Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/16367
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Soleiro, Carla Alves | |
dc.date.accessioned | 2023-12-18T17:38:57Z | - |
dc.date.available | 2023-12-18T17:38:57Z | - |
dc.date.issued | 2012-12-10 | |
dc.identifier.citation | SOLEIRO, Carla Alves. Caracterização de Aspergillus fumigatus isolados de diferentes origens quanto ao perfil enzimático, genético e a produção de gliotoxina. 2012. 52 f. Tese (Doutorado em Ciência, Tecnologia e Inovação em Agropecuária) - Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2012. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/16367 | - |
dc.description.abstract | Algumas espécies do gênero Aspergillus podem causar doenças em humanos e animais como agente etiológico ou pela produção de metabólitos secudários, as micotoxinas. A contaminação por essas toxinas é um problema na produção de alimentos e no armazenamento destes. A gliotoxina possui vários papéis imunossupressivos além de poder estar envolvida no início do proceso infeccioso causado por A. fumigatus. Na natureza, parte da atividade enzimática necessária para o aproveitamento da matéria orgânica é realizada por fungos filamentosos, e elas têm grande importância fisiológica. Aspergillus fumigatus é o agente etiológico mais implicado na Aspergilose Invasiva (AI) humana, no entanto a identificação dessa espécie tem sido baseada nas características morfológicas, muitas vezes de forma errônea. Ultimamente, têm sido desenvolvidos métodos de identificação de fungos toxígenos baseados em técnicas moleculares. Os objetivos desse estudo foram: avaliar a capacidade de cepas de A. fumigatus isoladas de diferentes origens produzirem gliotoxina; estabelecer as diferenças enzimáticas entre elas, e identificar geneticamente essas cepas, além de estabelecer possíveis influências que as diferentes origens pudessem exercer sobre essas cepas. Foram utilizadas 53 cepas identificadas morfologicamente por A. fumigatus pertencentes ao Núcleo de Pesquisas Micológicas e Mitoxicológicas, isoladas de ração para consumo animal, cereais, silagens, amostras clínicas humana e animal. Para detecção e quantificação da capacidade de produção de gliotoxina foi utilizada a Cromatografia Líquida de Alta Eficiência, as análises enzimáticas foram qualitativas e a caracterização genética foi realizada através da técnica Polymerase Chain Reaction - Restriction Fragment Length Polymorphism (PCR-RFLP). Foi utilizada a Análise em Componentes Principais expressa em gráficos Biplot. Foi possível detectar a produção de gliotoxina em todas as cepas isoladas de silagem de milho, amostras clínicas humana e animal. As cepas isoladas de amostras clínicas humanas e de silagem de milho foram as que mais produziram gliotoxina. A presença de açúcar redutor na hidrólise do amido sofreu influência do tempo, já que este foi constatado aos 14 dias em 86 % das cepas de silagem de sorgo, 100 % das amostras clínica humana e 75 % das amostras clínica animal. Houve uma diferença nos resultados quanto a produção de celulase, já que no papel filtro apenas uma cepa foi negativa, enquanto dez cepas a produziram no agar carboximetilcelulose. Quanto a produção de caseinase, 23 % produziram essa enzima. As cepas isoladas de origem clínica (animal e humana) foram as que mais apresentaram capacidade para hidrolisar a gelatina. As cepas de origem clínica animal (isolada do úbere da vaca com mastite bovina) foram melhores caracterizadas pela variável produção de caseinase, enquanto as cepas de amostras clínica humana e as de silagem de milho foram melhores caracterizadas pela variável produção de gliotoxina. Todas as cepas morfologicamente identificadas como A. fumigatus produziram um padrão de bandas correspondente a identificação da espécie A. fumigatus strictu sensu pelo corte in silico e pela técnica de PCR-RFLP. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Aspergillus fumigatus | por |
dc.subject | Micotoxina | por |
dc.subject | Análises enzimática e molecular | por |
dc.subject | Aspergillus fumigates | eng |
dc.subject | Mycotoxin | eng |
dc.subject | Molecular and enzimatic analysis | eng |
dc.title | Caracterização de Aspergillus fumigatus isolados de diferentes origens quanto ao perfil enzimático, genético e a produção de gliotoxina | por |
dc.title.alternative | Characterization of Aspergillus fumigatus isolates from different sources regarding enzymatic, genetic and production of gliotoxin profiles | eng |
