Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15978
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gonçalves, Gabriela Mastrangelo | |
dc.date.accessioned | 2023-12-18T17:15:56Z | - |
dc.date.available | 2023-12-18T17:15:56Z | - |
dc.date.issued | 2020-10-02 | |
dc.identifier.citation | GONÇALVES, Gabriela Mastrangelo. Avaliação farmacológica das atividades antinociceptiva e anti-inflamatória do composto híbrido cis-(±)-acetato de 4-cloro-6-(naftaleno-1-il)-tetraidro-2H-pirano-2-il) metil 2-(2-(2,6-diclorofenilamino) fenila. 2020. 133 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15978 | - |
dc.description.abstract | A hibridação molecular é uma estratégia clássica de conjugação de estruturas de compostos bioativos distintos em uma única molécula, sendo uma alternativa eficaz de arquitetar racionalmente novos compostos que podem apresentar sinergismo e terapia de dupla ação farmacológica ou modulação de efeitos adversos. O objetivo deste estudo foi avaliar a atividade antinociceptiva e anti-inflamatória de um novo composto híbrido: cis - (±) - acetato de 4-cloro-6- (naftaleno-1-il)-tetraidro-2H-pirano-2-il) metil 2- (2-(2,6-diclorofenilamino) fenila (LS19), obtido através da hibridização do composto [(±)-(2,4,6-Cis)-4-cloro-6-(naftaleno-1-il)-tetrahidro-2H-pirano-2-il] metanol (CAPIM e cols., 2012) com o anti-inflamatório não-esteroidal diclofenaco de sódio. O composto LS19 foi administrado por via oral em todos os modelos animais e de acordo com os resultados, possui atividade contra a nocicepção aguda observada nos modelos de contorções abdominais induzidas por ácido acético, teste de formalina e imersão da cauda em água quente. O mecanismo de ação do composto envolve o sistema opioide, já que antagonistas seletivos opioides foram capazes de reduzir o efeito antinociceptivo. A via NO/cGMP/KATP também interfere na atividade farmacológica do composto devido a diminuição do efeito antinociceptivo com a administração prévia de L-NAME, ODQ e glibenclamida. A administração prévia de atropina reverteu a antinocicepção, sugerindo a participação do sistema colinérgico na atividade do composto LS19. Possivelmente há envolvimento de receptores TRPV1 neuronais e não-neuronais no mecanismo de ação do composto, pois no teste de nocicepção induzido por capsaicina, o LS19 inibiu o tempo de lambedura e foi capaz de diminuir tanto a hiperalgesia quanto a concentração de citocinas pró-inflamatórias induzidas por capsaicina. A atividade antinociceptiva do composto não está relacionada a um déficit motor, de acordo com dados obtidos no teste de rotarod. Em relação a atividade anti-inflamatória, o composto LS19 demonstrou um efeito anti-edematogênico, foi capaz de reduzir a migração leucocitária e a produção de citocinas pró-inflamatórias (IL-1β e TNF-α) e aumentar a síntese da IL-10, uma citocina anti-inflamatória. Na avaliação in vitro de atividade COX, o LS19 demonstrou maior, porém discreta, seletividade para COX-2. No ensaio toxicológico realizado, o composto não provocou alterações agudas e subcrônicas, tanto a nível macro quanto microscópico. Conclui-se então que o composto LS19 apresenta atividade antinociceptiva através de sua ação sobre as vias colinérgica e NO/cGMP/KATP, além de atividade anti-inflamatória e antinociceptiva induzida por ação sobre a via vanilóide e citocinas. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Nocicepção | por |
dc.subject | Sistema opioide | por |
dc.subject | Inflamação | por |
dc.subject | Nociception | eng |
dc.subject | Opioid system | eng |
dc.subject | Inflammation | eng |
dc.title | Avaliação farmacológica das atividades antinociceptiva e anti-inflamatória do composto híbrido cis-(±)-acetato de 4-cloro-6-(naftaleno-1-il)-tetraidro-2H-pirano-2-il) metil 2- (2-(2,6-diclorofenilamino) fenila | por |
dc.title.alternative | Antinociceptive and anti-inflammatory profile of hybrid compound: 4-chloro-6-(naphthalen-1-yl)-tetrahydro-2H-pyran-2-yl cis-(±) methyl 2-2-(2,6-dichlorophenylamino) phenyl) | eng |
dc.type | Tese | por |
dc.description.abstractOther | Molecular hybridization is a classic strategy of conjugating structures of distinct bioactive compounds in a single molecule, being an effective alternative to rationally architect new compounds that may present synergism and double pharmacological action therapy or modulation of adverse effects. The aim of this study was to evaluate the antinociceptive and anti-inflammatory activity of a new hybrid compound: cis - (±) - 4-chloro-6- (naphthalene-1-yl) -tetrahydro-2H-pyran-2-yl ) methyl 2- (2- (2,6-dichlorophenylamino) phenyl (LS19), obtained by hybridizing the compound [(±) -(2,4,6-cis) -4-chloro-6- (naphthalene-1 -il) -tetrahydro-2H-pyran-2-yl] methanol (CAPIM et al., 2012) with the non-steroidal anti-inflammatory drug sodium diclofenac.The compound LS19 was administered orally in all animal models and according to the results, it has activity against the acute nociception observed in the models of abdominal contortions induced by acetic acid, formalin test and immersion of the tail in hot water. The mechanism of action of the compound involves the opioid system, since selective opioid antagonists were able to reduce the antinociceptive effect. The NO/cGMP/KATP pathway also interferes in the pharmacological activity of the compound due to the decrease of the antinociceptive effect with the previous administration of L-NAME, ODQ and glibenclamide. The previous administration of atropine reversed antinociception, suggesting the participation of the cholinergic system in the activity of the compound LS19. Possibly there is involvement of neuronal and non-neuronal TRPV1 receptors in the mechanism of action of the compound, as in the nociception test induced by capsaicin, LS19 inhibited the licking time and was able to decrease both hyperalgesia and the concentration of pro-inflammatory cytokines induced by capsaicin. The antinociceptive activity of the compound is not related to a motor deficit, according to data obtained in the rotarod test. In relation to anti-inflammatory activity, the compound LS19 demonstrated an anti-edematogenic effect, was able to reduce leukocyte migration and the production of pro-inflammatory cytokines (IL-1β and TNF-α) and increase the synthesis of IL-10, an anti-inflammatory cytokine. In the in vitro assessment of COX activity, LS19 demonstrated greater, but discrete, selectivity for COX-2. In the toxicological test carried out, the compound did not cause acute and subchronic changes, both at the macro and microscopic level. It is concluded that the compound LS19 has antinociceptive activity through its action on the cholinergic and NO / cGMP / KATP pathways, in addition to anti-inflammatory and antinociceptive activity induced by action on the vanilloid pathway and cytokines. | eng |
