://guiaonline.casafe.org Catalano, V., Vergara, M., Hauzenberger, J.R., Seiboth, B., Sarrocco, S., Vannacci, G., Kubicek, C.P., Seidl-Seiboth, V. (2011). Use of a nonhomologous end-joiningdeficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Current Genetics: 57 (1): 13-23. https://doi.org/10.1007/s00294-010-0322-2 Chacón, M.R., Rodríguez Galán, O., Benítez Fernández, C.T., Sousa, S., Rey, M., Llobell González, A., Delgado Jarana, J. (2007). Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. International Microbiology: 10: 19-27. Chen, C., Bélanger, R.R., Benhamou, N., Paulitz, T. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiology and Molecular Plant Pathology: 56 (1): 13-23. https://doi.org/10.1006/pmpp.1999.0243 Comisión Europea. (2019). Commission implementing regulation (EU) 2019/677. Official Journal of European Union. Recuperado el 2 de abril de 2022. En: http://data.europa.eu/eli /reg_impl/2019/677/oj. Compant, S., Duffy, B., Nowak, J., Clement, C., Barka, E.A. (2005). Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology: 71 (9): 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005 Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science: 16 (10): 524-531. https://doi.org/10.1016/j.tplants.2011.06.004 Contreras-Cornejo, H.A., Macías-Rodríguez, L., Beltrán-Pena, E., Herrera-Estrella, A., López-Bucio, J. (2011). Trichoderma-induced plant immunity likely involves both hormonal and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signaling & Behavior: 6 (10): 1554-1563. https://doi.org/10.4161/psb.6.10.17443 Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J., Moënne-Loccoz, Y. (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology: 48 (5): 505–512. https://doi.org/10.1111/j.1472-765X.2009.02566.x Culbreath, A.K., Brenneman, T.B., Kemerait, R.C., Hammes, G.G. (2009). Effect of the new pyrazole carboxamide fungicide penthiopyrad on late leaf spot and stem rot of peanut. Pest Management Science: 65 (1): 66–73. https://doi.org/10.1002/ps.1646 Culbreath, A.K., Brenneman, T.B., Kemerait, R.C., Stevenson, K.L. (2016). Changes in the efficacy of pyraclostrobin for control of peanut leaf spot diseases. En Leon, R., Cutchins, K. (Eds.), 48th Proceedings of the American Peanut Research and Education Society, Annual Meeting. (pp 67). Clearwater Beach, Florida, Estados Unidos: American Peanut Research and Education Society, Inc. Culbreath, A.K., Brenneman, T.B., Kemerait, R.C., Stevenson, K.L., Anco, D.J. (2019). Combinations of elemental sulfur with demethylation inhibitor fungicides for management of late leaf spot (Nothopassalora personata) of peanut. Crop Protection: 125: 104911. https://doi.org/10.1016/j.cropro.2019.104911 Culbreath, A.K., Brenneman, T.B., Kemerait, R.C., Stevenson, K.L., Henn, A. (2020). Effect of DMI and QoI fungicides mixed with the SDHI fungicide penthiopyrad on late leaf spot of peanut. Crop Protection: 137: 105298. https://doi.org/10.1016/j.cropro.2020.105298 Culbreath, A.K., Gevens, A.J., Stevenson, K.L. (2018). Relative effects of demethylation-inhibiting fungicides on late leaf spot of peanut. Plant Health Progress: 19 (1): 23-26. https://doi.org/10.1094/PHP-09-17-0053-RS Cutler, H.G., Himmelsbach, D.S., Arrendale, R.F., Cole, P. D., Cox, R.H. (1989). Koningin A: a novel plant growth regulator from Trichoderma koningii. Agricultural and Biological Chemistry: 53 (10): 2605-2611. https://doi.org/10.1080/00021369.1989.10869746 Danay, I., Martínez, B., González, N., Reyes, Y. (2009). Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista de Protección Vegetal: 24 (1): 14-21. ISSN 2224-4697. da Silva, C.R., Koblitz, M.G.B. (2010). Partial characterization and inactivation of peroxidases and polyphenol-oxidases of umbu-cajá (Spondias spp.). Ciência e Tecnologia de Alimentos: 30 (3): 790-796. De La Fuente, L., Thomashow, L., Weller, D., Bajsa, N., Quagliotto, L. (2004). Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics and exerts a broad spectrum of biocontrol activity. European Journal of Plant Pathology: 110 (7): 671-681. https://doi.org/10.1023/b:ejpp.0000041569.35143.22 Dildey, O.D.F., Broetto, L., Rissato, B.B., Gonçalves-Trevisoli, E.D.V., Coltro-Roncato, S., Dal’Maso, E.G., Meinerz, C.C., Henkemeier, N.P., Stangarlin, J.R., Kuhn, O.J., Webler, T.F.B. (2016). Trichoderma-bean interaction: defense enzymes activity and endophytism. African Journal of Agricultural Research: 11 (43): 4286-4292. https://doi.org/10.5897 /AJAR2016.11687 Dillehay, T.D., Rossen, J., Andres, T.C., Williams, D.E. (2007). Preceramic adoption of peanut, squash, and cotton in northern Peru. Science: 316 (5833): 1890-1893. https://doi.org/10.1126/science.1141395 Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W. (2017). InfoStat Versión 2011. Grupo InfoStat, Universidad Nacional de Córdoba, Córdoba, Argentina. Djonović, S., Pozo, M.J., Kenerley, C.M. (2006). Tv‐bgn3, a beta‐1,6‐glucanase from the biocontrol fungus Trichoderma virens is involved in mycoparasitism and control of Pythium ultimum. Applied and Environmental Microbiology: 72 (12): 7661-7670. https://doi.org/10.1128/aem.01607-06 Djonović, S., Vittone, G., Mendoza-Herrera, A., Kenerley, C.M. (2007). Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing beta-1,3- and beta-1,6- glucanase genes. Molecular Plant Pathology: 8 (4): 469-480. https://doi.org/10.1111/j.1364-3703.2007.00407.x Druzhinina, I.S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B.A., Kenerley, C.M., Monte, E., Mukherjee, P.K., Zeilinger, S., Grigoriev, I.V., Kubicek, C.P. (2011). Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology: 9 (10): 749-759. https://doi.org/10.1038/nrmicro2637 Durman, S., Menéndez, A., Godeas, A. (2003). Evaluación de Trichoderma spp. como antagonista de Rhizoctonia solani “in vitro” y como biocontrolador del damping off de plantas de tomate en invernadero. Revista Argentina de Microbiología: 31 (1): 13-18. El-Katatny, M.H., Idres, M.M. (2014). Effects of single and combined inoculations with Azospirillum brasilense and Trichoderma harzianum on seedling growth or yield parameters of wheat (Triticum vulgaris L., Giza 168) and corn (Zea mays L., Hybrid 310). Journal of Plant Nutrition: 37 (12): 1913-1936. https://doi.org/10.1080 /01904167. 2014.911322 El Komy, M.H., Saleh, A.A., Eranthodi, A., Molan, Y.Y. (2015). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathology Journal: 31 (1): 50-60. https://doi.org/10.5423 /PPJ.OA.09.2014.0087 Erazo J. (2020). Efecto de la inoculación de maní (Arachis hypogaea L.) con Trichoderma harzianum ITEM 3636. Su potencial empleo como inoculante microbiano para el control de la podredumbre parda de la raíz. Tesis de doctorado en Ciencias Biológicas, Universidad Nacional de Río Cuarto, Córdoba, Argentina. Erazo, J.G., Palacios, S.A., Pastor, N., Giordano, F.D., Rovera, M., Reynoso, M.M, Venisse, J.S., Torres, A.M. (2021). Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biological Control: 164. https://doi.org/10.1016/j.biocontrol.2021.104774 Etesami, H., Maheshwari, D.K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety: 156: 225-246. https://doi.org /10.1016/j.ecoenv.2018.03.013 Figueredo, M.S., Tonelli, M.L., Ibáñez, F., Morla, F., Cerioni, G., Tordable, M del C., Fabra, A. (2017). Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiological Research: 197: 65-73. http://dx.doi.org/10.1016/j.micres.2017.01.002 Francisco, M.L.D.L., Resurrección A.V.A. (2008). Functional components in peanuts. Critical Reviews in Food Science and Nutrition: 48 (8): 715-746. https://doi.org/10.1080 /10408390701640718 Fulmer, A.M. (2017). Differentiation, prediction and management of early and late leaf spot of peanut in the southeastern United States and Haiti. Tesis de Doctorado en Filosofía, Universidad de Georgia, Athens, Estados Unidos. Ganuza, M., Pastor, N., Boccolini, M., Erazo, J., Palacios, S., Oddino, C., Reynoso, M.M., Rovera, M., Torres, A.M. (2019). Evaluating the impact of the biocontrol agent Trichoderma harzianum ITEM 3636 on indigenous microbial communities from field soils. Journal of Applied Microbiology: 126 (2): 608-623. https://doi.org/10.1111/jam.14147 Ganuza, M., Pastor, N., Erazo, J., Andrés, J., Reynoso, M.M., Rovera, M., Torres, A.M. (2018). Efficacy of the biocontrol agent Trichoderma harzianum ITEM 3636 against peanut smut, an emergent disease caused by Thecaphora frezii. European Journal of Plant Pathology: 151:257–262. https://doi.org/10.1007/s10658-017-1360-0 Gajera, H.P., Savaliya, D.D., Patel, S.V., Golakiya, B.A. (2015). Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.). Infection, Genetics and Evolution: 34: 314-325. https://doi.org/10.1016 /j.meegid. 2015.07.003 García, G. (2005). Perfil descriptivo de la cadena de Maní. Rescatado el 28 de julio de 2021. En: https://www.magyp.gob.ar/new/0-0/programas/dma/publicaciones/perspectivas/Perfiles%2 0descriptivos/Cadena%20de%20man%C3%AD.pdf Giayetto, O. (2017). Origen, historia y clasificación. En: Fernandez, E.M., Giayetto, O. (Eds.), El cultivo del maní en Córdoba. (pp. 27-38). Rio Cuarto, Argentina: Universidad Nacional de Río Cuarto. ISBN 978-987-42-3736-1. Giayetto, O., Fernandez, E.M., Cerioni, G.A., Morla, F.D. (2017). Crecimiento. En Fernandez, E.M., Giayetto, O. (Eds.), El Cultivo de Maní en Córdoba, (2da ed). (pp. 67- 96). Río Cuarto, Argentina: Universidad Nacional de Río Cuarto. ISBN 978-987-42-3736-1. Giordano, D.F., Conforto, E.C., Paredes, J., Monguillot, J., Bernardi Lima, N., Rago, A., Oddino, C. (2021b). Efecto de fungicidas multisitio en el control de viruela del maní (Nothopassalora personata). En Galdeano, E., et al. (Eds.), Libro de resúmenes 5° Congreso Argentino de Fitopatología. 