dc.type | Tese | por |
dc.description.abstractOther | The genus Aspergillus is a filamentous fungus found in all parts of the world, some species can cause illness in humans and animals. Contamination with mycotoxins is a problem in food production and storage. The gliotoxin has several immunosuppressive roles. Recently, it was found in conidia of A. fumigatus, which may indicate their involvement at the beginning of infectious disease. In nature, part of the enzymatic activity required for the utilization of organic material is performed by filamentous fungi, and they have great physiological importance. Aspergillus fumigatus is the etiological agent most involved in human Invasive Aspergillosis (IA), however the identification of this specie has been based on morphological characteristics. That identification can be a problem, so the development of rapid and sensitive methods for the correct identificacion of the fungi, such as the molecular techniques is relevant. The objectives of this study were: to evaluate the ability of A. fumigatus strains isolates from different origins to produce gliotoxin, and to establish the physiological and genetic differences of these strains and how they are influenced by different sources. A total of 53 isolates identified morphologically by A. fumigatius, belonging to the Nucleus of Mycological and Mycotoxicological Researchs, were isolated from: feed for animal consumption, cereal grains, corn and sorghum silages, clinicals human and animals. For detection and quantification the production of gliotoxin HPLC was used. Genetic analysis was performed by PCR-RFLP. Principal Component Analysis (PCA) was used to obtain a smaller number of variables able to express the variability of the data. It was possible to detect the production of gliotoxin in all strains of corn silage, clinical human and animal. Among the seven strains of human clinical, six produced more than 20 μg/g of the toxin. The strains isolated from corn silage and human clinical were the most produced gliotoxin. The presence of reducing sugars was influenced by time, since it was found at 14 days in 86% of strains of sorghum silage, 100% of clinical human and 75% of bovine mastitis. Only one strain of animal feed did not present conidia in the filter paper, so it was negative for cellulose hydrolysis. However, in the CMC Agar, ten strains did not hydrolyzed cellulose and 70% of these were isolated from animal feed. Almost all the strains (98%) isolated of the studied produced lipase. As for the casein hydrolysis 23% strains were positive, and those isolated from bovine mastitis were the most positive. The strains of clinical origin (animal and human) were the ones that showed highest ability to hydrolyze gelatin. According to the PCA, the clinical animal strains were better characterized by variable hydrolysis of casein, and the human clinical strains and corn silage were best characterized by the variable production of gliotoxin. All strains morphologically identified as A. fumigatus have produced a pattern of bands corresponding to the identification of species A. fumigatus strictu sensu by in silico cut and by PCR-RFLP technique. | eng |
dc.contributor.advisor1 | Rosa, Carlos Alberto da Rocha | |
dc.contributor.advisor1ID | 362.637.537-49 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2073046127303600 | por |
dc.contributor.advisor-co1 | Cavaglieri, Lilia Reneé | |
dc.contributor.referee1 | Dalcero, Ana | |
dc.contributor.referee2 | Keller, Kelly Moura | |
dc.contributor.referee3 | McIntosh, Douglas | |
dc.contributor.referee4 | Coelho, Irene da Silva | |
dc.contributor.referee5 | Rubinstein, Héctor Ramón | |
dc.creator.ID | 095.455.507-40 | por |
dc.creator.Lattes | http://lattes.cnpq.br/0310733047446961 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Pró-Reitoria de Pesquisa e Pós-Graduação | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência, Tecnologia e Inovação em Agropecuária | por |