dc.contributor.advisor1 | Marinho, Bruno Guimarães | |
dc.contributor.advisor1ID | 077.077.277-38 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2685794388394484 | por |
dc.contributor.referee1 | Marinho, Bruno Guimarães | |
dc.contributor.referee2 | Malvar, David do Carmo | |
dc.contributor.referee3 | Côrtes, Wellington da Silva | |
dc.contributor.referee4 | Nascimento, Carlos Giovani de Oliveira | |
dc.contributor.referee5 | Souza, Giovane Galdino de | |
dc.creator.ID | 384.158.588-41 | por |
dc.creator.Lattes | http://lattes.cnpq.br/0300079148359674 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Biológicas e da Saúde | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Fisiológicas | por |
dc.relation.references | AHMED, S; SULTANA, M; HASAN, M. M. U; AZHAR, I. Analgesic and Antiemetic Activity of Cleome Viscosa L. Pakistan Journal of Botany, v. 43, p. 119-122, 2011. AIRES, M. M. Fisiologia. Rio de Janeiro: Guanabara Koogan, 1252p; 2008. ALESSIO, P.D; MOUTET, M; COUDRIER, E; DARQUENN, E.S; CHAUDIERE, J. ICAM-1 and VCAM-1 expression induced by TNF- are inhibited by a glutathione peroxidase mimic. Free Radic. Biol. Med., v.24, p. 979-987, 1998. ALVARENGA, F.Q.; MOTA, B.C.F.; LEITE, M.N.; FONSECA, J.M.S.; OLIVEIRA, D.A.; ROYO, V.A.; SILVA, M.L.A.; ESPERANDIM, V.; BORGES, A.; LAURENTIZ, R.S. In vivo analgesic activity, toxicity and phytochemical screening of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine. Journal of Ethnopharmacology 150, 280–284, 2013. ALVES, D; DUARTE, I.D. Involvement of ATP-sensitive K(+) channels in the peripheral antinociceptive effect induced by dipyrone. Eur. J. Pharmacol.; 444: 47-52. 2002. AMAYA, F; IZUMI, Y; MATSUDA, M; SASAKI, M. Tissue Injury and Related Mediators of Pain Exacerbation. Curr Neuropharmacol.; 11(6): 592–597, 2013. APKARIAN A.V; BUSHNELL M.C; TREEDE R.D: Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain: 9:463–484, 2005. ARAÚJO, C. R. M., LEITE FILHO, C. A., SANTOS, V. L. DOS A., MAIA, G. L. DE A., & GONSALVES, A. DE A. Drug development by molecular hybridization: a medicinal chemistry practice class using paracetamol and sulfadiazine tablets and the virtual toolscifinder®. Química Nova. Vol. 38, No. 6, 868-873, 2015. ARAÚJO-SOUZA, P. S.; HANSCHKE, S. C. H.; VIOLA, J. P. B. Epigenetic Control of Interferon-Gamma Expression in CD8+ T Cells. Journal of Immunology Research, p. 849573, 2015. ARVIDSON U, RIED M, CHAKRABARTI S, VULCHANOVA L, LEE J-H, NAKANO AH, LIN X, LOH HH, LAW P-Y, WESSENDORF MW & ELDE R. The κ–opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids. Proc Natl Acad Sci 92: 5062-5066, 1995. ATOYAN, R.; SHANDER, D.; BOTCHKAREVA, N.V. Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129, 2312–2315. 2009. BASBAUM A.I, BAUTISTA D.M, SCHERRER G, JULIUS D. Cellular and molecular mechanisms of pain. Cell. 139:267–284, 2009. BATLOUNI, M. Anti-inflamatórios não esteroides: efeitos cardiovasculares, cérebro-vasculares e renais. Arq Bras Cardiol, v. 94, n. 4, p. 556-63, 2010. BEN-BASSAT J, PERETZ E, SULMAN FG. Analgesimetry and ranking of analgesic drugs by the receptacle method. Arch Int Pharmacodyn Ther. 122:434-47, 1959. BEVAN, S; HOTHI, S; HUGHES, G; JAMES, I.F; RANG, H.P; SHAH, K; WALPOLE, C.S; YEATS, J.C. Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br. J. Pharmacol. 107, 544-552, 1992. BOGDAN, C; ROLLINGHOFF, M; DIEFENBACH, A. Reacitve oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol, 12 (1):64-76, 2000. BOOTH, M. Opium - a History. New York, St Martin’s Griffin, 1998. BOOTHE, D.M. Small Animal Clinical Pharmacology and Therapeutics. Philadelphia: W.B. Saunders Company, p. 281-311, 2001. BOWEN, C.A; NEGUS, S.S; ZONG, R; NEUMEYER, J.L; BIDLACK, J.M; MELLO, N.K. Effects of mixed-action kappa/mu opioids on cocaine self-administration and cocaine discrimination by rhesus monkeys. Neuropsychopharmacology.; 1125-39, 2003. BRADLEY, J.R. TNF-mediated inflammatory disease. J. Pathol., v. 214, p. 149-60, 2008. BREDT, D.S; HWANG, P.M; SNYDER, S.H. Localization of nitric oxide synthase indicating a neuronal role for nitric oxide. Nature; 347:768-770, 1990. BROWN, M.A; MILLER, J; HURAL, J. Functions of IL-4 and Control of Its Expression. Critical Reviews in Immunology, 37(2–6):197–229, 2017. BRUCKDORFER, R. The basics about nitric oxide. Mol Asp Med; 26: 3-31, 2005. BUDSBERG, S. C. Tendencias actuales y futuras en el uso de los AINEs para el tratamiento de la osteoartritis en los perros. Waltham Focus, Hannover, v. 9, n. 2, p. 26-31, 1999. CAPIM, S.L; CARNEIRO, P.H.P; CASTRO, P.C; BARROS, M.R.M; MARINHO, B.G; VASCONCELLOS, M.L.A.A. Design, Prins-cyclization, reaction promoting diastereoselective synthesis of 10 new tetrahydropyran derivatives and in vivo antinociceptive evaluations. European Journal of Medicinal Chemistry. 58:1-11, 2012. CAPIM, S. L; GONÇALVES, G. M; DOS SANTOS, G. C. M; MARINHO, B. G; VASCONCELLOS, M. L. A. A. High analgesic and anti-inflammatory in vivo activities of six new hybrids NSAIAs tetrahydropyran derivatives. Bioorganic & Medicinal Chemistry, 21(19), 6003–6010, 2013. CAPONE, F.; ALOISI, A. M.; Refinement of pain evaluation techniques. The formalin test. Annali dell'Istituto Superiore di Sanità, v.40, p.223-229, 2004. CARVALHO, W.A; LEMÔNICA, L. Mecanismos celulares e moleculares da dor inflamatória. Modulação periférica e avanços terapêuticos. Revista Brasileira de Anestesiologia, v.48, p. 137-158, 1998. CATERINA, M.J.; SCHUMACHER, M.A.; TOMINAGA, M.; ROSEN, T.A.; LEVINE, J.D.; JULIUS, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389, 816–824, 1997. CATERINA, M.J; LEFFELER, A; MALMBERG, A.B; MARTIN, W.J; TRAFTON, J; PETERSEN-ZEITZ, K.R; KOLTZENBURG, M; BASBAUM, A.I; JULIUS, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288: 306-313, 2000. CHEN S.R., PAN, H.L. Antinociceptive effect of morphine, but not mu opioid receptor number, is attenuated in the spinal cord of diabetic rats. Anesthesiology 99: 1409–1414. 2003 CHENA, L.X; QIA, Y.M; WANGB, R; DUAN, X; GAO, Y.F; YANG, D.J. Roles of nitric oxide synthase inhibitor on antinociceptive effects of mu-opioid agonist in mice. Protein Pept. Lett. 13, 993–997, 2006. CHONG, C.R.; SULLIVAN, D.J.Jr. New uses for old drugs. Nature, v. 448, n. 7154, p. 645-646, 2007. CLYSDESDALE GJ, DANDIE GW, MULLER HK. Ultraviolet light induced injury: immunological and inflammatory effects. Immunol. Cell Biol. 79: 547–568, 2001. CRUVINEL, W.M. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev. Bras. Reumatol., São Paulo, v. 50, n. 4, p. 434-447, 2010. COGGESHALL, R.E. Opioid receptors on peripheral sensory axons. Brain. Res., v.764, p. 126-132, 1997. COMMINS, S.P; BORISH, L; STEINKE, J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. The Journal of allergy and clinical immunology. 125(2 Suppl 2):S53-72., 2010. CORDERO-ERAUSQUIN, M; CHANGEUX, J.P. Tonic nicotinic modulation of serotonergic transmission in the spinal cord. Proc. Natl. Acad. Sci. U.S.A. 98, 2803– 2807, 2001. CUI JG, HOLMIN S, MATHIESEN T, MEYERSON BA, LINDEROTH B. Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain 88: 239-48, 2000. CULOTTA, E; KOSHLAND, D.E. NO news is good news. Science; 258:1862-5, 1992. CUNHA, T.M; ROMAN-CAMPOS, D; LOTUFO, C.M; DUARTE, H.L; SOUZA, G.R; VERRI, W.A., JR; FUNEZ, M.I; DIAS, Q.M; SCHIVO, I.R; DOMINGUES, A.C; SACHS, D; CHIAVEGATTO, S; TEIXEIRA, M.M; HOTHERSALL, J.S; CRUZ, J.S; CUNHA, F.Q; FERREIRA, S.H. Morphine peripheral analgesia depends on activation of the PI3Kγ/ AKT/nNOS/NO/KATP signaling pathway. Proc. Natl. Acad. Sci. USA 107:4442–4447, 2010. CURY, Y; PICOLO, G; GUTIERREZ, V.P; FERREIRA, S.H. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide 25: 243–254, 2011. DA SILVA, J, M. Antiinflamatórios não esteróides e suas propriedades gerais. Revista Científica do ITPAC, Araguaína, v.7, n.4, 2014. DAL, D; SALMAN, M.A; SALMAN, A.E. The involvement of nitric oxide on the analgesic effect of tramadol. Eur J Anaesthesiol; 23: 175-177, 2006. DANI J.A. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol;124:3–19, 2015. DECKER, T.; STOCKINGER, S.; KARAGHIOSOFF, M. IFNs and STATs in innate immunity to microorganisms. J. Clin. Invest., 109: 1271–1277, 2002. DEMOPOULOS, C.A. State of lipid research in greece. Euro. J. Lipid Sci. Technol. 102, 665–666, 2000. DEMOPOULOS, C.A.; KARANTONIS, H.C.; ANTONOPOULOU, S. Plateletactivating factor—a molecular link between atherosclerosis theories. Eur. J. Lipid Sci. Technol. 105, 705–716, 2003. DEMPSEY, P.W; DOYLE, S.E; HE, J.Q; CHENG, G. The signaling adaptors and pathways activated by TNF superfamily. Cytocine Growth Factor Rev, 14:193-209, 2003. DEVLIN, T.M. Textbook of Biochemistry with Clinical Correlations. 6th Edition, Wilwy-Liss publication, 2006. DEWEY, W. L. The effect of narcotics and narcotic antagonists on the tail- flick response in spinal mice. Journal of Pharmacy and Pharmacology, v. 21, n. 8, p. 548- 50; 1969. DICKINSON, A.L.; LEACH, M.C.; FLECKNELL, P.A. Influence of early neonatal experience on nociceptive responses and analgesic effects in rats. Lab. Anim, 2009. DINARELLO, C.A. The proinflammatory cytokines interleukin-1 and tumor necrosis factor and treatment of the septic shock syndrome. J. Infect. Dis., v.163, p. 1177-84, 1991. DUARTE, I.D; LORENZETTI, B.B; FERREIRA, S.H. Peripheral analgesia and activation of the nitric oxide–cyclic GMP pathway. Eur. J. Pharmacol. 186, 289– 293, 1990. DUARTE, D.F. Uma Breve História do Ópio e dos Opióides. Rev Bras Anestesiol.; 55: 1: 135 – 146, 2005. DUARTE, D.B.; VASKO, M.R.; FEHRENBACHER, J.C. Models of inflammation: carrageenan air pouch. Current protocols in pharmacology. v. 56, p. 561-568, 2012. DUNHAM, N. W.; MIYA, T. S. A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of American Pharmacy. v. 46, p. 208- 209, 1957. EL KOUHEN, R., SUROWY, C.S., BIANCHI, B.R, NEELANDS, TR.; MCDONALD HA NIFORATOs, w GOMTSYAN, Ai LEE, C.H., HONORE, P., SULLIVAN, J.P JARVIS, M F., FALTYNEK, C.R. A 425619[1-soquinolin 5-yl- 3(4 trifluoromethyl- benzyl ureal, a novel and selective transient receptor potential type v1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. The Journal pharmacology and Experimental Therapeutics, v. 314, n. 1, p. 400-409, 2005. FEIN, A. Nociceptores: As células que sentem dor. Petrov P, Francischi JN, Ferreira SH, et al. tradutores. Ribeirão Preto – SP: Dor On Line; 106 p., 2011. FELDMAN, M.; McMAHON, A. T. Do Cyclooxygenase-2 Inhibitors Provide Benefits Similar to Those of Traditional Nonsteroidal Antiinflammatory Drugs, with Less Gastrointestinal Toxicity? Annuary International Medicine, v. 132, p.134- 143, 2000. FENG, Y.; XIAOZHOU, H.; YANG, Y.; CHAO, D.; LAZARUS, L.H.; XIA, Y. Current research on opioid receptor function. Curr Drug Targets, v. 13, n. 2, p. 230- 46, 2012. FERREIRA, S.H; VAN ARMAN, C.G. Oedema and increased vascular permeability. In: Vane JR, Van Arman CG, editors. Handbook of experimental pharmacology. New York 7 Springer-Verlag; p. 75-91, 1979. FERREIRA, S.H; FERRARI, L.F; CUNHA, T.M; NASCIMENTO, P.G.B.D; JUNIOR, W.A.V; CUNHA, F.Q. Dor: Príncipios e Prática. Capítulo 19: Dor Inflamatória. 2010. FIGUEIREDO, L. M. F.; ALVES, T.C.A. Uso dos anti-inflamatórios não esteróides no controle da dor aguda: revisão sistemática. Rev Neurocienc, v. 23, p. 463-67, 2015. FIORINO D.F; GARCIA-GUZMAN, M. Muscarinic pain pharmacology: realizing the promise of novel analgesics by overcoming old challenges. In: Fryer A.D., Christopoulos A., Nathanson N.M., editors. Muscarinic Receptors. Springer Berlin Heidelberg; pp. 191–221. (Handbook of Experimental Pharmacology), 2012. FRANCISCHETTI, I; MORENO, J.B; SCHOLZ, M; YOSHIDA, W.B. Leukocytes and the inflammatory response in ischemia-reperfusion injury. Rev Bras Cir Cardiovasc.; 25(4): 575-584, 2010. FRENZEL, L; HERMINE, O. Mast cells and inflammation. Joint Bone Spine 80: 141- 145, 2013. FRIAS, B; MERIGHI, A. Capsaicin, Nociception and Pain. Molecules, 21, 797, 2016. FRIEBE, A; KOESLING, D. Regulation of nitric-oxide-sensitive guanylyl cyclase. Circ Res; 93:96-105, 2003. GARCIA, X.; STEIN, F. Nitric oxide. Semin Pedriatr Infect Dis 17:55-57, 2006. GARLAND, E: Pain processing in the human nervous system: a selective review of nociceptive and biobehavioral pathways. Prim Care: 39:561–571, 2012. GARTHWAITE, J; CHARLES, S.L; CHESS-WILLIAMS, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336: 385–388, 1998. GARTHWAITE, J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci; 27: 2783-2802, 2008. GAWEL, K; GIBULA-BRUZDA, E; DZIEDZIC, M; JENDA-WOJTANOWSKA, M; MARSZALEK-GRABSKA, M; SILBERRING, J; KOTLINSKA, J.H. Cholinergic activation affects the acute and chronic antinociceptive effects of morphine. Physiol Behav.;169:22–32, 2017. GENZEN, J.R; MCGEHEE, D.S. Short- and long-term enhancement of excitatory transmission in the spinal cord dorsal horn by nicotinic acetylcholine receptors. Proc Natl Acad