Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15977
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliveira, Selma Farias de
dc.date.accessioned2023-12-18T17:15:54Z-
dc.date.available2023-12-18T17:15:54Z-
dc.date.issued2020-09-21
dc.identifier.citationOLIVEIRA, Selma Farias de. Avaliação do consumo materno de dieta hiperlipídica sobre parâmetros hemodinâmicos do equilíbrio hidromineral e do reservatório de sódio na pele da prole adulta de ratos. 2020. 84 f. Tese (Doutroradp em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.por
dc.identifier.urihttp://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15977-
dc.description.abstractUma alimentação materna inadequada está relacionada ao desenvolvimento de doenças e problemas de saúde, como obesidade e sobrepeso, doenças cardiovasculares e podem causar programação metabólica em sua descendência. Nosso grupo de pesquisa demonstrou anteriormente que o consumo materno de dieta hiperlipídica promoveu aumento da adiposidade e hiperleptinemia na prole de ratas ao desmame, além de prejuízo na função sistólica aos 30 dias de idade. Este estudo teve como objetivo investigar o efeito do consumo matermo de dieta hiperlipídica sobre a pressão arterial de ratos adultos e o possível envolvimento do íon sódio neste processo. Para isso, ratas Wistar receberam dieta controle isocalórica (9% lipídeos, grupo C) ou hiperlipídica isocalórica (29% lipídeos, grupo DH) durante 8 semanas antes do acasalamento, e durante a gestação e lactação. As progenitoras C e DH deram origem as proles controle (C) e hiperlipídica (DH), respectivamente. Após o desmame, parte da prole foi eutanasiada e o restante aos 180 dias de idade. No desmame foram avaliados: peso corporal, hipertrofia cardíaca, peso dos rins e tecidos adiposos brancos, concentração de sódio no sangue e pele e aos 180 dias foram avaliados: peso corporal, ingestão alimentar e hídrica, peso dos rins e coração, tecidos adiposos brancos, concentração de sódio no sangue, urina e pele e a pressão arterial. Na urina além do volume urinário foram analisados creatinina, K+, Cl-, Ca+2. Ao desmame a prole DH apresentou maior massa corporal, hipertrofia cardíaca, e apenas nos machos houve aumento de peso seco da pele e o conteúdo total de água da pele foi reduzido, assim como o sódio relativo da pele. Aos 180 dias de idade, não houve variação, entre as proles, da massa corporal, tecidos adiposos brancos, ingestão alimentar e hídrica, peso dos rins assim como na avaliação indireta de hipertrofia cardíaca. Os machos DH apresentaram pressão sistólica maior em relação aos machos C assim como aumento do sódio plasmático, não havendo alteração do sódio urinário entre os grupos, nas análises bioquímicas somente no machos DH foi observado diminuição do eletrólito Cl-. O conteúdo total de água da pele foi reduzido nos machos DH. Nenhuma dessas alterações foi detectada nas fêmeas. Quando avaliamos as concentrações de sódio nas amostras de urina e epitélio, não houve diferença. Nossos resultados demonstram que o consumo materno de dieta hiperlipídica promove aumento na concentração plasmática de sódio e da pressão sistólica na prole adulta de modo sexo-específico. Esses eventos podem estar relacionados com o desenvolvimento de doenças cardiovasculares, como a hipertensão.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDieta hiperlipídicapor
dc.subjectProgramação metabólicapor
dc.subjectDoenças cardiovascularespor
dc.subjectHigh fat dieteng
dc.subjectMetabolic programmingeng
dc.subjectCardiovascular diseaseseng
dc.titleAvaliação do consumo materno de dieta hiperlipídica sobre parâmetros hemodinâmicos do equilíbrio hidromineral e do reservatório de sódio na pele da prole adulta de ratospor
dc.title.alternativeEvaluation of maternal consumption of a high-fat diet on hemodynamic parameters, hydromineral balance and skin sodium reservoir in the offspring of adult ratseng
dc.typeTesepor