dc.relation.references | ABAD, A.; FERNÁNDEZ-MOLINA, J. V.; BIKANDI, J.; RAMÍREZ, A.; MARGARETO, J.; SENDINO, J.; HERNANDO, F. L.; PONTÓN, J.; GARAIZAR, J.; REMENTERIA, A. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Revista Iberoamericana de Micología, v. 27, n. 4, P. 155-182, 2010. ABDIN, M. Z.; AHMAD, M. M.; JAVED, S. Advances in molecular detection of Aspergillus: an update. Archives of Microbiology, v. 192, n. , p.409–425, 2010. AGBLERVOR, F.A.; WEBER J. Microbubble fermentation of Trichoderma reesei for celullase production. Process Biochemistry, v. 40, n. 2, p. 669-679, 2004. ARAUJO, R.; PINA-VAZ, C.; RODRIGUES, A. G.; AMORIM, A.; GUSMÃO, L. Simple and highly discriminatory microsatellite-based multiplex PCR for Aspergillus fumigatus strain typing. Clinical Microbiology and Infection, v. 15, n. 3, p. 260–266, 2009. ARNHEIM, N.; ERLICH, H. Polymerase chain reaction strategy. Annual Review of Biochemistry, v. 61, n. , p. 131–156, 1992. AUFAUVRE-BROWN, A.; COHEN, J.; HOLDEN, D. W. Use of Randomly Amplified Polymorphic DNA markers to distinguish isolates of Aspergillus fumigatus, Journal of Clinical Microbiology, v. 30, n. 11, p. 2991-3, 1992. ALVAREZ-PEREZ, S.; GARCIA, M.E.; BOUZA, E.; PALAEZ, T.; BLANCO, J.L. Characterization of multiple isolates of Aspergillus fumigatus from patients: genotype, mating type and invasiveness. Medical Mycology, v. 47, n6, 2009. BALAJEE, S. A.; GRIBSKOV, J. L.; HANLEY, E.; NICKLE, D.; MARR, K. A. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryotic Cell, v. 4, n. 3, p. 625– 632, 2005. BALAJEE, S. A.; NICKLE, D.; VARGA, J.; MARR, K. A. Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryotic Cell, v. 5, n. 10, p.1705–1712, 2006. BANSOD, S.; GUPTA, I.; RAI, M. Specific detection of Aspergillus fumigatus in sputum sample of pulmonary tuberculosis patients by two-step PCR. African Journal of Biotechnology, v. 7, n. 1, p. 16–21, 2008. BAUER, J.; GAREIS, M.; GOTT, A.; GEDEK, B. Isolation of a mycotoxin (gliotoxin) from a bovine udder infected with Aspergillus fumigatus. Journal of Medical and Veterinary Mycology, v. 27, n. , p. 45-50, 1989. BAYER, E.A.; LAMED, R. The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? Biodegradation, v. 3, n. 2-3, p.171-188, 1992. BELKACEMI, L.; BARTON, R. C.; HOPWOOD, V.; EVANS, E. G. Determination of optimum growth conditions for gliotoxin production by Aspergillus fumigatus and development of a novel method for gliotoxin detection. Medical Mycology, v. 37, n. 4, p. 227- 33, 1999. BIRCH, M.; NOLARD, N.; SHANKLAND, G. S.; DENNING, D. W. DNA typing of epidemiologically-related isolates of Aspergillus fumigatus, Epidemiology and Infection, v. 114, n. 01, p. 161-8, 1995. BIRCH, M.; ANDERSON, M. J.; DENNING, D. W. Molecular typing of Aspergillus species, Journal of Hospital Infection, v. 30, suplemento, p. 339-51, 1995. 44 BOK, J. W.; BALAJEE, S. A.; MARR, K. A.; ANDES, D.; NIELSEN, K. F.; FRISVAD, J. C.; KELLER, N. P. LaeA, a regulator of morphological fungal virulence factors. Eukaryotic Cell, v. 4, n. 9, p. 1574-1582, 2005. BOK, J. W.; CHUNG, D.; BALAJEE, S. A.; MARR, K. A.; ANDES, D.; NIELSEN, K. F.; FRISVAD, J. C.; KIRBY, K. A.; KELLER, N. P. GliZ, a transcriptional regulator of gliotoxin biosynthesis contributes to Aspergillus fumigatus virulence. Infection and Immunity; v. 74, n. 12, p. 6761-6768, 2006. BOUDRA, H.; MORGAVI, D.P. Mycotoxin risk evaluation in feeds contaminated by Aspergillus fumigatus. Animal Feed Science and Technology, v. 120, n. 1-2, p. 113-123, 2005. BRUCHMANN, E. Bioquímica técnica. Zaragoza: Editorial Acribia, 233 p., 1980. BRUHLMANN, F.; LEUPIN, M.; ERISMANN, K.H.; FIECHTER, A. Enzymatic egumming of ramie bast fibers. Journal of Biotechnology, v. 76, n. 1, p. 43-50, 2000. CAIRNS, T.; MINUZZI, F.; BIGNELL, E. The host-infecting fungal transcriptome. FEMS Microbiology Letters, v. 307, n. 1, p. 1–11, 2010. CARDENAS, F.; ALVAREZ, E.; CASTRO-ALVAREZ, M.S.; SANCHEZ-MONTERO, J.M.; VALMASEDA, M.; ELSON, S.W.; SINISTERRA, J.V. Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. Journal of Molecular Catalyses B: Enzymatic, v. 14, n. 4-6, p. 111-123, 2001a. CARDENAS, F.; CASTRO, M.S.; SANCHEZ-MONTERO, J.M.; SINISTERRA, J.V.; VALMASEDA, M.; ELSON, S.W.; ALVAREZ, E. Novel microbial lipases: catalytic activity in reactions in organic media. Enzymes and Microbial Technology, v. 28, n. 2-3, p. 145-154, 2001b. CHANTEPERDRIX, V.; BOURGERETTE, E.; GANTIER, J-C.; FAVERGES, G. DE; HERMAN, D.; LAUBY, M. Isolement d’un Aspergillus section Fumigati d’apparence nonunisériée. Annales de Biologie Clinique, v. 66, n. 5, p. 581-3, 2008. CRAMER, R. A. JR.; GAMCSIK, M. P.; BROOKING, R. M.; NAJVAR, L. K.; KIRKPATRICK, W. R.; PATTERSON, T. F.; BALIBAR, C. J.; GRAYBILL, J. R.; PERFECT, J. R.; ABRAHAM, S. N.; STEINBACH, W. J. Disruption of a Nonribosomal Peptide Synthetase in Aspergillus fumigatus Eliminates Gliotoxin Production. Eukaryotic Cell, v. 5, n. 6, p. 972-980, 2006. COMÉRA, C.; ANDRÉ, K.; LAFFITTE, J.; COLLET, X.; GALTIER, P., MARIDONNEAUPARINI, I. Gliotoxin from Aspergillus fumigatus affects phagocytosis and the organization of the actin cytoskeleton by distinct signalling pathways in human neutrophils. Microbes and Infection, v. 9, n. 1, p. 47-54, 2007. COURI, S; FARIAS, A. X. Genetic manipulation of Aspergillus niger for increased synthesis of pectinolytic enzymes. Revista de Microbiologia, v. 26, n. , p. 314-317, 1995. CRUZ, L. C. H. Micologia Veterinária, Itaguaí: UFRRJ – IMPRENSA UNIVERSITÁRIA, 1985, 201p. CRUZ, C.D. Programa Genes: Biometria. Editora UFV. Viçosa (MG). 