Sci.;100:6807–6812, 2003. GHELARDINI, C; MANNELLI, L.D; BIANCHI, E. The pharmacological basis of opioids. Clinical Cases in Mineral and Bone Metabolism; 12(3): 219-221, 2015. GILROY, D.W; LAWRENCE, T; PERRETTI, M; ROSSI, A.G. Inflammatory resolution: new opportunities for drug discovery. Nat. Rev. Drug. Disc., 3:401-416, 2004. GOENKA, S; KAPLAN, M.H. Transcriptional regulation by STAT6. Immunol Res.;50:87–96, 2011. GONÇALVES, G. M; CAPIM, S. L; VASCONCELLOS, M. L. A. A; MARINHO, B. G. Antihyperalgesic effect of [(±)-(2,4,6-cis)-4-chloro-6-(naphthalen-1-yl)- tetrahydro-2H-pyran-2-yl]methanol: participation of the NO/cGMP/KATP pathway and κ-opioid receptor.. Behavioural Pharmacology, 27(6), 506–515, 2016. GOODMAN & GILMAN, As Bases Farmacológicas da Terapêutica., Ed. Guanabara Koogan, 12ª Edição., 2012. GREEN, J.P; GLICK, S.D; CRANE, A.M; SZILAGYI, P.I. Acute effects of morphine on regional brain levels of acetylcholine in mice and rats. Eur J Pharmacol.;39:91– 99, 1976. GRINT, N.J.; BETHS, T.; YVORCHUK, K.; TAYLOR, P.M.; DIXON, M.; WHAY, H.R.; MURRELL, J.C. The influence of various confounding factors on mechanical nociceptive thresholds in the donkey. J. Vet. Anaesth. Analg. 41, 421–429, 2014. GRÖNE, A.; FONFARA, S.; BAUMGÄRTNER, W. Cell type-dependent cytokine expression after canine distemper virus infection. Viral Immunol 15, 493–505. 2002 GUGINSKI, G; LUIZ, A.P; SILVA, M.D; MASSARO, M; MARTINS, D.F; CHAVES, J; MATTOS, R.W; SILVEIRA, D; FERREIRA, V.M; CALIXTO, J.B; SANTOS, A.R. Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of Melissa officinalis (lemon balm) in mice. Pharmacol. Biochem. Behav. 93, 10–16, 2009. GUTIERREZ, V; ZAMBELLI, V; PICOLO, G; CHACUR, M; SAMPAIO, S; BRIGATTE, P; CURY, Y. Peripheral L-arginine-nitric oxide-cGMP pathway and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine on neuropathic pain in rats. Behav. Pharmacol., (1):14-24, 2012. GUZIK, T.J; KORBUT, R; ADAMEK-GUZIK, T. Nitric Oxide and Superoxide in Inflammation and Immune Regulation. J Physiol Pharmacol, 54(4):469-87, 2003. HALICI, Z.; DENGIZ, G.O.; ODABASOGLU, F.; SULEYMAN, H.; CADIRCI, E.; HALICI, M. Amiodarone has anti-inflammatory and anti-oxidative properties: An experimental study in rats with carrageenan-induced paw edema. Eur J Pharmacol. 566:215-21, 2007. HALLER, J.R. Opium usage in nineteenth century therapeutics. Bull N Y Acad Med, ;65:591-607, 1989. HAMILTON, G.R; BASKETT, T.F. In the arms of Morpheus the development of morphine for postoperative pain relief. Can J Anaesth;47:367-374, 2000. HANADA, T; YOSHIMURA, A. Regulation of cytokine signaling and inflammation. Cytokine and Growth Factor Review. v. 13, p. 4130421, 2002. HAWES, B.E; GRAZIANO, M.P; LAMBERT, D.G. Cellular actions of nociceptin: transduction mechanisms. Peptides 21: 961–967, 2002. HEBA, G; KRZEMINSKI, T; PORC, M. Relation between expression of TNF alpha, iNOS, VEGF mRNA and development of heart failure after experimental myocardial infarction in rats. J Physiol Pharmacol; 52: 39-52, 2001. HEINZMANN, S; MCMAHON, S.B. New molecules for the treatment of pain. Curr Opin Support Palliat Care 5: 111–115, 2011. HERVERA, A; LEANEZ, S; NEGRETE, R; POL, O. The peripheral administration of a nitric oxide donor potentiates the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice. Naunyn Schmiedebergs Arch. Pharmacol 380: 345–352, 2009. HUA, F; RIBBING, J; REINISCH, W; CATALDI, F; MARTIN, S. A pharmacokinetic com-parison of anrukinzumab, an anti-IL-13 monoclonal antibody, among healthy volunteers, asthma and ulcerative colitis patients. Br J Clin Pharmacol 80:101–9, 2015. HUNSKAAR, S; HOLE, K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30: 103–14, 1987. I-CHENG, HO; SHI-CHUEN. Regulation of IL-4 Expression in Immunity and Diseases. Regulation of Cytokine Gene Expression in Immunity and Diseases, Advances in Experimental Medicine and Biology 941, 2016. IKEDA, S.R. Voltage-dependent modulation of N-type calcium channels by Gprotein beta gamma subunits. Nature 380: 255-258, 1996. IKEDA, K; KOBAYASHI, T; KUMANISHI, T; YANO, R; SORA, I; NIKI, H. Molecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel one of the keys? Neurosci Res 44: 121-131, 2002. JAIN, K.D. Modulators of nicotinic acetylcholine receptors as analgesics. Current Opinion in Investigational Drugs, v.5, n.1, p. 76-78, 2004. JAMIE, R.S; CHRISTOPHER, B.W. Regulation of IFN-γ during innate and adaptative immune responses. Adv Immunol, 96:41-101, 2007. JAVANMARDI, K, M; PARVIZ, S.S; SADR, M; KESHAVARZ, B; MINAII; DEHPOUR, A.R. Involvement of N-methyl-D-aspartate receptors and nitric oxide in the rostral ventromedial medulla in modulating morphine pain-inhibitory signals from the periaqueductal grey matter in rats. Clin. Exp. Pharmacol. Physiol. 32: 585–589, 2005. JEANJEAN, A.P; MOUSSAOUI, S.M; MALOTEAUX, J.M. Interleukin-1 beta induces long-term increase of axonally transported opiate receptors and substance P. Neuroscience;68:151–157, 1995. JENSEN, T.S & YAKSH, T.L. Comparison of the antinociceptive action of mu and delta opioid receptor ligands in the periaqueductal gray matter, medial and paramedial ventral medulla in the rat as studied by the microinjection technique. Brain Res 372: 301-312, 1986. JEONG, S.-G; CHOI, I.-S; CHO, J.-H; JANG, I.-S. Cholinergic modulation of primary afferent glutamatergic transmission in rat medullary dorsal horn neurons. Neuropharmacology.;75:295–303, 2013. JOHNSON, C. Research Tools for the Measurement of Pain and Nociception. Animals: 6, 71, 2016. JONES, P.G; DUNLOP, J. Targeting the cholinergic system as a therapeutic strategy for the treatment of pain. Neuropharmacology, v.53, p. 197-206, 2007. JONGKAMONWIWAT, N; PHANSUWAN-PUJITO, P; SARAPOKE, P; CHETSAWANG, B; CASALOTTI, S.O; FORGE, A; DODSON, H; GOVITRAPONG, P. The presence of opioid receptors in rat inner ear. Hear Res;181(1-2):85-93, 2003. JUNTTILA, I.S. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front. Immunol. 