dc.description.abstractOtherInadequate maternal nutrition is related to the development of diseases and health problems, such as obesity and overweight, cardiovascular diseases and can cause metabolic programming in your offspring. Our research group previously demonstrated that maternal consumption of a high-fat diet promoted an increase in body mass, adiposity, hyperleptinemia in the offspring of rats at weaning, in addition to impaired systolic function at 30 days of age. This study aimed to investigate the effect of maternal consumption of a high-fat diet on the blood pressure of adult rats and the possible involvement of sodium ion in this process. For this, Wistar rats received a control diet (9% lipids, group C) or high-fat diet (29% lipids, group HFD) for 8 weeks before mating, and during pregnancy and lactation. The progenitors C and HF gave rise to the control isocaloric (C) and hyperlipidic isocaloric (HFD) offspring, respectively. After weaning, part of the offspring was euthanized and the rest at 180 days of age. At weaning were evaluated: body weight, cardiac hypertrophy, weight of kidneys and white adipose tissues, sodium concentration in blood and skin and at 180 days were evaluated: body weight, food and water intake, kidney weight, indirect assessment of cardiac hypertrophy, white adipose tissues, sodium concentration in the blood, urine and skin and blood pressure. In urine in addition to urinary volume, creatinine, Na+, K+, Cl-, normalized were also analyzed. body weight, urine volume and water intake were measured and urine samples were collected. Upon weaning, the offspring showed greater body mass, cardiac hypertrophy, increased dry skin weight and total skin water content was reduced, as well as the relative sodium of the skin. At 180 days of age, there was no variation in body mass, white adipose tissue, water and food intake, kidney weight as well as in the indirect assessment of cardiac hypertrophy. The HFD males showed higher systolic pressure compared to the C males as well as an increase in plasma sodium, with no change in urinary sodium between the groups, in biochemical analyzes only in the HFD males a decrease in the Cl- electrolyte was observed. The total water content of the skin was reduced in HFD males. None of these changes were detected in the females of the groups. When assessing sodium concentrations in urine and epithelial samples, there was no difference. Our results demonstrate that maternal consumption of a high-fat diet promotes an increase in plasma sodium concentration and systolic pressure in adult offspring in a sex-specific way. These events may be related to the development of cardiovascular diseases, such as hypertension.eng
dc.contributor.advisor1Almeida, Norma Aparecida dos Santos
dc.contributor.advisor1ID072.340.197-74por
dc.contributor.referee1Almeida, Norma Aparecida dos Santos
dc.contributor.referee2Santos, Luciane Claudia Barcellos dos
dc.contributor.referee3Malvar, David do Carmo
dc.contributor.referee4Daliry, Anissa
dc.contributor.referee5Côrtes, Wellington da Silva
dc.creator.ID739.314.207-44por
dc.creator.Latteshttp://lattes.cnpq.br/9121965687730600por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesABURTO, NJ. Effect of lower sodium intake on health: systematic review and Meta analyses. British Medical Journal, p. 346: f1326, 2013. ADROGUE HJ, MADIAS NE; Sodium and potassium in the pathogenesis of hypertension. N Engl J Med; 356: 1966–1978, 2007. ALDERMAN MH. Reducing dietary sodium: the case for caution. JAMA.;303(5): 448-9, 2010. ALFRADHI MZ, OZANNE SE. Developmental programmeing in response to maternal overnutrition. Front Genet , 2: 27, 2011. ANDREASE NJ, HYDE MJ, GALE C, PARKINSON JR, JEFFRIES S, HOLMES E. Effect of maternal body mass index on hormones in breast milk: a systematic review. PLoS One.; 9 (12): e11543, 2014. ANDREAZZI AE. Impaired sympathoadrenal axis function contributes to enhanced insulin secretion in prediabetic obese rats. Experimental Diabets Research v 2; 2-10, 2011. APPEL LJ, BRANDS MW, DANIELS SR, KARANJA N, ELMER PJ, SACKS; FM. American Heart Association. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension.; 47: 296–308, 2006. ASHWOOD P, KWONG C, HANSEN R. Brief report: Plasma leptin levels are elevated in autism. J Autism Dev disord; 39:169-75, 2008. ASTRUP A. The role of dietary fatin body fatness: evidence from a preliminary meta-analysis of ad libitum low-fat dietary intervention studies. British Medical Journal, v. 83, p. 25-32, 2000. BARKER DJ. The intrauterine origins of disturbed cholesterol homeostasis. Acta Pediatr.; 88 (5): 483-4, 1999. BARKER, DJ. The fetal origins of adult diseases. Proc.Biol. Sci; 262 (1363): 37-43, 1995. BARKER, DJ. Fetal programming of coronary heart disease. Trends Endocrinol. Metab.; 13 (9): 364-8, 2002. BEILBY J. Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition. Circulation 109: 433-438, 2004. BENTON PM, SKOUTERIS H, HAYDEN M. Does maternal psychopathology increase the risk of pre-schooler obesity? A systematic review. (87C): 259-82, 2015. BILBO SD, TSANG V. Enduring consequences of Maternal Obesity for brain inflamation and behavior of offspring. FASEB J.; 24:2104-2115, 2010. BOBULESCU IA. Renal lipid metabolism and lipotoxicity. Curr. Opin. Nephrol. Hypertens.; 19:393-402, 2010. BOBULESCU IA, DUBREE M, ZHANG J, MCLERO YP, MOE OW. Effect of renal lipid accumulation on proximal tubule Na+/ H+ exchange and ammonium secretion. Am.J. Physiol. Renal.; 294:1315-1322, 2008. BOELSMA E, HENDRIKS H, ROZA L. Nutritional skin care: health effects of micronutrients and fatty acids. Am J Clin Nutr.; 73(1): 853-64, 2001. BOELSMA E, VIJVER L, GOLDBOHM R, KLOPPING-KETELAARS I, HENDRIKS H, ROZA L. Human skin condition and its associations with nutrient concentration in serum and diet. Am J Clin Nutr.; 77(1): 348-55, 2003. BOUANANE S, MERZOUK H, BENKALFAT NB, BERNEY DM, DESAI M, PALMER DJ, GREENWALD S, BROWN A, HALES CN. The effects of maternal protein deprivation on the fetal rat pancreas: major structural changes and their recuperation. J Pathol; 183 (1):109-115, 1997. BOZA JC, RECH L, SACHETT L, MENEGON DB, CESTARI TF. Manifestações dermatológicas da obesidade. Rev HCPA; 30(1): 55-62, 2010. BRASIL. Ministério da Saúde. Secretaria de Atenção à Saúde. Coordenação Geral da Política de Alimentação e Nutrição. Guia alimentar para a população brasileira. Brasília, 2005. BRAUN K, CHAMPAGNE FA. Paternal influences on offspring development: behavioral and epigenetic patways. J Neuroendocrinol.; 26 (10): 697-706, 2014. BRUCE KD, CAGAMPANG FR, ARGENTON M, ZHANG J, ETHIRAJAN PL, BURDGE GC. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology; 50(6):1796-1808, 2009. BURNS SP, DESAI M, COHEN RD, HALES CN, ILES RA, GERMAIN JP. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J of Clin Invest; 100:1768-1774, 1997. CABLER S, AGARWAL A, FLINT M, DU PLESSIR SS. Obesity: modern man’s fertility Nemesis. Asian J Androl.; 12 (4) 480-9, 2010. CABRAL AD, KAPUSTA DR, KENINGS VA, VARNER KJ. Central alpha2-receptor mechanisms contribute to enhanced renal responses during ketamine-xylazine anesthesia. American Journal of Physiology, 275(6 Pt 2):R1867-74, 1998. CALKINS K, DEVASKAR SU. Fetal origins of adult disease. Curr Probl Pediatr Adolesc Health Care; 41:158-76, 2011. CAMERON NM, CHAMPAGNE FA, PARENT C, FISH EW, OZAKI-KURODA K, MEANEY M J. The programming of individual diferences in defensive reponses and reproductive strategies in the rat throught variations in maternal care. Neurosci Biobehav.; 29 (4-5): 843-65, 2005. CARVALHO T, MARA, LS. Hidratação e Nutrição no Esporte. Rev Bras Med Esporte. v. 16, 2, Mar/ Abr. 2010. CARVLHEIRA JB, TORSONI MA, UENO M, AMARAL ME, ARAUJO EP, VELLOSO LA, GONTIJO JA, SAAD MJ. Cross-talk between the insulin and leptin signaling systems in rat hypothalamus. Obes Res.; 13: 48-57, 2005. CAUDILL, SP. Assessment of current National Cholesterol Education Program guidelines for total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol measurements. Clinical