59 th Meeting of the aps caribbean división. (pp 360). Córdoba, Argentina: Asociación Civil Argentina de Fitopatólogos. ISBN 978-987-24373-3-6 Giordano, D.F., Pastor, N., Palacios, S., Oddino, C.M., Torres, A.M. (2021a). Peanut leaf spot caused by Nothopassalora personata. Tropical Plant Pathology: 46 (2): 139-151. https://doi.org/10.1007/s40858-020-00411-3 Gremillion, S., Culbreath, A., Gorbet, D., Mullinix, B.Jr., Pittman, R., Stevenson, K., Todd, J., Condori, M. (2011). Response of progeny bred from bolivian and north American cultivars in integrated management systems for leaf spot of peanut (Arachis hypogaea). Crop Protection: 30 (6): 698-704. https://doi.org/10.1016/j.cropro.2011.02.012 Gupta, V., Kumar, G.N., Buch, A. (2020). Colonization by multi-potential Pseudomonas aeruginosa P4 stimulates peanut (Arachis hypogaea L.) growth, defence physiology and root system functioning to benefit the root-rhizobacterial interface. Journal of Plant Physiology: 248: 153144. https://doi.org/10.1016/j.jplph.2020.153144 Gupta, P., Ravi, I., Sharma, V. (2013). Induction of β-1,3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. Journal of Plant Interactions: 8 (2): 155-161. https://doi.org/10.1080 /17429145.2012.679705 Haas, D., Keel, C. (2003). Regulation of antibiotic production in root-colonized Pseudomonas spp., and relevance for biological control of plant disease. Annual Reviews of Phytopathology: 41 (1): 117-153. https://doi.org/10. 1146/annurev.phyto.41.052002.095656 Haas, D., Défago, D. (2005). Biological control of soilborne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology: 3 (4): 307-319. https://doi.org/10.1038 /nrmicro1129 Hamid, B., Mohiddin, F.A. (2018). Trichoderma as a potential biocontrol agent. International Journal of Advance Research in Science and Engineering: 7 (3): 68-76. ISSN: 2319-8354. Hammons, R.O., Herman, D., Stalker, H.T. (2016). Origin and early history of the peanut. En Stalker, H.T., Wilson, R.F. (Eds.), Peanuts: genetics, processing, and utilization. (pp 1-26). Londres, UK: Academic Press and AOCS Press. Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M. (2004). Trichoderma sp. opportunistic, avirulent plant symbionts. Nature Reviews Microbiology: 2 (1): 43-56. https://doi.org/10.1038/nrmicro797 Harman, G., Khadka, R., Doni, F., Uphoff, N. (2021). Benefits to plant health and productivity from enhancing plant microbial symbionts. Frontiers in Plant Science: 11:610065. https://doi.org/10.3389/fpls.2020.610065 Harman, G.E., Shoresh, M. (2007). The mechanisms and applications of opportunistic plant symbionts. En Vurro, M., Gressel, J. (Eds.), Novel Biotechnologies for Biocontrol Agent Enhancement and Management (pp. 131-53). Amsterdam, The Netherlands: Springer. Harman, G.E., Uphoff, N. (2019). Advantages and methods of using symbiotic microbes to enhance plant agriculture and the environment. Scientifica: 8: 1-25. https://doi.org /10.1155/2019/9106395 Haro, R.J., Baldessari, J., Otegui, M.E. (2013). Genetic improvement of peanut in Argentina between 1948 and 2004: Seed yield and its components. Field Crops Research: 149: 76-83. http://dx.doi.org/10.1016/j.fcr.2013. 04.021 Hasan, M., Islam, R., Hossain, I., Shirin, K. (2014). Biological control of leaf spot of groundnut. Journal of Bioscience and Agriculture Research: 1 (2): 66-78. https://doi.org/10.18801 /jbar.010214.08 Hermosa, R., Rubio, M.B., Cardoza, R.E., Nicolás, C., Monte, E., Gutiérrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology: 16 (2): 69-80. https://doi.org/10.2436/20.1501.01.181 Hermosa, R., Viterbo, A., Chet, I., Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology: 158 (1): 17-25. https://doi.org/10.1099/mic.0.052274-0 Hernández-León, R., Rojas-Solís, D., Contreras-Pérez, M., Orozco-Mosqueda, M.C., Macías-Rodríguez, L.I., la Cruz, H.R., Valencia-Cantero, E., Santoyo, G. (2015). Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control: 81: 83-92. https://doi.org/10.1016/j.biocontrol.2014.11.011 Higgs, J. (2003). The beneficial role of peanuts in the diet – Part 2. Nutritional & Food Science: 33 (2): 56-64. https://doi.org/10.1108/0034665031046 6637 Hjeljord, L., Tronsmo, A. (1998). Trichoderma and Gliocladium in biological control: an overview. En Harman, G.E, Kubice, C.P. (Eds.), Trichoderma & Gliocladium: Enzymes, biological control and commercial applications, Volumen 2. (pp. 131-151). Bristol, Londres: Taylor & Francis. ISBN: 0- 7484-0805-3. Hohmann, P., Jones, E.E., Hill, R.A., Stewart, A. (2012). Ecological studies of the bio-inoculant Trichoderma hamatum LU592 in the root system of Pinus radiata. FEMS Microbiology Ecology: 80 (3): 709 - 721. https://doi.org/10.1111/j.1574-6941.2012.01340.x Ijaz, M., Ali, A.R., Afzal, A. (2019). Impact of crop rotation on Cercospora leaf spot of peanut. Plant Protection: 3 (1): 41-45. https://doi.org/10.33804/ pp.003.01.0111 Ikram, M., Ali, N., Jan, G., Hamayun, M., Jan, F.G., Iqbal, A. (2019). Novel antimicrobial and antioxidative activity by endophytic Penicillium roqueforti and Trichoderma reesei isolated from Solanum surattense. Acta Physiologiae Plantarum: 41: 164. https://doi.org/10.1007/s11738-019-2957-z Inch, S., Gilbert, J. (2011). Scanning electron microscopy observations of the interaction between Trichoderma harzianum and perithecia of Gibberella zeae. Mycologia: 103 (1): 1-9. https://doi.org/10.3852/09-285 Jetiyanon, K., Kloepper, J. (2002). Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control: 24 (3): 285-291. https://doi.org/10.1016/S 1049-9644(02)00022-1 Jordan, B.S., Culbreath, A.K., Brenneman, T.B., Kemerait, R.C., Branch, W.D. (2017). Late leaf spot severity and yield of new peanut breeding lines and cultivars grown without fungicides. Plant Disease: 101 (11): 1843-1850. https://doi.org/10.1094/PDIS-02-17-0165-RE Jordan, B.S., Culbreath, A.K., Brenneman, T.B., Kemerait, R.C.Jr., Stevenson, K.L. (2019). Effect of planting date and peanut cultivar on epidemics of late leaf spot in Georgia. Plant Disease: 103 (5): 990-995. https://doi. org/10.1094/PDIS-06-18-0954-RE Junjittakarn, J., Girdthai, T., Jogloy, S., Vorasoot, N., Patanothai, A. (2014). Response of root characteristics and yield in peanut under terminal drought condition. Chilean journal of agricultural research: 74 (3): 249-256. https://dx.doi.org/10.4067/S071858392014000300 001 Karthikeyan, M., Jayakumar, V., Radhika, K., Bhaskaran, R., Velazhahan, R., Alice, D. (2005). Induction of resistance in host against the infection of leaf blight pathogen (Alternaria palandui) in onion (Allium cepa var aggregatum). Indian Journal of Biochemistry & Biophysics: 42 (6): 371–377. King, E.O., Ward, M.K., Raney, D.E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine: 44: 301–307. Kishore, K., Pande, S., Narayana Rao, J., Podile, A.R. (2005c). Pseudomonas aeruginosa inhibits the plant cell wall degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot. European Journal of Plant Pathology: 113: 315-320. https://doi.org /10.1007/ s10658-005-0295-z Kishore, K.G., Pande, S., Podile, A.R. (2005a). Biological Control of Late Leaf Spot of Peanut (Arachis hypogaea) with Chitinolytic Bacteria. Phytopathology: 95 (10): 1157-1165. https://doi.org/10.1094/PHYTO-95-1157 Kishore, G.K., Pande, S., Podile, A.R. (2005b). Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defence- related enzymes. Journal of Phytopathology: 153 (3): 169-73. https://doi.org /10.1111/ j.1439-0434.2005.00951.x Kishore, K.G., Pande, S., Podile, A.R. (2005d). Management of late leaf spot of groundnut (Arachis hypogaea) with chlorothalonil-tolerant isolates of Pseudomonas aeruginosa. Plant Pathology: 54 (3): 401-408. https://doi. org/10.1111/j.1365-3059.2005.01160.x Köhl, J., Booij, K., Kolnaar, R., Ravensberg, W.J. (2019). Ecological arguments to reconsider data requirements regarding the environmental fate of microbial biocontrol agents in the registration procedure in the European Union. BioControl: 64 (5): 469-448. https://doi.org/10.1007 /s10526-019-09964-y Kolte, S.J. (1985). Diseases of Annual Edible Oilseeds Crops. Vol I. Groundnut. (pp 155). Boca Raton, Estados Unidos: CRC Press. ISBN 97813158923 51. Konappa, N., Dhamodaran, N., Shanbhag, S.S., Sampangi, M.A., Krishnamurthy, S., Arakere, U.C., Chowdappa, S., Jogaiah, S. (2022). Trichoderma: a potential biopesticide for sustainable management of wilt disease of crops. En Rakshit, A., Meena, V.S., Abhilash, P.C., et al.. (Eds). Biopesticides. Volumen 2: Advances in Bio-Inoculants. (pp. 261-275). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-823355 -9.00003-1 Kondoh, M., Hirai, M., Shoda, M. (2001). Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. Journal of Bioscience and Bioengineering: 91 (2): 173-177. https://doi.org/10.1016/S1389-1723 (01)80061-X Krapovickas, A., Gregory, W.C. (1994). Taxonomy of the genus Arachis (Leguminosae). Bonplandia: 8: 1-186. Lamb, M.C., Sorensen, R.B., Butts, C.L., Dang, P.M., Chen, C.Y., Arias, R.S. (2017). Chemical Interruption of Late Season Flowering to Improve Harvested Peanut Maturity. Peanut Science: 44 (1): 60-65. https://doi.org/10.3146/PS16-2.1 Larran, S., Santamarina Siurana, M.P., Roselló Caselles, J., Simón, M.R., Perelló, A. (2020). In vitro antagonistic activity of Trichoderma harzianum against Fusarium sudanense causing seedling blight and seed rot on wheat. ACS Omega: 5 (36): 23276-23283. https://dx.doi.org/10.1021/acsomega.0c03090 Latz, M.A., Jensen, B., Collinge, D.B., Jørgensen, H.J. (2018). Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology & Diversity: 11 (5-6): 555-567. https://doi.org/10.1080/17550874.2018.1534146 Lopes, R.M., Costa, T.S.A., Gimenes, M.A., Silveira, D. (2011). Chemical composition and biological activities of Arachis species. Journal of Agricultural and Food Chemistry: 59 (9): 4321–4330. https://doi.org/10.1021/jf104663. Madhaiyan, M., Reddy, B.V.S., Anandham, R., Senthilkumar, M., Poonguzhali, S., Sundaram, S.P., TongMin, S.A. (2006). Plant growth-promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens. Current Microbiology: 53 (4): 270–276. https://doi.org/10.1007/s00284-005-0452-9 MAGyP. (2021). Ministerio de Agricultura Ganadería y Pesca. Estimaciones agrícolas. Recuperado el 20 de octubre de 2021. En: http://datosestimaciones.magyp.gob.ar/reportes .php?reporte=Estimaciones Maier, E.H., Bardella, E.J., García, J., Oddino, C., Pérez Agostini, M.A., Avanzini, G. (2017). Nuevas alternativas de fungicidas curasemillas en maní – ensayos de selectividad y eficacia en condiciones de laboratorio y a campo (campaña 2016-2017). Actas de Resúmenes XXXII Jornada Nacional del Maní (pp. 48-50). General Cabrera, Argentina Manganiello, G., Sacco, A., Ercolano, M.R., Vinale, F., Lanzuise, S., Pascale, A., Napolitano, M., Lombardi, N., Lorito, M., Woo, S.L. (2018). Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Frontiers in Microbiology: 9: 1966. https://doi.org/10.3389/fmicb.2018.01966 Manjula, K., Kishore, K.G., Girish, A.G., Singh, S.D. (2004). Combined application of Pseudomonas fluorescens and Trichoderma viride has an impoved biocontrol activity against stem rot in groundnut. Plant Pathology Journal: 20 (1): 75-80. https://doi.org/10. 