9:888, 2018. KANDEL, E.R.; SCHWARTZ, J.H.; JESSELL, T.M. Princípios de Neurociência. Editora Manole, 2003. KELLEY, N.E; TEPPER, D.E. Rescue therapy for acute migraine, part 3: opioids, NSAIDs, steroids, and post-discharge medications. Headache.;52(3):467-82, 2012. KHALID S, TUBBS, R. Neuroanatomy and Neuropsychology of Pain. Cureus 9(10): e1754, 2017. KIEFFER, B.L; EVANS, C.J. Opioid receptors: from binding sites to visible molecules in vivo. Neuropharmacology, v. 56. Suppl 1, p. 205-212, 2009. KIM, N; LUSTER, A.D. Regulation of immune cells by eicosanoid receptors. Scientific World Journal, 7:1307-1510, 2007. KNOWLES, R.G; MONCADA, S. Nitric oxide synthases in mammals. Biochem J; 298:249-58, 1994. KLEIN, M.A; MOLLER, J.C; JONES, L.L. Impaired neuroglial activation in interleukin-6 deficient mice. Glia; 19:227–233, 1997. KOCH, C. Consciousness: confessions of a romantic reductionist. Cambridge, Massachusetts: NIT press; 2012. KOSTER, R; ANDERSON, M; DE BEER, EJ. Acetic acid for analgesic screening. Federation Proceedings. v. 18, p. 412, 1959. LAWRENCE, T; GILROY, D.W. Chronic inflammation: a failure of resolution? Int. J. Exp. Path., v. 88: 85-94, 2007. LE BARS, D., GOZARIU, M., CADDEN, S. Animal models of nociception. Pharmacological Reviews, v. 53, p. 628-651, 2001. LEE, F; YOKOTA, T; OTSUKA, T; MEYERSON, P; VILLARET, D; COFFMAN, R; MOSMANN, T; RENNICK, D; ROEHM, N; SMITH, C; ZLOTNICK, A; ARAI, K. Isolation and characterization of a mouse interleukin cDNA clone that expresses Bcell stimulatory factor activities and T-cell and mast cell-stimulating activities. Proc Natl Acad Sci USA ;83:2061, 1986. LEWIS, R; PALEVITZ, B. Nobel honors pioneers of NO. The Scientist; 12:1, 1998. LIN, E; CALVANO, S.E; LOWRY, S.F. Inflammatory cytokines and cell response in surgery. Surgery,;127:117-126, 2000. LOESER, J.D; TREEDE, R.D. The Kyoto protocol of IASP basic pain terminology. Pain. 137:473-477, 2008. LOPES, S.C; DA SILVA, A.V.I; ARRUDA, B.R; MORAIS, T.C; RIOS, J.B; TREVISAN, M.T.S; RAO, V.S; SANTOS, F.A. Peripheral antinociceptive action of mangiferin in mouse models of experimental pain: role of endogenous opioids, KATP-channels and adenosine. Pharmacol. Biochem. Behav. 110: 19-26. 2013. LOPEZ RODRIGUEZ, M.L; VISO, A; ORTEGA-GUTIERREZ, S. VR1 receptor modulators as potential drugs for neuropathic pain. Mini Reviews in Medicinal Chemistry, v. 3, n. 7, p. 729-748, 2003. LORDAN, R.; TSOUPRAS, A.; ZABETAKIS, I. Phospholipids of animal and marine origin: Structure, function, and anti-inflammatory properties. Molecules, 22, 1964, 2017. LORDAN, R.; TSOUPRAS, A.; ZABETAKIS, I. The potential role of dietary platelet-activating factor inhibitors in cancer prevention and treatment. Adv. Nutr. 10, 148–164, 2019. LORKE, D. A new approach to practical acute toxicity testing. Arch Toxicol; 54:275–87, 1983. LÖTSCH, J; GEISSLINGER, G. Pharmacogenetics of new analgesics. Brit J Pharmacol 163: 447–460, 2011. LOVE, E.J.; MURRELL, J.; WHAY, H.R. Thermal and mechanical nociceptive threshold testing in horses: A review. Vet. Anaesth. Analg. 38, 3–14, 2011. LOZANO-CUENCA, J.; CASTANEDA-HERNANDEZ, G.; GRANADOS-SOTO, V. Peripheral and spinal mechanisms of antinociceptive action of lumiracoxib. Eur. J. Pharmacol. 513: 81–91, 2005. MACHT, D.I. The history of opium and some of its preparation and alkaloids. JAMA; 64:477-461, 1915. MANNION, R.J; COSTIGAN, M; DECOSTERD, I: Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci. 96:9385–9390, 1999. MAO, J; GOLD, M.S; BACKONJA, M.M. Combination Drug Therapy for Chronic Pain: A Call for More Clinical Studies. J Pain. Elsevier Ltd;12(2):157–66, 2011. MARINHO B.G; MIRANDA L.S.M; GOMES N.M; MATHEUS M.E; LEITÃO S.G; VASCONCELLOS M.L.A.A; FERNANDES P.D. Antinociceptive action of (±)-cis- (6-ethyl-tetrahydropyran-2-yl)-formic acid in mice. European Journal of Pharmacology. 550: 47-53, 2006. MARTIN, W.R. Pharmacology of opioids. Pharmacol Ver; 35:283-303, 1983. MATTA, J.A; AHERN, G.P. Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol 585(Pt 2):469–482, 2007. MATSUKAWA, A.; HOGABOAM, C.M.; LUKACS, N.W.; LINCOLIN, P.M.; EVANOFF, H.L.; KUNKEL, S.L. Pivotal role of the CC chemokine, macrophage derived chemokine, in the innate immune response. Journal of Immunology, Boston, v.164, p.5362–5368, 2000. MATSUMOTO, M; XIE, W; INOUE, M; UEDA, H. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents. Mol Pain.;3:41, 2007. MATSUNO, R; ARAMAKI, Y; ARIMA, H. Contribution of CR3 to nitric oxide production from macrophages stimulated with high-dose of LPS. Biochem Biophys Res Commun; 244: 115-119, 1998. MÁZAK, K.; HOSZTAFI, S.; RÁCZ. Á.; NOSZÁL, B. Structural and physicochemical profiling of morphine and related compounds of therapeutic interest. Mini-reviews in Med. Chem., v.9, p. 984-995, 2009. MBIANTCHA, M; WEMBE, A.N; DAWE, A; NANA, W,Y; ATEUFACK, G. Antinociceptive activities of the methanolic extract of the stem bark of Boswellia dalzielii Hutch (Burseraceae) in rats are NO/cGMP/ATP-sensitive-K+ channel activation dependent. Evidence-based complementary and alternative medicine, 5: 1- 13. 2017. McMAHON, S.B; BENNET, D.L.H; BEVAN, S. Inflammatory mediators and modulators of pain. In: McMahon, S.B; Koltzenburg, M. Wall and Melzack's textbook of pain. Elsevier, p. 49-72, 2008. MELLER, S.T; GEBHART, G.F. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain: 52: 127-136, 1993. MELLER, S.T; DYKSTRA, C; GRZYBYCKI, D; MURPHY, S; GEBHART, G.F. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33: 1471-8, 1994. MELZACK, R.; WALL, P. D. Pain mechanisms: a new theory. Science, v. 150, n. 3699, p. 971-9, 1965. MENDES, R.T. Inibição seletiva da ciclo-oxigenase-2: riscos e benefícios. Rev. bras. reumatol, v. 52, n. 5, p. 774-782, 2012. MERRER,J.L.; JECKER, J.A.; BEFORT, K.; KIEFFER, B.L. Reward processing by the opioid system in the brain. Physiol Rev. Oct;89(4):1379-412, 2009. MESNAGE, B; GAILLARD, S; GODIN, A.G; RODEAU, J.-L; HAMMER, M; VON ENGELHARDT, J; WISEMAN, P.W; DE KONINCK, Y; SCHLICHTER, R; CORDERO-ERAUSQUIN, M. Morphological and functional characterization of cholinergic interneurons in the dorsal horn of the mouse spinal cord. J Comp Neurol.;519:3139–3158, 2011. MESULAM, M. M; GUILLOZET, A; SHAW, P; LEVEY, A; DUYSEN, E.G; LOCKRIDGE, O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience, v. 110, n. 4, p. 627-639, 2002. MICLESCU, A; GORDH, T. Nitric oxide and pain: 'Something old, something new'. Acta Anaesthesiol Scand. 53(9):1107-20, 2009. MILLAN, M.J: The induction of pain: an integrative review. Prog Neurobiol; 57:1– 164, 1999. MILLAN, M.J. Descending control of pain. Prog. Neurobiol. 66:355–474, 2002. MILLER, R.J; JUNG, H; BHANGOO, S.K. Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol,;(194):417-449, 2009. MILLIGAN, E.D; SLOANE, E.M; LANGER, S.J. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain;1:9, 2005. MINNEMAN, K.P; IVERSEN, I.L. Enkephalin and opiate narcotics increase cyclic GMP accumulation in slices of rat neostriatum. Nature 262, 313–314, 1976. MIÑO, J; ACEVEDO, C; MOSCATELLI, V; FERRARO, G; HNATYSZYN, O. Antinociceptive effect of the aqueous extract of Balbisia calycina. Journal of Ethnopharmacology, v. 79, p. 179-182, 2002. MIXCOATL-ZECUATL, T; AGUIRRE-BAÑUELOS, P; GRANADOS-SOTO, V. Sildenafil produces antinociception and increases morphine antinociception in the formalin test. Eur. J. Pharmacol. 