382p. 2006. CRUZ, T. M. L.; COUTO, F. M. M. do; FRANÇA, G. S. de; LARANJEIRA, D.; NEVES, R. P. Atividade da celulase de leveduras isoladas de frutos de meloeiro. In... Anais IX Jornada de Ensino, Pesquisa e Extensão, Recife, 2009. 45 DEBEAUPUIS, J. P.; SARFATI, J.; CHAZALET, V.; LATGE, J. P. Genetic diversity among clinical and environmental isolates of Aspergillus fumigatus. Infection and Immunity, v. 65, n. 8, p. 3080-3085, 1997. DAGENAIS, T. R. T. E KELLER, N. P. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clinical Microbiology Reviews, v. 22, n. 3, p. 447-465, 2009. D’ANTONIO, D.; VIOLANTE, B.; MAZZONI, A.; BONFINI, T.; CAPUANI, M. A.; D’ALOIA, F.; IACONE, A.; SCHIOPPA, F.; ROMANO, F. A nosocomial cluster of Candida inconspicua infections in patients with hematological malignancies, Journal of Clinical Microbiology, v. 36, n. 03, p. 792-5, 1998. DEMIATE, I. M.; WOSIACKI, G.; CZELUSNIAK, C.; NOGUEIRA, A. Determinação de açúcares redutores e totais em alimentos. Comparação entre método colorimétrico e titulométrico. Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, v. 8, n. 1, p. 65 - 78, 2002. DENNING, D. W. Invasive aspergillosis. Clinical of Infectious Diseases, v. 26, n. 4, p. 781- 803, 1998. EICHNER, R. D. e MÜLLBACHER, A. Fungal toxins are involved in aspergillosis and AIDS. Australian Journal of Experimental Biology and Medical Science, v. 62, n. 4, p. 479, 1984. EICHNER, R. D.; SALAAMI, A.; WOOD, P. R.; MÜLLBACHER, A. The effect of gliotoxin upon macrophage function. International Journal of Immunopharmacology, v. 8, n. 7, p. 789-97, 1986. EINSELE, H.; HEBART, H.; ROLLER, G.; LOFFER, J.; ROTHENHOFER, I.; MULLER, C.A.; BOWDEN, R. A.; VAN BURIK, J.; ENGELHARD, D.; KANZ, L.; SCHUMACHER, U. Detection and identification of fungal pathogens in blood by using molecular probes. Journal of Clinical Microbiology, v. 35, n. 6; p.1353–1360, 1997. FISCHER, G.; THIßEN, R.; SCHMITZ, C.; DOTT, W. Relevance of microfungi and their secondary metabolites (mycotoxins) for indoor hygiene. Proc. Healthy Buildings, v. 1, n. 1, p. 189-194, 2006. FRISVAD, J. C. The use of high-performance liquid chromatography and diode array detection in fungal chemotaxonomy based on profiles of secondary metabolites. Botanical Journal of the Linnean Society, v. 99, n. 1, p. 81–95, 1989. FOX, B. C.; MOBLEY, H. L. T.; WADE, J. C. The use of a DNA probe for epidemiological studies of candidiasis in immunocompromised hosts, Journal of Infectious Diseases, v. 159 n. 03, p. 488-94, 1989. FUNGARO, M. H. P. PCR na micologia. Biotecnologia, Ciência e Desenvolvimento, ano 3, n. 14, p. 12-16, 2000. GABRIEL, K. R. The biplot graphic display of matrices with application to principal component analysis. Biometrika, v. 58, n. 3, p. 453-467, 1971. GAMA, F. M.; TEIXEIRA, J.A.; MOTA, M. Direct determination of endoglucanase activity on cellulose insolubly fibres. Biotechnology Techniques, v. 5, n. 5, p. 377-382, 1991. GAMA, F.M; MOTA, M.; BASTOS, M.; DOURADO F. Studies on the properties of celluclast/Eudragit L-100 conjugate. Journal of Biotechnology, v. 99, n. 2, p. 121-131. 2002. 46 GARDINER, D. M.;HOWLETT, B. J. Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiology Letters, v. 248, n. , p. 241-248, 2005. GOTTFREDSSON, M.; COX, G. M.; PERFECT, J. R. Molecular methods for epidemiological and diagnostic studies of fungal infections. Pathology, v. 30, n. 4, p. 405- 418, 1998. GUARRO, J.; GENE, J.; STCHIGEL, A. M. Developments in fungal Taxonomy. Clinical Microbiological Review, v. 12, n. 3, p. 454–500, 1999. GUGNANI, H. C. Ecology and taxonomy of pathogenic aspergilli. Frontiers in Bioscience, v. 8, suplemento, p. s346–s357, 2003. HADEBALL, W. Production of lipase by Yarrowia lipolítica. Acta Biotechnology, v. 11, p. 159-167, 1991. HARGER, C. ; SPRADA, D. ; HIRATSUKA, E. Amilase Fúngica. In: Bioquímica das Fermentações, 56 p., 1982. HIRSH, D. C.; ZEE, Y. C. Microbiologia Veterinária, 2nd ed, Rio de Janeiro: Guanabara Koogan, 2003, 445p. HONG, S. B.; GO, S. J.; SHIN, H. D.; FRISVAD, J. C.; SAMSON, R. A. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia, v. 97, n. 6, p. 1342–1355, 2005. HOTELLING, H. Simplified calculation of principal components. Psychometrika, v. 1, n. 1, p. 27-35,1936. JAEGER, K. E; EGGERT, T. Lipases for biotechnology. Current Opinion in Biotechnology, v. 13, p. 390-397, 2002. JAEGER, K. E.; REETZ, M. Microbial lipases from versatile tools for biotechnology. Tibtech, v.16, p. 396-403, 1998. KATZ, M. E.; DOUGALL, A. M.; WEEKS, K.; AND CHEETHAM, B. F. Multiple genetically distinct groups revealed among clinical isolates identified as atypical Aspergillus fumigatus. Journal of Clinical Microbiology, v. 43, n. 2, p. 551–555, 2005. KHOUFACHE, K; PEUL, O; LOISEAU, N; DELAFORGE, M.; RIVOLLET, D.; COSTE, A.; CORDONNIER, C.; ESCUDIER, E.; BOTTEREL, F..; BRETAGNE, S. Verruculogen associated with Aspergillus fumigatus hyphae and conidia modifies the electrophysical properties of human nasal epithelial cells. BMC Microbiology, v. 7, Art. 5, 2007. KOSALEC, I.; PEPELJNJAK, S. Mycotoxigenicity of clinical and environmental Aspergillus fumigatus and A. flavus isolates. Acta Pharmacologica, v. 55, n. 4, p. 365-375, 2005. KOTHARY, M. H.; CHASE, T. JR.; MACMILLAN, J. D. Correlation of elastase production by some strains of Aspergillus fumigatus with ability to cause pulmonary invasive aspergillosis in mice. Infection and Immunity, v. 43, n. 1, p. 320-325, 1984. KRIKŠTAPONIS, A.; LUGAUSKAS, A.; KRYSIŃSKA-TRACZYK, E.; PRAŹMO, Z.; DUTKIEWICZ, J. Enzymatic activities of aspergillus fumigatus strains isolated from the air at waste landfills. Annals of Agricultural and Environmental Medicine, v. 8, p. 227–234, 2001. KUPFAHL, C.; MICHALKA, A.; LASS-FLORL, C.; FISCHER, G.; HAASE, G.; RUPPERT, T.; GEGINAT, G.; HOF, H. Gliotoxin production by clinical and environmental 47 Aspergillus fumigatus strains. International Journal of Medical Microbiology, v. 298, n. 3-4, p. 319-327, 2008. KUPFAHL, C.; HEINEKAMP, T.; GEGINAT, G.; RUPPERT, T.; HARTL, A.; HOF, H.; BRAKHAGE, A. A. Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Molecular Microbiology, v. 62, n. 1, p. 292-302, 2006. KWON-CHUNG, K. J.; SURGUI, J. A. What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Medical Mycology, v. 47, suplemento 1, p. S97-103, 2009. LAIDLER, K.J. Introduction to the Chemistry of Enzymes. New York: McGraw-Hill Book Company Inc., 208 p., 1954. LARSEN, T. O.; SMEDSGAARD, J.; NIELSEN, K. F.; HANSEN, M. A. E.; SAMSON, R. A.; FRISVAD, J. C. Production of mycotoxins by Aspergillus lentulus and other medically important and closely related species in section Fumigati. Medical Mycology; v. 45, n. 3, p. 225-232, 2007. LATGE, J. P. Aspergillus fumigatus and aspergillosis. Clinical Microbiological Review, v. 12, n. 2, p. 310–350, 1999. LEADLAY, P.F. An Introduction to Enzyme Chemistry. Cambridge: The Royal Society of Chemistry, 82p., 1993. LEENDERS, A.; BELKUM, A. V.; JANSSEN, S.; MARIE, S. de; KLUYTMANS, J.; WIELENGA, J.; LOWENBERG, B.; VERBRUGHLEEDERS, H. Molecular epidemiology of apparent outbreak of invasive aspergillosis in a hematology ward, Journal of Clinical Microbiology, v. 34, n. 2, p. 345-51, 1996. LEHMANN, P. F.; LIN, D.; LASKER, B. A. Genotypic identification and characterization of species and strains within the genus Candida by using Random Amplified Polymorphic DNA, Journal of Clinical Microbiology, v. 30, n12, p. 3249-3254, 1992. LESLIE, C.E.; FLANNIGAN, B.; MILNE, L.J.R. Morphological studies on clinical isolates of Aspergillus fumigatus. Medical Mycology, v. 26, n. 6, p. 335-341, 1988. LEWIS, R. E.; WIEDERHOLD, N. P.; CHI, J.; HAN, X. Y.; KOMANDURI, K. V.; KONTOYIANNIS, D. P.; PRINCE, R. A. Detection of gliotoxin in experimental and human aspergillosis. Infection and Immunity, v. 73, n. 1, p. 635-637, 2005a. LEWIS, R. E.; WIEDERHOLD, N. P.; LIONAKIS, M. S.; PRINCE, R. A.; KONTOYIANNIS, D. P. Frequency and species distribution of gliotoxinproducing Aspergillus isolates recovered from patients at a tertiary-care cancer center. Journal of Clinical Microbiology 43, n. 12, p. 6120–6122, 2005b. LIN, D.; LEHMANN, P. F.; HAMORY, B. H.; PADHYE, A. A.; DURRY, E.; PINNER, R. W.; LASKER, B. A. Comparison of three typing methods for clinical and environmental isolates of Aspergillus fumigatus, Journal of Clinical Microbiology, v. 33, n. 6, p. 1596-1601, 1995. LITWACK, G. Bioquímica Experimental: um manual de laboratório. Barcelona: Espanha, p. 23-30, 1967. LYNCH, J.M., SLATER, J.H., BENNETT, J.A. & HARPER, S.H.T. Cellulase activities of some aerobic microorganisms isolated from soil. Journal of General Microbiology, v. 127, n. 2, p. 231-236, 1981. 