5423/ppj.2004.20.1.075 March, G.J., Marinelli, A. (2005). Enfermedades y Sistema Productivo. En: March, G.J., Marinelli, A. (Eds.), Enfermedades del maní en Argentina. (pp. 1-11). Córdoba, Argentina: Biglia Impresores. ISBN: 987-43-8755-6. March, G., Oddino, C., García, J., Marinelli, A., Rago, A. (2012). Eficiencia de fungicidas en el control de la viruela del maní según presión de enfermedad. March, G. (Ed.), Ciencia y Tecnología de los cultivos industriales. Maní. (pp. 261-265). Córdoba, Argentina: Biglia Impresores. ISSN: 183- 7677. Marinelli, A., March, G.J. (2005). Viruela. En: March, G.J., Marinelli, A. (Eds.), Enfermedades del maní en Argentina. (pp. 13-39). Córdoba, Argentina: Biglia Impresores. ISBN: 987-43-8755-6. Marinelli, A.D., Oddino, C.M., March, G.J. (2017). Enfermedades fúngicas del maní. Fernandez, E., Giayetto, O. (Eds.) El cultivo de maní en Argentina. (2° Edición). Río Cuarto, Argentina: UNRC. ISBN: 978-987-42-3736-1. Marra, R., Ambrosino, P., Carbone, V., Vinale, F., Woo, S.L., Ruocco, M., Ciliento, R., Lanzuise, S., Ferraioli, S., Soriente, I., Turrà, D., Fogliano, V., Scala, F., Lorito, M. (2006). Study of the three- way interaction between Trichoderma atroviride, plant and fungal pathogens using a proteome approach. Current Genetics: 50 (5): 307-321. https://doi.org/10.1007 /s00294-006-0091-0 Martinez-Medina, A., Pozo, M.J., Cammue, B.P.A., Vos, C.M.F. (2016). Belowground defence strategies in plants: The plant-Trichoderma dialogue. En: Vos, C.M.F., Kazan, K. (Eds.) Belowground defence strategies in plants. (pp. 301-327). Cham, Suiza: Springer. https://doi.org/10.1007/978-3-319-42319-7_13 Mastouri, F., Björkman, T., Harman, G.E. (2010). Seed Treatment with Trichoderma harzianum Alleviates Biotic, Abiotic, and Physiological Stresses in Germinating Seeds and Seedlings. Phytopathology: 100 (11): 1213-1221. https://doi.org/10.1094/phyto-03-10-0091 McNeill, J., Barrie, F.R., Buck, W.R., Demoulin, V., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Marhold, K., Prado, J., Prud’homme van Reine, W.F., Smith, G.F., Wiersema, J.H., Turland, N.J. (2012). International code of nomenclature for algae, fungi, and plants (Melbourne code) adopted by the eighteenth international botanical congress Melbourne, Australia, July 2011. Regnum Vegetabile: 154: 1-140. McSpadden Gardener, B.B. (2007). Diversity and ecology of biocontrol Pseudomonas spp. in agricultural systems. Phytopathology: 97 (2): 221-226. https://doi.org/10.1094/phyto-97-2-0221 Medeiros, H.A., Araujo Filho, J.V., Freitas, L.G., Castillo, P., Rubio, M.B., Hermosa, R., Monte, E. (2017). Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Scientific Reports: 7 (1): 40216. https://doi.org/10.1038/srep40216 Meena, B., Radhajeyalakshmi, R., Marimuthu, T., Vidhyasekaran, P., Doraiswamy, S., Velazhahan, R. (2000). Induction of pathogenesis-related proteins, phenolics and phenylalanine ammonia-lyase in groundnut by Pseudomonas fluorescens. Journal of Plant Diseases and Protection:107 (5): 514-527. Meena, B., Radhajeyalakshmi, R., Marimuthu, T., Vidhyasekaran, P., Velazhahan, R. (2002). Biological control of groundnut late leaf spot and rust by seed and foliar applications of a powder formulation of Pseudomonas fluorescens. Biocontrol Science and Technology: 12 (2): 195-204. https://doi.org/10.1080/09583150120124450 Mendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B.A., Mukherjee, P.K. (2018). Molecular dialogues between Trichoderma and roots: Role of the fungal secretome. Fungal Biology Reviews: 32 (2): 62-85. https://doi.org/10.1016/j.fbr.2017.12 .001 Meshram, S., Bisht, S., Gogoi, R. (2022). Current development, application and constraints of biopesticides in plant disease management. Rakshit A., Meena, V.S., Abhilash, P.C., et al. (Eds), Biopesticides. Volumen 2: Advances in Bio-Inoculants. (pp: 207-224). Woodhead Publishing, Sawston, Cambridge. https://doi.org/10.1016/B978-0-12-823355-9.00004-3 Mayer, A.M., Harel, E., Shaul, R.B. (1966). Assay of catechol oxidase a critical comparison of methods. Phytochemistry: 5 (4): 783-789. https://doi.org/10.1016/S0031-9422(00)83660-2 Miller, G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry: 31 (3): 426-428. https://doi.org/10.1021/ac60147a030 Mochizuki, S., Saitoh, K.I., Minami, E., Nishizawa, Y. (2011). Localization of probe-accessible chitin and characterization of genes encoding chitin-binding domains during rice–Magnaporthe oryzae interactions. Journal of General Plant Pathology: 77: 163-173. https://doi.org/10.1007/s10327-011-0310-5 Monguillot, J.H., Paredes, J.A., Asinari, F., Giordano, F., Oddino, C., Rago, A.M., Conforto, C. (2020). Control de la viruela tardía del maní utilizando ingredientes activos fungicidas individualmente. Actas de Resúmenes XXXV Jornada Nacional del Maní (pp. 52-53). General Cabrera, Argentina. Morla, F.D., Giayetto, O., Cerioni, G.A., Fernandez, E.M. (2017). Source-sink analysis of runner type cultivars grown in Argentina. 