400, 81–87, 2000. MIXCOATL-ZECUATL, T; FLORES-MURRIETA, F; GRANNADOS-SOTO, V. The nitric oxide-cyclic GMP-protein kinase G-K+ channel pathway participates in the antiallodynic effect of spinal gabapentin. Eur J Pharmacol; 531: 87-95, 2006. MIWA, M.; STUEHR, D.J.; MARLETTA, M.A.; WISHNOK, J.S.; TANNENBAUM, S.R. Nitrosation of amines by stimulated macrophages. Carcinogenesis, 8, 955, 1987. MOHAPATRA, D.P; NAU, C. Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278(50):50080–50090, 2003. MOHAPATRA, D.P; NAU, C. Regulation of Ca2 + -dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280 (14):13424–13432, 2005. MORAN, T.D; ABDULLA, F.A; SMITH P,A. Cellular neurophysiological actions of nociceptin/orphanin FQ. Peptides 21: 969–976, 2000. MURPHREE, H.B. Analgésicos Narcóticos: Analgésicos Sintéticos. DiPalma JR, Drill-Farmacologia Médica, México, La Prensa Médica Mexicana; 291-299, 1969. MOSQUINI,A.F; ZAPPA, V; MONTANHA, F. P. Características farmacológicas dos antiinflamatórios não esteroidais – revisão de literatura. Revista científica eletrônica de medicina veterinária, n. 17, Julho de 2011. NAKAMURA, M.C; FERREIRA, S.H. A pheripheral sympathetic component in inflammatory hyperalgesia. Eu J Pharmacol, v. 135, p.145-153, 1987. NAPIMOGA, C.J.T; PELLEGRINI-DA-SILVA, A; FERREIRA, V.H; NAPIMOGA, M.H; PARADA, C.A; TAMBELI, C.H. Gonadal hormones decrease temporomandibular joint kappa-mediated antinociception through a downregulation in the expression of kappa opioid receptors in the trigeminal ganglia. Eur. J. Pharmacol. 617: 41–47, 2009. NASER, P.V; KUNERA, R. Molecular, Cellular and Circuit Basis of Cholinergic Modulation of Pain. Neuroscience; 387: 135–148, 2018. NATHAN C. Points of control in inflammation. Nature; 420: 846-852, 2002. NELMS, K; KEEGAN, A.D; ZAMORANO, J; RYAN, J.J; PAUL, W.E. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 17:701– 38. doi:10.1146/annurev.immunol.17.1.701, 1999. NELSON, E.K. The constitution of capsaicin, the pungent principle of capsicum. II. J. Am. Chem. Soc. 42, 597–599, 1920. NEMECZ, Á; PREVOST, M.S; MENNY, A; CORRINGER, P.-J. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron;90:452–470, 2016. NEPALI, K; SHARMA, S; SHARMA, M; BEDI, P.M.S; DHAR, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem, 77:422-87., 2014. NESS, T.J., GEBHART, G.F. Visceral pain: a review of experimental studies. Pain 41:167–234, 1990. NICHOLSON B. Responsible prescribing of opioid for the management of chronic pain. Drugs, 63: 13–32, 2003. NGUELEFACK, T.B; DUTRA, R.C; PASZCUK, A.F; ANDRADE, E.L; TAPONDJOU, L.A; CALIXTO JB. Antinociceptive activities of the methanol extract of the bulbs of Dioscorea bulbifera L.var sativa in mice is dependent of NO-cGMP-ATP- sensitive-K+ channel activation. J. Ethnopharmacol. 128:567-574, 2010. NILIUS, B; OWSIANIK, G. The transient receptor potential family of ion channels. Genome Biol 12: 218, 2011. NOCKEMANN, D; ROUAULT, M; LABUZ, D. The K channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia. EMBO Mol Med; 5(8):1263-77, 2013. NOMA, Y; SIDERAS, T; NAITO, T; BERGSTEDT-LINDQVIST, S; AZUMA, C; SEVERINSON, E; TAKABE, T; KINASHI, K; MATSUDA, F; YAOITA, Y; HONJO, T. Cloning of cDNA encoding the murine IgG1 induction factor by a novel strategy using SP6 promoter. Nature; 319:640, 1986. NOVAKOVA-TOUSOVA, K; VYKLICKY, L; SUSANKOVA, K; BENEDIKT, J; SAMAD, A; TEISINGER J. Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience 149(1):144–154, 2007. NUMAZAKI, M; TOMINAGA, T; TOYOOKA, H; TOMINAGA, M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase C epsilon and identification of two target serine residues. J Biol Chem 277(16):13375–13378, 2000. OBERHOLZER, A; OBERHOLZER, C; BAHJAT, K.S; UNGARO, R; TANNAHILL, C.L; MURDAY, M; BAHJAT, F.R; ABOUHAMZE, Z; TSAI, V; LAFACE, D; HUTCHINS, B; MOLDAWER, L.L; CLARE-SALZLER, M.J. Increased survival in sepsis by in vivo adeno-virus-induced expression of IL-10 in dendritic cells. J. Immunol., v.168: 3412-3418, 2002. OBREJA, O; SCHMELZ, M; POOLE, S; KRESS, M. Interleukin-6 in combination with its soluble il-6 receptor sensitises rat skin nociceptors to heat, in vivo. Pain 96: 57-62, 2002. OKAMOTO, K; MARTIN, D.P; SCHMELZER, J.D; MITSUI, Y; LOW, P.A. Pro and anti-inflammatory cytokine gene expression in rat sciatic nerve chronic constriction injury model of neuropathic pain. Exp Neurol 169: 386-91, 2001. OLIVEIRA, F.S.; SOUSA, D.P.; ALMEIDA, R.N. Antinociceptive effect of hydroxydihydrocarvone. Biol Pharm Bull 31(4): 588 – 591, 2008. O'NEILL, L.A; PERCIVAL, M.D. Mechanisms of acetaminophen inhibition of cyclooxygenase isoforms. Arch Biochem Biophys, 387:273-280, 2001. OPREE, A.; KRESS, M. Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci, v. 20, n. 16, p. 6289-93, 2000. ORTIZ, M.I; MEDINA-TATO, D.A; SARMIENTO-HEREDIA, D; PALMAMARTÍNEZ, J; GRANADOS-SOTO, V. Possible activation of the NO-cyclic GMPprotein kinase G-K+ channels pathway by gabapentin on the formalin test. Pharmacol Biochem Behav; 83:420-7, 2006. O‘SULLIVAN, S.T.; LEDERER, J.A.; HORGAN, A.F.; CHIN, D.H.; MANNICK, J.A.; RODRICK, M.L. Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann. Surg.; 222: 482–490, 1995. PALMER, R.M.J; ASHTON, D.S; MONCADA, S. Vascular endothelial cells synthesise nitric oxide from L-arginine. Nature; 333: 664-6, 1988. PAPICH, M. G. Principles of analgesic drug therapy. Seminar Veterinary Medicin Surgery v.12, p. 80-93, 1997. PARVEEN, Z.; DENG, Y.; SAEED, M.K.; DAI, R.; AHAMAD, W.; YU, Y.H. Antiinflammatory and analgesic activities of Thesium chinese Turcz extracts and its major flavonoids, kaampferol and kaempferol-3-O-glucoside. Yakugaku Zasshi, v.127, p.1275-1279, 2007. PEGRAM, H. J., HAYNES, N. M., SMYTH, M. J., KERSHAW, M. H., DARCY, P. K. Characterizing the anti-tumor function of adoptively transferred NK cells in vivo. Cancer Immunol Immunother, v. 59, n. 8, 2010. PEREIRA, R. J.; MUNECHIKA, M.; SAKATA, R. K. Pain management after outpatient surgical procedure. Revista Dor, v. 14, n. 1, p. 61-67, 2013. PERL, E.R. Ideas about pain, a historial view. Nature reviews neuroscience 8:71-80, 2007. PERL, E.R. Pain mechanisms: a commentary on concepts and issues. Progress in neurobiology 94:20-28, 2011. PICOLO, G; CASSOLA, A.C; CURY, Y. Activation of peripheral ATP-sensitive K+ channels mediates the antinociceptive effect of Crotalus durissus terrificus snake venom. Eur. J. Pharmacol. 