48 MACEDO, G. A.; PASTORE, G. M. Lipases microbianas na produção microbiana de ésteres formadores de aroma. Ciência e Tecnologia de Alimentos, v. 17, n. , p. 115-119, 1997. MANONMANI, H. K.; ANAND, S.; CHANDRASHEKAR, A.; RATI, E. R. Detection of aflatoxigenic fungi in selected food commodities by PCR. Process Biochemistry, v. 40, n. 8, p. 2859-64, 2005. MARTÍNEZ, J. V. Fitogeografía de los taxones silvestres de Phaseolus en México y Guatemala. Tese. Colegio de Postgraduados, Montecillo, México. 226 p. 1995. McALPIN, C. E. e MANNARELLI, B. Construction and characterization of a DNA probe for distinguishing strains of Aspergillus flavus, Applied and Environmental Microbiology, v. 61, n. 3, 1995. McCULLOUGH, M. J.; CLEMONS, K. V.; FARINA, C.; McCUSKER, J. H.; STEVENS, D. A. Epidemiological investigation of vaginal Saccharomyces cerevisiae isolates by a genotypic method, Journal of Clinical Microbiology, v. 36, n. 02, p. 557-62, 1998. McNEIL, M. M., NASH, S. L.; HAJJEH, R. A.; PHELAN, M. A.; CONN, L. A.; PLIKAYTIS, B. D.; WARNOCK, D. W. Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clinical of Infectious Diseases, v. 33, n. 5, p. 641- 647, 2001. MITCHELL, T. G.; SANDIN, R. L.; BOWMAN, B. H.; MEYER, W.; MERZ, W. G. Molecular mycology: DNA probes and applications of PCR technology, Journal of Medical and Veterinary Mycology, v. 32, suppl. 1, p. 351-66, 1994. MOLINA, S. M. G.; PELISSARI, F.; VITORELLO, C. B. M. Screening and genetic improvement of pectinolytic fungi for degumming of textile fibers. Brazilian Journal of Microbiology, v. 32, n. 4, p. 320-326, 2001. MOLINA, L.; TOLDRA, F. Detection of proteolytic activity in microorganisms isolated from dry cured ham. Journal of Food Science, v.57, n. 6, p.1308-1310, 1992. MORGAN, J.; WANNEMUEHLER, K. A.; MARR,K. A.; HADLEY, S.; KONTOYIANNIS, D. P.; WALSH, T. J.; FRIDKIN, S. K.; PAPPAS, P. G.; WARNOCK, D. W. Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Medical Mycology, v. 43, sup. 1, p. S49-S58, 2005. MÜLLBACHER, A.; MORELAND, A. F.; WARING, P.; SJAARDA, A.; EICHNER, R. D. Prevention of graft versus host disease by treatment of bone marrow with gliotoxin in fully allogeneic chimeras and their cytotoxic T cell repertoire. Transplantation, v. 46, n. 1, p. 120- 25, 1988. MÜLLBACHER, A.; WARING, P.; EICHNER, R. D. Identification of an agent in cultures of Aspergillus fumigatus displaying antiphagocytic and immunomodulating activity in vitro. Journal of General Microbiology , v. 131, n. 5, p. 125 1-58, 1985. NIEMINEN, S. M.; MÄKI-PAAKKANEN, J.; HIRVONEN, M. R.; ROPONENB, M.; WRIGHT, A. von. Genotoxicity of gliotoxin, a secondary metabolite of Aspergillus fumigatus, in a battery of short-term test systems Mutation Research, v. 520, n. 1-2, p. 161– 170, 2002. OLIVEIRA, D.T.M. Lipase extracelular de fungo filamentoso: Isolamento e caracterização parciais. Belo Horizonte: Faculdade de Farmácia da UFMG, 2000. 152 p. (Dissertação, Mestrado em Ciências de Alimentos). 49 PANDEY, A.; WEBB, C.; SOCCOL, C.R.; LARROCHE, C. Enzyme Technology. 1ª ed. New Delhi: Asiatech Publishers, Inc, 760 p., 2005. PANNUTI, C.; GINGRICH, R.; PFALLER, M. A.; KAO, C.; WENZEL, R. P. Nosocomial pneumonia in patients having bone marrow transplant, Cancer, v. 69, n. 1, p. 2653-62, 1992. PARKER GF, JENNER PC. Distribution of trypacidin in cultures of Aspergillus fumigatus. Applied Microbiology; v. 16, n. 8, p. 1251-1252, 1968. PENA, G.A.; PEREYRA, C.M.; ARMANDO, M.R.; CHIACCHIERA, S.M.; MAGNOLI, C.E.; ORLANDO, J. L.; DALCERO, A.M.; ROSA, C.A.R.; CAVAGLIERI, L.R. Aspergillus fumigatus toxicity and gliotoxin levels in feedstuff for domestic animals and pets in Argentina. Letters in Applied Microbiology, v. 50, n. 1, p. 77-81, 2010. PEREYRA, C.M.; ALONSO, V.A.; ROSA, C.A.R.; CHIACCHIERA, S.M.; DALCERO, A.M.; CAVAGLIERI, L.R. Gliotoxin natural incidence of Aspergillus fumigatus isolated from corn silage and ready dairy cattle feed. World Mycotoxin Journal, v. 1, n. 4, 457-462, 2008. QUAGLIA, G. Ciência y Tecnologia de la Panificación. Zaragoza: Editorial Acribia, 485 p., 1991. RAMOS, C. M.; MARTÍNEZ, S. E. V.; OLIVARES, R. A. C. Gliotoxin production in 10 strains of Aspergillus fumigatus isolated from clinical cases. Revista Mexicana de Ciências Pecuárias, v. 40, n. 2, p. 139-148, 2002. RATH, P.