9th International Conference of the Peanut Research Community: Advances in Arachis through Genomics & Biotechnology. Córdoba, Argentina Morrison, C.K., Arseneault, T., Novinscak, A., Filion, M. (2017). Phenazine-1-carboxylic acid production by Pseudomonas fluorescens LBUM636 alters Phytophthora infestans growth and late blight development. Phytopathology: 107 (3): 273–279. https://doi.org/ 10.1094/phyto-06-16-0247-r Mortigliengo, S., Giordano, F., Giraudo, R., Oddino, C. (2020). Efecto del control biológico sobre la intensidad de viruela y arañuela del maní. Actas de Resúmenes XXXV Jornada Nacional del Maní (pp. 54-55). General Cabrera, Argentina. Mukherjee, P.K., Horwitz, B.A., Herrera-Estrella, A., Schmoll, M., Kenerley, C.M. (2013). Trichoderma research in the genome era. Annual Review of Phytopathology: 51 (1): 105-129. https://doi.org/10.1146/annurev-phyto-082712-102353 Nawrocka, J., Gromek, A., Małolepsza, U. (2019). Nitric oxide as a beneficial signaling molecule in Trichoderma atroviride TRS25-induced systemic defense responses of cucumber plants against Rhizoctonia solani. Frontiers in Plant Science: 10: 421. https://doi.org/10.3389/ fpls.2019.00421 Nogueira-Lopez, G., Greenwood, D.R., Middleditch, M., Winefield, C., Eaton, C., Steyaert, J.M., Mendoza-Mendoza, A. (2018). The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defense and scavenging oxidative stress secreted proteins. Frontiers in Plant Science: 9: 409. https://doi.org/10.3389/ fpls.2018.00409 Nutter, F.W., Shokes, F.M. (1995). Management of foliar diseases caused by fungi. En Melouk, H.A., Shokes, F.M (Eds.), Peanut health management (pp. 65-73). St. Paul, Minesota: APS Press. O’Brien, P. (2017). Biological control of plant diseases. Australasian Plant Pathology: 46: 293-304. https://doi.org/10.1007/s13313-017-0481-4 Oddino, C., García, J., Marinelli, A., Rago, A., March, G. (2012). Variación de la eficiencia de triazoles en el control de la viruela del maní según severidad de la enfermedad. Actas de Resúmenes XXVII Jornada Nacional del Maní (pp. 36-38). General Cabrera, Argentina. Oddino, C., Paredes, J.A., Cazón, L.I., Rago, A.M., Giordano, F., Giuggia, J. (2017). Resistencia de Cercosporidium personatum: nuevos estudios de la eficiencia de fungicidas de diferentes grupos químicos en poblaciones del patógeno de distintos orígenes del área manisera. Actas de Resúmenes XXXII Jornada Nacional del Maní (pp. 48-50). General Cabrera, Argentina. Oddino, C., Giordano, F., Paredes, J., Cazón, L., Giuggia, J., Rago, A. (2018). Efecto de nuevos fungicidas en el control de viruela del maní y el rendimiento del cultivo. Ab Intus: 1 (1): 9-17. ISSN 2618-2734. Ong, C.K. (1984). The influence of temperature and water deficit on the partitioning of dry matter in groundnut (Arachis hypogaea L.). Journal of Experimental Botany: 35 (5): 746-755. https://doi.org/10.1093/jxb/35.5.746 Pastor, N., Masciarelli, O., Fischer, S., Luna, V., Rovera, M. (2016). Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Current Microbiology: 73: 346-353. https://doi.org/10.1007/s00284-016-1068-y Pastor, N.A., Reynoso, M.M, Tonelli, M.L., Masciarelli, O., Rosas, S.B., Rovera, M. (2010). Potential biological control Pseudomonas sp. pci2 against damping-off of tomato caused by Sclerotium rolfsii. Journal of Plant Pathology: 92 (3): 737-745. Pedelini, R. (2016). Maní: Guía práctica para su cultivo. (4ta ed.). Córdoba, Argentina. ISSN 1851- 4081. Pelagio-Flores, R., Esparza-Reynoso, S., Garnica-Vergara, A., López-Bucio, J., Herrera-Estrella, A. (2017). Trichoderma-induced acidification is an early trigger for changes in Arabidopsis root growth and determines fungal phytostimulation. Frontiers in Plant Science: 8: 822. https://doi.org/10.3389/fpls.2017.00822 Periasamy, K., Sampoornam, C. (1984). The morphology and anatomy of ovule and fruit development in Arachis hypogaea L. Annals of Botany: 53 (3): 399–412. https://doi.org/10.1093/oxfordjournals. aob.a086703 Pescador, L., Fernandez, F., Pozo1, M.J., Romero-Puertas, M.C., Pieterse, C.M.J., Martínez-Medina, A. (2022). Nitric oxide signalling in roots is required for MYB72- dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis. Journal of Experimental Botany: 73 (2): 584–595. https://doi.org/10.1093/jxb/erab294 Pires Ribeiro, R., Heuert, J. (2019). Controle da mancha preta do amendoim utilizando diferentes estratégias. Anais do XVI Encontro Sobre a Cultura do Amendoim (115758). Jaboticabal, San Pablo: Galoá. Plaut, J.L., Berger, R.D. (1980). Development of Cercosporidium personatum in three peanut canopy layers. Peanut Science: 7 (1): 46-49. https://doi.org/10.3146/i0095-3679-7-1-11 Prasad, A., Babu, S. (2017). Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut (Arachis hypogea L.). Anais da Academia Brasileira de Ciências: 89 (2): 1027-1040. http://dx.doi.org/10.1590/00013765201720160 617 Prasad, P.V.V., Boote, K.J., Allen, L.H., Thomas, J.M.G. (2003). Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biology: 9 (12): 1775-1787. https://doi.org/10.1046/j.1365-2486.2003.00708.x Prasad, P.V.V., Craufurd, P.Q., Summerfield, R.J., Wheeler, T.R. (2000). Effects of short episodes of heat stress on flower production and fruitset of groundnut (Arachis hypogaea L.). Journal of Experimental Botany: 51 (345): 777-784. https://doi.org/10.1093/jexbot /51.345.777 Redkar, A., Jaeger, E., Doehlemann, G. (2018). Visualization of growth and morphology of fungal hyphae in planta using WGA-AF488 and propidium iodide co-staining. BIO-101: e2942. https://doi.org/10.21769/BioProtoc.2942 Rifai, M.A. (1969). A revision of the genus Trichoderma. Gran Bretaña: Commonwealth Mycological Institute. Rago, A., Cazón, I., Paredes, J., Edwards Molina, J., Bisonard, M., Oddino, C. (2017). Peanut Smut: From an emerging disease to an actual threat to Argentine peanut production. Plant Disease: 101 (3): 400-408. http://dx.doi.org/10.1094/PDIS-09-16-1248-FE. Rojo, F.G., Reynoso, M.M., Ferez, M., Chulze, S.N., Torres, A.M. (2007). Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protection: 26 (4): 549-555. https://doi.org/10.1016/j.cropro.2006.05.006 Romero, N. (1997). Métodos de análisis para la determinacion de nitrogeno y constituyentes nitrogenados en alimentos. Morón, C., Zacarías, I., de Pablo, S. (Eds), Producción y manejo de datos de composicion química de alimentos en nutrición. (Cap. 15). Dirección de alimentación y nutrición oficina regional de la FAO para América Latina y el Caribe. Universidad de Chile, Santiago. Ruano-Rosa, D., Prieto, P., Rincón, A.M., Gómez-Rodríguez, M.V., Valderrama, R., Barroso, J.B., Mercado-Blanco, J. (2016). Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl: 61: 269-282. https://doi.org/10.1007/s10526-015-9706-z Saraihom, S. (2016). Characterization of endoglucanase and genome analysis of Lysobacter enzymogenes isolated from tropical soil. Tesis de doctorado en Folosofía, Universidad de Chulalongkorn, Bangkok, Tailandia. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A. (2012). "Fiji: an open-source platform for biological-image analysis", Nature methods: 9 (7): 676-682. PMID 22743772. https/doi.org/10.1038/nmeth. 2019 Shaxson, F., Barber, R. (2005). Optimización de la humedad del suelo para la producción vegetal. El significado de la porosidad del suelo. Boletín de suelos de la FAO 79. Roma. ISSN 1020-0657. Shokes, F.M., Berger, R.D., Smith, D.H., Rasp, J.M. (1987). Reliability of disease assessment procedures: a case study with late leafspot of peanut. Oléagineux: 42 (6): 245-251. Shoresh, M., Harman, G.E., Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology: 48 (1): 21-43. https://doi.org/10.1146/annurev-phyto-073009-114450 Shukla, Y.M., Suthar, K.P. (2018). Alteration in β-1,3 glucanase and chitinase activity in chickpea varieties infected with Fusarium oxysporum f. sp. ciceri race 4. Legume Research: 41 (3): 454-460. DOI: 10.18805/lr.v40i04.9012 Singh, A., Mehta, S., Singh, H.B., Nautiyal, C.S. (2003). Biocontrol of collar rot disease of betelvine (Piper betle L.) caused by Sclerotium rolfsii by using rhizosphere-competent Pseudomonas fluorescens NBR I-N6 and P. fluorescens NBRI-N. Current Microbiology: 47 (2): 153-158. https://doi.org/10.1007/s00284-002-3938-8 Singh, A., Shukla, N., Kabadwal, B.C., Tewari, A.K., Kumar, J. (2018). Review on Plant-Trichoderma- Pathogen Interaction. International Journal of Current Microbiology and Applied Science: 7 (2): 2382-2397. https://doi.org/10.20546/ijcmas.2018.702.291 Siqueira de Azevedo, L. (2007). Fungicidas sistémicos, Teoría e Practica. (1er ed.) Campinas, Brasil: EMOPI. Smith, B.W. (1950). Arachis hypogaea. Aerial flower and subterranean fruit. American Journal of Botany: 37 (10): 802-815. https://doi.org/10.1002/j.1537-2197.1950.tb11073.x Soave, J.H., Bianco, C.A., Kraus, T.A. (2004). Descripción de dos nuevos cultivares de maní (Arachis hypogaea L. subsp. hypogaea var. hypogaea). AgriScientia: 21 (2): 85-88. Stefanova, M., Leiva, A., Larriganaga, L., Coronado, M.F. (1999). Actividad metabólica de cepas de Trichoderma spp. para el control de hongos fitopatógenos del suelo. Revista Facultad de Agronomía: 16: 509-516. Stevenson, K.L., Culbreath, A.K. (2006). Evidence for reduced sensitivity to tebuconazole in leaf spot pathogens. En: Sholar, J.R. (Ed.), 38th Proceedings of the American Peanut Research and Education Society, Annual Meeting (pp 52). Savannah, Georgia, Estados Unidos: American Peanut Research and Education Society, Inc. Subrahmanyam, P., Williams, J.H., McDonald, D., Gibbons, R.W. (1984). The influence of foliar diseases and their control by selective fungicides on a range of groundnut (Arachis hypogaea L.). Annuals of Applied Biology: 104 (3): 467-476. https://doi.org/10.1111 /j.1744-7348.1984.tb03029.x Sun, D., Zhuo, T., Hu, X., Fan, X., Zou, H. (2017). Identification of a Pseudomonas putida as biocontrol agent for tomato bacterial wilt disease. Biological Control: 114: 45-50. https://doi.org/10.1016/j.biocontrol.2017.07.015 Tariq, M., Khan, A., Asif, M., Khan, F., Ansari, T., Shariq, M., Siddiqui, M.A. (2020). Biological control: a sustainable and practical approach for plant disease management. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science: 70 (6): 507-524. https://doi.org/10.1080/09064710.2020.1784262 Tonelli, M.L., Furlan, A., Taurian, T., Castro, S., Fabra, A. (2011). Peanut priming induced by biocontrol agents. Physiological and Molecular Plant Pathology: 75 (3): 100-105. https://doi.org/10.1016/j.pmpp.2010.11.001 Tseng, Y-H., Rouina, H., Groten, K., Rajani, P., Furch, A.C.U., Reichelt, M., Baldwin, I.T., Nataraja, K.N., Shaanker, R.U., Oelmüller. R. (2020). An Endophytic Trichoderma Strain Promotes Growth of Its Hosts and Defends Against Pathogen Attack. Frontiers in Plant Science: 11: 573670. https://doi.org/10.3389/fpls.2020.573670 USDA. (2021). United States Department of Agriculture. Peanut explorer. Recuperado el 10 de enero de 2022. En: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx? cropid=2221000&selyear=2021&rankby=Production Vacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science: 4: 356. https://doi.org/10.3389/fpls.2013.00356 van den Bosch, F., Pavely, N., Shaw, M., Hobbelen, P., Oliver, R. (2011). The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathology: 60 (4): 597-606. https://doi.org/10.1111/j.1365-3059.2011.02439.x Videira, S.I.R., Groenewald, J.Z., Nakashima, C., Braun, U., Barreto, R.W., de Wit, P.J.G.M., Crous, P.W. (2017). Mycosphaerellaceae – Chaos or clarity? Studies in Mycology: 87: 257–421. https://doi.org/10.1016/j.simyco.2017.09.003 Viji, G., Uddin, W., Romaine, C.P. (2003). Suppression of gray leaf spot (blast) of perennial reygrass turf by Pseudomonas aeruginosa from spent mushroom substrate. Biological Control: 26 (3): 233-243. https://doi.org/10.1016/S1049-9644(02)00170-6 Vinale, F., Ghisalberti, E.L., Sivasithamparam, K., Marra, R., Ritieni, A., Ferracane, R., Woo, S., Lorito, M. (2009). Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Letters in Applied Microbiology: 48 (6): 705-711. https://doi.org/10.1111/j.1472-765X.2009.02599.x Vinale, F., Nigro, M., Sivasithamparam, K., Flematti, G., Ghisalberti, E.L., Ruocco, M., Varlese, R., Marra, R., Lanzuise, S., Eid, A., Woo, S.L., Lorito, M. (2013). Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiology Letters: 347 (2): 123-129. https://doi.10.1111/1574-6968.12231 Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., Woo. S.L., Lorito, M. (2008a). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology: 72 (1-3): 80-86. https://doi.org/10.1016/j.pmpp.2008.05.005 Vinale, F., Sivasithamparam, K., Ghisalberti, L.E., Marra, R., Woo, L.S., Lorito, M. (2008b). Trichoderma plant-pathogen interactions. Soil Biology & Biochemistry: 40: 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002 Weller, D.M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology: 97 (2): 250–256. https://doi.org/10.1094/phyto-97-2-0250 Woelke, L., Bermudez, J.M., Castillo, M., Romero, E. (2014). Carboxamidas. Rotacion de principios activos en el control de la viruela del maní (Cercospora arachidicola y Cercosporidium personatum). Actas de Resúmenes XXX Jornada Nacional del Maní (pp. 87-88). General Cabrera, Córdoba, Argentina. Woo, S.L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G., Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal: 8: 71-126. https://doi.org/10.2174/187443700 1408010071 Xia, H., Li, Y.Y., Liu, Z.C., Li, Y.Q., Chen, J. (2018). Transgenic Expression of chit42 gene from Metarhizium anisopliae in Trichoderma harzianum Enhances Antagonistic Activity against Botrytis cinerea. Molecular Biology: 52 (5): 668–675. https://doi.org/10.1134/s00268933 1805014x Zamioudis, C., Pieterse, C.M.J. (2012). Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact: 25 (2): 139-150. https:/doi.org/10.1094/mpmi-06-11-0179 Zhang, K., Liu, Y., Luo, L., Zhang, X., Li, G., Wan, Y., Liu, F. (2021). Root traits of peanut cultivars with different drought resistant under drought stress at flowering and pegging phase. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science: 71 (5): 363-376. https://doi.org/10.1080/09064710.2021.1897663 Zhang, S., Reddy, M.S., Kokalis-Burelle, N., Wells, L.W., Nightengale, S.P., Kloepper, J. W. (2001). Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth- promoting rhizobacteria and chemical elicitors. Plant Disease: 85: 879-884. Zubrod, P.J., Bundschuh, M., Arts, G., Brühl, C.A., Imfeld, G., Knäbel, A., Payraudeau, S., Rasmussen, J.J., Rohr, J., Scharmüller, A., Smalling, K., Stehle, S., Schulz, R., Schäfer, R.B. (2019). Fungicides: an overlooked pesticide class? Environmental Science & Technology: 53 (7): 3347-3365. https://doi.org/10.1021/acs.est.8b04392 | por |
dc.subject.cnpq | Agronomia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/72182/2022%20-%20Damian%20Francisco%20Giordano.Pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6329 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-02-15T18:16:58Z No. of bitstreams: 1 2022 - Damian Francisco Giordano.Pdf: 3698579 bytes, checksum: 4735be831fc5a7f0482b16bd09b566a5 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-02-15T18:16:58Z (GMT). No. of bitstreams: 1 2022 - Damian Francisco Giordano.Pdf: 3698579 bytes, checksum: 4735be831fc5a7f0482b16bd09b566a5 (MD5) Previous issue date: 2022-07-04 | eng |
Appears in Collections: | Doutorado em Ciência, Tecnologia e Inovação em Agropecuária |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Damian Francisco Giordano.Pdf | 3.61 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.