469, 57–64, 2003. PIPER, A.S; YEATS, J.C; BEVAN, S; DOCHERTY, R.J. A study of the voltage dependence of capsaicinactivated membrane currents in rat sensory neurones before and after acute desensitization. J Physiol 518(Pt 3):721–733, 1999. POSADAS, I; BUCCI, M; ROVIEZZO, F; ROSSI, A; PARENTE, L; SAUTEBIN, L; CIRINO, G. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxigenase-2 expression. Br J Pharmacol, v. 142, p.331-338, 2004. PRADO, M; REIS, R.A; PRADO, V.F; DE MELLO, M.C; GOMEZ, M.V; DE MELLO, F.G. Regulation of Acethylcholine synthesis and storage. Neurochemistry International, v. 41, n. 5, p. 291-299, 2002. PREMKUMAR, L.S; ABOOJ, M. TRP channels and analgesia. Life Sciences in press, 2012. PRZEWŁOCKI, R; PRZEWŁOCKA, B. Opioids in chronic pain. Eur J Pharmacol.;429(1-3):79-91, 2001. RAEBURN, C.D; SHEPPARD, F; BARSNESS, K.A. Cytokines for surgeons. Am J Surg;183:268-273, 2002. RAINGER, E.G.; CHIMEN, M.; HARRISON, M.J.; YATES, C.M.; HARRISON, P.; WATSON, S.P.; LORDKIPANIDZÉ, M.; NASH, G.B. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets, 26, 507–520, 2015. RAMER, M.S; MURPHY, P.G; RICHARDSON, P.M. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain;78:115–121, 1998. RANG, H. P.; DALE, M. M.; RITTER, J. M.; FLOWER, R. J.; HENDERSON G. RANG & DALE. Farmacologia. Rio de Janeiro, Elsevier, 8ª ed. 808 p, 2012. RIBEIRO-DA-SILVA, A; PIORO, E.P; CUELLO, A.C. Substance P- and enkephalin-like immunoreactivities are colocalized in certain neurons of the substantia gelatinosa of the rat spinal cord: An ultrastructural double-labeling study. J Neurosci 11: 1068-1080, 1991. RIKU, K; ALEKSI, L. H. K; MOILANEN, E. Nitric Oxide Production and Signaling in Inflammation. Current Drug Targets - Inflammation & Allergy, 4, 471- 479 471, 2005. ROBINSON, D.S. The Th1 and Th2 concept in atopic allergic disease. Chem. Immunol., 78: 50–61, 2000. ROBBINS & COTRAN. Patologia: Bases patológicas das doenças. 8ª Edição. Rio de Janeiro: Elsevier, 1458 p, 2010. ROCHA APC, KRAYCHETE DC, LEMONICA L, CARVALHO LR, BARROS GAM, GARCIA JBS, SAKATA RK — Pain: Current Aspects on Peripheral and Central Sensitization. Rev Bras Anestesiol Review article 57: 1: 94-105, 2007. ROSAS-BALLINA, M; OLOFSSON, P.S; OCHANI, M; VALDES-FERRER, S.I; LEVINE, Y.A; REARDON, C; TUSCHE, M.W; PAVLOV, V.A, ANDERSSON, U; CHAVAN, S; MAK, T.W; TRACEY, K.J. Acethylcoline-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334: 98-101. 2011. SAHLEY, T. L, BERNTSON, G. G. Antinociceptive effects of central and systemic administration of nicotine in the rat. Psychopharmacology. 65: 279-283. 1979. SAKURADA, T., WAKO, K., SUGIYAMA, A., SAKURADA, C., TAN-NO, K., KISARA, K., Involvement of spinal NMDA receptors in capsaicin-induced nociception. Pharmacol. Biochem. Behav. 59, 339–345. 1998. SANDOVAL, A. C. O uso indiscriminado dos Anti-Inflamatórios Não Esteroidais (AINES). Revista Cientifica da Faculdade de Educação e Meio Ambiente, v.8, n. 2, 2017. SANTOS, G.C.M. FERNANDES, R.D; BARROS, T.R. ABREU, H.S. SUZART L.R., DE CARVALHO, M.G. BRAZ FILHO, R. MARINHO B.G.. Antinociceptive and Anti-inflammatory Activities of the Methanolic Extract from the Stem Bark of Lophanthera lactescens. Planta Medica, 81: 1688–1696. 2015. SAWYNOK, J. Topical and peripherally acting analgesics. Pharmacol Ver., 55, 1-20, 2003. SCHMIDTKO, A; RUTH, P; GEISSLINGER, G; TEGEDER, I. Inhibition of cyclic guanosine 5’- monophosphate-dependent protein kinase I (PKG-I) in lumbar spinal cord reduces formalin-induced hyperalgesia and PKG upregulation. Nitric Oxide; 8: 89–94, 2003. SCHMITT, N; UENO, H. Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol.;34:130–6, 2015. SCHOLER, D. W; KU, E. C; BOETTCHER, I; SCHWEIZER, A. Pharmacology of diclofenac sodium. The American Journal of Medicine, 80(4), 34–38, 1986. SCHOLZ, J; WOOLF, C.J. Can we conquer pain? Nature Neurosci v.5: 1062–1067, 2002. SCHULZ, R; EISINGER, D.A; WEHMEYER, A. Opioid control of MAP Kinase cascade. Eur J Pharmacol 500: 487-497, 2004. SCHUMACHER, M.A; BASBAUM, A.I; NAIDU, R.K. Opioid agonists and antagonists. In: Katzung BG, Trevor AJ, eds. Basic and clinical pharmacology. 13th ed. New York: McGraw-Hill Medical :531-51, 2015. SEVERINO, A.L; SHADFAR, A; HAKIMIAN, J.K; CRANE, O; SINGH, G; HEINZERLING, K; WALWYN, W.M. Pain Therapy Guided by Purpose and Perspective in Light of the Opioid Epidemic. Front. Psychiatry 9:119, 2018. SHARMA, S.K.; VIJ, A.S.; SHARMA, M. Mechanisms and clinical uses of capsaicin. Eur. J. Pharmacol. 720, 55–62, 2013. SHEJAWAL, N.; MENON, S.; SHAILAJAN, S. A simple, sensitive and accurate method for rat paw volume measurement and its expediency in preclinical animal studies. Hum Exp Toxicol. 33(2):123-9, 2014. SHELUKHINA, I; PADDENBERG, R; KUMMER, W; TSETLIN, V. Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion. Brain Struct Funct.;220:1885–1899, 2015. SHERWOOD, E.R; TOLIVER-KINSKY, T. Mechanisms of the inflammatory response. Best Pract. Res. Clin. Anaesthesiol., v.18, 385-405, 2004. SHI, G; LIU, Y; LIN, H; YANG, S; FENG, Y; REID, P.F; QIN, Z. Involvement of cholinergic system in supression of formalin-induced inflammatory pain by cobratoxin. Acta Pharmacologica Sinica, v. 32, p. 1233-1238, 2011. SHUKLA, P.K; TANG, L; WANG, Z.J. Phosphorylation of neurogranin, protein kinase C, and Ca++/calmodulin dependent protein kinase II in opioid tolerance and dependence. Neurosci Lett 404: 266-269, 2006. SIKANDAR, S; H DICKENSON, A. Visceral Pain – the Ins and Outs, the Ups and Downs. Curr Opin Support Palliat Care, v. 6, n. 1, p. 17–26. 2012. SILVA, P. Farmacologia. 8. ed. Rio de Janeiro: Guanabara Koogan, 2010. SKELDON, A; SALEH, M. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Frontiers in Microbiology, v. 2, p.15, 2011. SLOMIANY, B.L; SLOMIANY, A. Activation of peroxisome proliferator-activated receptor gamma suppresses inducible cyclooxygenase and nitric oxide synthase during oral mucosal ulcer healing. J Physiol Pharmacol; 53: 159-169, 2002. SMITH, W.L; LAGENBACH, R. Why there are two cyclooxigenase isoenzymes. J Clin Invest, 107:1491-1495, 2001. SOMMER, C; WHITE, F. Cytokines, Chemokines, and Pain. Pharmacology of Pain. 1st Ed, Seattle, IASP Press,;279-302, 2010. SPINOSA, H. S; GÓRNIAK, S.L; BERNARDI, M.M. Farmacologia aplicada à Medicina Veterinária. 6 ed - Rio de Janeiro: Guanabara Koogan, 2017. STACK, E; DUBOIS, R.N. Regulation of cyclo-oxygenase-2. Best Pract. Res. Clin. Gastroenterol., v. 15, p. 787-800, 2001. STEFANO, G.B; SCHARRER, B; SMITH, E.M; HUGHES, T.K.J; MAGAZINE, H.I; BILFINGER, T.V; HARTMAN, A. R; FRICCHIONE, G.I; LIU, Y; MAKMAN, M.H. Opioid and opiate immunoregulatory processes. Crit. Rev. Immunol. 