-M. Phenotypic and genotypic characterization of reference strains of the genus Aspergillus. Mycoses, v. 44, n. 3-4, p. 65-72, 2001. RATH, P. M.; MARGGRAF, G.; DERMOUMI, H.; ANSORG, R. Use of phenotypic and genotypic fingerprinting methods in the strain identification of Aspergillus fumigates, Mycoses, v. 38, n. 11-12, p. 429-34, 1995. REAGAN, D. R.; PFALLER, M. A.; HOLLIS, R. J.; WENZEL, R. P. Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe, Journal of Clinical Microbiology, v. 28, n. 12, p. 2733-2738, 1990. REED, G. Enzymes in food processing. 2. ed. Wisconsin: Academic Press, 573 p., 1975. REEVES, E. P.; MESSINA, C. G. M.; DOYLE, S.; KAVANAGH, K. Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia, v. 158, n. , p. 73-79, 2004. RICHARD, J.; DVORAK, T. J.; ROSS, P. F. Natural occurrence of gliotoxin in turkeys infected with Aspergillus fumigatus, Fresenius. Mycopathologia, v. 134, n 3, p. 167-170, 1996. RINYU, E.; VARGA , J.; FERENCZY, L. Phenotypic and genotypic analysis of variability in Aspergillus fumigatus. Journal of Clinical Microbiology, v. 33, n. 10, p. 2567–2575, 1995. ROBSON, L.M.; CHAMBLISS, G.H. Cellulases of bacterial origin. Enzyme and Microbial Technology, v. 11, n. 10, p. 626-644, 1989. RODRIGUES, A. N.; SANT’ANNA, E. S. Efeito do cloreto de sódio na produção de proteínas (Saccharomyces cerevisiae) em fermentação semi-sólida. Ciência e Tecnologia de Alimentos, v. 21, n. 1, p. 63-66, 2001. 50 RUEGGER, M. J. S.; TAUK-TORNISIELO, S. M. Atividade da celulase de fungos isolados do solo da Estação Ecológica de Juréia-Itatins, São Paulo, Brasil. Revista Brasileira de Botânica, v. 27, n. 2, p. 205-211, 2004. SANDHU, G. S.; KLINE, B.; STOCKMAN, L.; ROBERTS, G. D. Molecular probes for diagnosis of fungal infections. Journal of Clinical Microbiology, v. 33, n. 11; p. 2913–2919, 1995. SANDOVAL, G.; MARTY, A. Screening methods for synthetic activity of lipases. Enzyme and Microbial Technology, v. 40, n. 3, p. 390-393, 2007. SANTOS, V. M. dos.; DORNER, J. W.; CARREIRA, F. Isolation and toxigenicity of Aspergillus fumigatus from moldy silage. Mycopathologia, v. 156, n. 2, p. 133 - 138, 2003. SCHAEFER, R. Técnicas em biologia molecular. Concórdia-SC, EMBRAPA Suínos e aves, 24p, 2006. SCHMIDT, A.; WOLFF, M. H. Morphological characteristics of Aspergillus fumigatus strains isolated from patient samples. Mycoses, v. 40, n. 9-10, p. 347-351, 1997. SELVAKUMAR, P.; ASHAKUMARY, L.; HELEN, A.; PANDEY, A. Purification and characterization of glucoamylase produced by Aspergillus niger in solid state fermentation. Letters in Applied Microbiology, v. 23, n. 6, p.403-406, 1996. SILVA, E.G.; BORGES, M.F.; MEDINA, C.; PICCOLI, R.H.; SCHWAN, R.F. Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Research, v. 5, n. 9, p. 859-865. 2005. SOCCOL, C. R. ROJAN, P. J.; PATEL, A. K.; WOICIECHOWSKI, A. L.; VANDENBERGHE, L.P.S.; PANDEY, A. Glucoamylase. In: Enzyme Technology. New Delhi: Asiatec Publishers Inc., p. 221-230, 2005. SPIER, M. R. ; WOICIECHOWSKI, A. L. ; SOCCOL, C. R. Produção de α-Amilase por Aspergillus em Fermentação no Estado Sólido de Amido de Mandioca e Bagaço de Cana-de- Açúcar. VI SEMINÁRIO BRASILEIRO DE TECNOLOGIA ENZIMÁTICA. Anais Enzitec 2004. Rio de Janeiro: Enzitec, 2004. v. 1. p. 116-116. SPIKES, S., XU, R.; NGUYEN, C. K.; CHAMILOS, G.; KONTOYIANNIS, D. P.; JACOBSON, R. H.; EJZYKOWICZ, D. E.; CHIANG, L. Y.; FILLER, S. G.; MAY, G. S. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. The Journal of Infectious Diseases, v. 197, n. 3, p. 479-486, 2008. STAAB, J. F.; BALAJEE, S. A.; MARR, K. A. Aspergillus section Fumigati typing by PCRRestriction Fragment Polymorphism, Journal of Clinical Microbiology, v. 47, n. 7, p. 2079- 2083, 2009. STANZANI, M.; ORCIUOLO, E.; LEWIS, R.; KONTOYIANNIS, D. P.; MARTINS, S. L. R.; JOHN, L. S. ST.; KOMANDURI, K. V. Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood, v. 105, n. 6, p. 2258-2265, 2005. SUGUI, J. A.; PARDO, J.; CHANG, Y. C.; ZAREMBER, K. A.; NARDONE, G.; GALVEZ, E. M.; MÜLLBACHER, A.; GALLIN, J. I.; SIMON, M. M.; KWON-CHUNG ; K. J. Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryotic Cell, v. 6, n. 9, p. 1562–1569, 2007. SULYOK, M.; BERTHILLER, F.; KRSKA, R.; SCHUHMACHER, R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the 51 determination of 39 mycotoxins in wheat and maize. Rapid Communications in Mass Spectrometry, v. 20, n. 18, p. 2649-2659, 2006. SUTTON, P.; WARING, P.; MÜLLBACHER, A. Exacerbation of invasive aspergillosis by the immunosuppressive fungal metabolite, gliotoxin. Immunology and Cell Biology , v. 74, n. 4, p. 318-322, 1996. SUTTON, P.; NEWCOMBE, N. R.; WARING, P.; MÜLLBACHER, A. In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infection and Immunity; v. 62, n. 4, p. 1192-98, 1994. SZAKACS, G. Production of Industrial Enzymes in Solid-State Fermentation. In: Anais International Congress on Bioprocess in Food Industries, Clermont-Ferrand, France. v. 1, p. 20, 2004. TÉREN, J., VARGA, J., HAMARI, Z., RINYU, E. AND KEVEI, F. Immunochemical detection of ochratoxin A in black Aspergillus strains. Mycopathologia, v. 134, n. 3, 171-176, 1996. VALK, H. A. de; KLAASSEN, C. H. W.; MEIS, J. F. G. M. Molecular typing of Aspergillus species. Mycoses, v. 51, n. 6, p.463–476, 2008. VAZQUEZ, J. A.; DEMBRY, L. M.; SANCHEZ, V.; VAZQUEZ, M. A.; SOBEL, J. D.; DMUCHOWSKI, C.; ZERVOS, M. J. Nosocomial Candida glabrata colonization: an epidemiologic study, Journal of Clinical Microbiology, v. 36, n. 02, p. 421-6, 1998. WAINWRIGHT, M. Introducción a la Biotecnología de los Hongos. Zaragoza: Acribia, 228 p., 1995. WARD, O. Biotecnologia de La Fermentación: Princípios, Procesos e Productos. Zaragoza: Editorial Acribia S.A., p. 64-67 e 233-247, 1989. WALTER, E. A.; BOWDEN, R. A. Infection in the bone marrow transplant recipient. Infectious Disease Clinics of North America , v. 9, n. 4, p. 823-47, 1995. WARING, P.; KOS, F. J.; MÜLLBACHER, A. Apoptosis or programmed cell death, Medicinal Research Reviews, v. 11, n. 2, p. 219–236, 1991. WATANABE, A; KAMEI, K,;SEKINE, T.; WAKU, M.; NISHIMURA, K.; MIYAJI, M.; TATSUMI, K.; KURIYAMA, T. Effect of aeration on gliotoxin production by Aspergillus fumigatus in its culture filtrate. Mycopathologia, v. 157, n. 1, p. 245-254, 2004. WELSH, J.; MCCLELLAND, M. Fingerprinting genomes using PCR with arbitrary primers, Nucleic Acids Research, v. 18, n. 22, p. 6531-6535, 1990. WILD, C. P. Aflatoxin exposure in developing countries: the critical interface of agriculture and health. Food & Nutrition Bulletin, v. 28, sup. 2, p. S372–S380, 2007. WILLGER, S.; GRAHL, N.; CRAMER, R. JR. Aspergillus fumigatus metabolism: Clues to mechanisms of in vivo fungal growth and virulence. Medical Mycology, v. 47, supplemento 1, S72-S79, 2009. WILLGER, S. D.; PUTTIKAMONKUL, S.; KIM, K. H.; BURRITT, J. B.; GRAHL, N.; METZLER, L. J.; BARBUCH, R.; BARD, M.; LAWRENCE, C. B.; CRAMER, R. A. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathogens, v. 4, n.11, p. 1-18, 2008. 52 WILLIAMS, J. G. K.; KUBELIK, A. R.; LIVAK, K. J.; RAFALSKI, J. A.; TINGEY, S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Research, v. 18, n. 22, p. 6531-6535, 1990. WILLIAMS, J. H.; PHILLIPS, T. D.; JOLLY, P. E.; STILES, J. K.; JOLLY, C. M.; AGGARWAL, D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. The American Journal of Clinical Nutrition, v. 80, n. 5, p. 1106-1122, 2004. YAMADA, A.; KATAOKA, T.; NAGAI, K. The fungal metabolite gliotoxin: immunosuppressive activity on CTL-mediated cytotoxicity. Immunology Letters, v. 71, n. 1, p. 27-32, 2000. ZHAO, J.; KONG, F.; LI, R.; WANG, X.; WAN, Z.; WANG, D. Identification of Aspergillus fumigatus and related species by nested PCR targeting ribosomal DNA internal transcribed spacer regions. Journal of Clinical Microbiology, v. 39, n. 6, p. 2261–2266, 2001. | por |
dc.subject.cnpq | Microbiologia | por |
dc.subject.cnpq | Genética | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/54412/2012%20-%20Carla%20Alves%20Soleiro.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/3529 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-05-18T13:59:07Z No. of bitstreams: 1 2012 - Carla Alves Soleiro.pdf: 1258786 bytes, checksum: 8d2c6451a9179707a73ae0f3a2279fbd (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2020-05-18T13:59:07Z (GMT). No. of bitstreams: 1 2012 - Carla Alves Soleiro.pdf: 1258786 bytes, checksum: 8d2c6451a9179707a73ae0f3a2279fbd (MD5) Previous issue date: 2012-12-10 | eng |
Appears in Collections: | Doutorado em Ciência, Tecnologia e Inovação em Agropecuária |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2012 - Carla Alves Soleiro.pdf | 2012 - Carla Alves Soleiro | 1.23 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.