37 (2-6): 213- 248. 2017. STEIN C. Opioid Receptors. Annu Rev Med;67:433-51, 2016. STEPHEN, D. R. TRPs in Taste and Chemesthesis. Handb Exp Pharmacol.; 23: 827– 871, 2014. STERIN, G.M; GALLEGO, F.C. Fundamentos da fisioterapia na terapêutica da dor. In: OTERO, P. E. Avaliação e tratamento em pequenos animais. São Paulo: Interbook. p. 212-225, 2005. STUEHR, D.J.; MARLETTA, M.A. Mammalian Nitrate Biosynthesis: Mouse Macrophages Produce Nitrite and Nitrate in Response to Escherichia Coli Lipopolysaccharide. Proc. Natl. Acad. Sci. USA. 82, 7738.; 1985. TAK, P.P; FIRESTEIN, G.S. NF-kappaB: A Key Role in Inflammatory Diseases. J Clin Invest;107(1):7-11, 2001. TAKAYAMA, Y.; UTA, D.; FURUE, H.; TOMINAGA, M. Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc. Natl. Acad. Sci. 112, 5213–5218, 2015. TIWARI, P; DWIVEDI, S; ANISH, C. Basic and modern concepts on cholinergic receptor: A review. Asian Pacific Journal of Tropical Disease, v. 3, n. 5, p. 413–420, 1, 2013. TJOLSEN, A; BERGE, O.G; HUNSKAAR,S; ROSLAND, J.H; HOLE, K. The formalin test: an evaluation of the method. Pain, v.51, p. 5-17, 1992. TODA, N.; KISHIOKA, S.; HATANO, Y.; TODA, H. Modulation of opioid actions by nitric oxide signaling. Anesthesiology 110: 166–181. 2009. TRANQUILLI, W. J; THURMON, J. C. Anestesiologia e analgesia veterinária. 4. ed. Roca, 2013. TSOUPRAS, A.; LORDAN, R.; ZABETAKIS, I. Inflammation, not cholesterol, is a cause of chronic disease. Nutrients, 10, 604, 2018. VAY, L; GU, C; MCNAUGHTON, P.A. The thermo-TRP ion channel family: properties and therapeutic implications. Brit J Pharmacol 165: 787–801, 2012. VELLANI, V; KINSEY, A.M; PRANDINI, M; HECHTFISCHER, S.C; REEH, P; MAGHERINI, P.C. Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Mol Pain 6:61, 2010. VENTURA-MARTINEZ, R; DECIGA-CAMPOS, M; DIAZ-REVAL, M.I; GONZÁLEZ-TRUJANO, M.E; LÓPEZ-MUÑOZ, F.J. Peripheral involvement of the nitric oxide–cGMP pathway in the indomethacin-induced antinociception in rat. Eur J Pharmacol; 503: 43–48, 2004. VERRI, W.A; CUNHA, T.M; PARADA, C.A; POOLE, S; CUNHA, F.Q; FERREIRA, S.H. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. :116-38, 2006. VYKLICKY, L; VLACHOVA, V; VITASKOVA, Z; DITTERT, I; KABAT M; ORKAND R,K. Temperature coefficient of membrane currents induced by noxious heat in sensory neurones in the rat. J Physiol 517(Pt 1):181–192, 1999. VIGIL, S.V.G; DE LIZ, R.; MEDEIROS, Y.S.; FRÖDETS. Efficacy of tacrolimus in inhibiting inflammation caused by carrageenan in a murine model of air pouch. Transpl Immunol; 19:25-29, 2008. WALDHOER, M; BARTLETT, S.E; WHISTLER, J.L. Opioid receptors. Annu Ver Biochem; 73:953-90, 2004. WALKER, K.M; URBAN, L; MEDHURST, S.J; PATEL, S; PANESAR, M; FOX, A.J; MCINTYRE, P. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther., 304: 56- 62, 2003. WALPOLE, C.S; BEVAN, S; BOVERMANN, G; BOELSTERLI, J.J; BRECKENRIDGE, R; DAVIES, J.W; HUGHES, G.A; JAMES, I; OBERER, L; WINTER, J. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem. 24;37(13):1942-54, 1994. WESS, J; EGLEN, R.M; GAUTAM, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov.;6:721–733, 2007. WHITE, F.A; MILLER, R.J. Insights into the regulation of chemokine receptors by molecular signaling pathways: functional roles in neuropathic pain. Brain Behav Immun 24: 859–865, 2010. WIESELER-FRANK, J; MAIER, S.F, WATKINS, L.R. Glial activation and pathological pain. Neurochem Int; v.45:389–395, 2004. WOLF, G; LIVSHITS, D; BEILIN, B. Interleukin-1 signaling is required for induction and maintenance of postoperative incisional pain: genetic and pharmacological studies in mice. Brain Behav Immun;22:1072-1077, 2008. WOLK, K; DÖCKE, W.D; VON BAEHR, V; VOLK, H.D; SABAT, R. Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood, 96: 218–223, 2000. WOODWORTH, R.S; SHERRINGTON, C.S. A pseudaffective reflex and its spinal path. The Journal of physiology. 31:234–243, 1904. WOOLF, C.J; THOMPSON, S.W: The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 44:293–299, 1991. WOOLF, C.J: Progressive tactile hypersensitivity: an inflammation-induced incremental increase in the excitability of the spinal cord. Pain. 67:97–106, 1996. WOOLF, C.J; ALLCHORNE, A; SAFIEH-GARABEDIAN, B; POOLE, S: Cytokines, nerve growth factor and inflammatory hyperalgesia: The contribution of tumour necrosis factor alpha. Br J Pharmacol 121: 417-24, 1997. WOOLF C.J, SALTER M.W. Neuronal plasticity: increasing the gain in pain. Science.288:1765–1769, 2000. WOOLF, C.J. What is this thing called pain? J Clin Invest 120:3742–3744, 2010. YAKSH, T.L; JESSELL, T.M; GAMSE, R. Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature.; 286:155-157, 1980. YANG, J; ZHAO, Y; PAN, Y; LU, G; LU, L; WANG, D; WANG, J. Acetylcholine participates in pain modulation by influencing endogenous opiate peptides in rat spinal cord. World J Neurosci.;02:15, 2012. XIE Q, NATHAN C. The high-output nitric oxide pathway: Role and regulation. J Leukocyte Biol; 56: 576-582, 1994. XU, Z.; CHEN, S.R.; EISENACH, J.; PAN, H.L. Role of spinal muscarinic and nicotinic receptors in clonidine-induced nitric oxide release in a rat model of neuropathic pain. Brain Res. 861: 390–398. 2000. YOST, C.C.; WEYRICH, A.S.; ZIMMERMAN, G.A. The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie, 92, 692– 697, 2010. ZHANG, J.M, AN, J. Cytokines, inflammation, and pain. Int Anesthesiol Clin, 45:27, 37, 2007. ZHU, Z. Z.; MA, K. J.; RAN, X.; ZHANG, H.; ZHENG, C. J.; HAN, T.; ZHANG, Q. Y.; QIN, L. P. Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from the ethanol extract of Desmodium podocarpum. Journal of Ethnopharmacology. v. 133, n. 3, p. 1126 – 1131, 2011. | por |
dc.subject.cnpq | Farmacologia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/70400/2020%20-%20Gabriela%20Mastrangelo%20Gon%c3%a7alves.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5907 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-08-22T17:42:57Z No. of bitstreams: 1 2020 - Gabriela Mastrangelo Gonçalves.pdf: 3944393 bytes, checksum: af29b52a5aa81c803e679400e7fa15e6 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-08-22T17:42:57Z (GMT). No. of bitstreams: 1 2020 - Gabriela Mastrangelo Gonçalves.pdf: 3944393 bytes, checksum: af29b52a5aa81c803e679400e7fa15e6 (MD5) Previous issue date: 2020-10-02 | eng |
Appears in Collections: | Doutorado em Ciências Fisiológicas |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2020 - Gabriela Mastrangelo Gonçalves.pdf | 3.85 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.