Chemistry, v. 44, p. 1650-1658, 1998. CHEN C, ZHU Z, YAN Z, NI Y.P-513: High fat plus high salt diet induced metabolic syndrome in wistar rat. Am J Hypertens: 17: 220-35, 2004. CHEN H, SIMAR D, LAMBERT K, MERCIER J, MORRIS MJ. Maternal and poetnatal Overnutrition Differentially Impact Appetite Regulators and fuel Metabolism. Endocrinology; 149:5348-356, 2008. CHEN, J. The metabolic syndrome and the risk for chronic kidney disease in US adults. Ann Intern Med, v. 140, p.167-74, 2004. CIANFARANI S, AGOSTONI C, BEDOGNI G, CANANI RB, BRAMBILLA P, NOBILI V. Effect of intrauterine growth retardation on liver and long-term metabolic risk. International Journal of Obesity.; 36: 1270-7, 2012. CINIK N, BASKIN E, AGRAS PI, KINIK ST, TURAN M, SAATCI U. Effect of obesity on inflammatory markers and renal functions. Acta Pediatr.; 94: 1732-1737, 2005. COOK NR, SACKS F, MACGREGOR G. Public policy and dietary sodium restriction. JAMA. May 19; 303 (19): 1917-8, 2010. CORONA G, MANUCCI E, SHULMAN C, PETRONE L, MANSANI R, CILOTTI A, BALERCIA G, CHIARINI V, FORTI G. Psychobiologic correlates of the metabolic syndrome and associated sexual dysfuntion. Eur Urol.: 50(3): 595-604, 2006. COWBUR AS, TAKEDA N, BOUTIN AT, KIM JW, STERLING JC, NAKASAKI M, SOUTHWOOD M, GOLDRATH AW, JAMORA C, NIZET V, CHILVERS ER, JOHNSON RS. HIF isoforms in the skin differentially regulate systemix arterial pressure. Proc Natl Acad Sci U S A . 110 (43): 17570-17575, 2013. CRIGGS, M A, JOHNSTIN R, ELLEDGE E. Mineral Analysis of biological materiais. J. Ind. Eng. Chem. Anal. Ed. 13: 99-101, 1941. CUNHA AJLA, LEITE AJM, ALMEIDA IS. The pediatrician’s role in first thousand days of the child: The pursuit of healthy nutrition and development. J. Pediatr (Rio J).; (6 Suppl 1): S44-S51, 2015. CUPPARI, L. Nutrição clínica no adulto. ed 3, p 578, 2014. CURLEY JP, CHAMPAGNE FA, Influence of maternal care on the developing brain: Mechanisms, temporal dynamics and sensitive periods. Front Neuroendocrinol.: 40: 52-66, 2016. DAS UM. Is obesity an inflamatory condition? Nutrition; 17: 953-66, 2001. DEAN, J. A.; Flame Photometry, McGraw-Hill: New York. 1960. DESAI M, JELLYMANe JK, HAN G, BEALL M, LANE RH, ROSS M G. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol.; 211 (3): 237, 2014. DOS SANTOS P G, SANTANA DOS SANTOS L, DOS SANTOS C G, MATOS P G, ABENSUR A D, COUTO DR. Maternal and Post-Weaning Exposure to a High Fat Diet Promotes Visceral Obesity and Hepatic Steatosis in Adult Rats. Nutr Hosp; 32 (4): 1653-1658, 2015. DURNWALD C, LANDON M. Fetal links to chronic disease: the role of gestational diabetes mellitus. Am J Perinatol.; 30:343-6, 2013. DUSSE LMS, RIOS DRA, SOUSA LPN, MORAES RMMS, DOMINGUETI CP,GOMES KB. Biomarcadores da função renal: do que dispomos atualmente? Revista Brasileira de análises clínicas. 10.; 2448-3877, 2016. EATON SB, KONNER M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med.; 312:283-9, 1985. ELAHI MM, CAGAMPANG FR, MUKHTAR D, ANTHONY FW, OHRI SK, ERM Z. Obesidade na infância e adolescência. Rev Saude Publica.; 14:124, 1996. FEIL R, FRAGA MF. Epigenetics and the environment: emerging patterns and implications. Nature Rev Gen.; 13:97-109, 2012. FERNANDEZ CD, BELLENTANI FF, FERNANDES GS, PEROBELLI JE, FAVARETO AP, NASCIMENTO AF, COCOGNA AC, KEMPINAS WD. Diet-induced obesity in rats leads to a decrease in sperm motility. Reprod Biol Endocrinol; 9: 32, 2011. FRASSETO LA, MORRIS R CJr, SELLMEYER DE, SEBASTIAN A. Adverse effects of sodium chloride on bone in the aging human population resulting from habitual consumption of typical American diet. J Nutr.; 138 (2): 419S-22S, 2008. GAILLARD D, PASSILY-DEGRACE P, BESNARD P. Molecular mechanisms of fat preference and overeating. Ann N.Y acad Sci.; 1141: 163-85, 2008. GLUCKMAN PD, HANSON MA, PINAL C. The developmental origins of adult disease. Matern Child nutr.; 1:130-41, 2005. GRAUDAL N, JÜRGENS G, BASLUND B, ALDERMAN MH. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis. American Journal of Hypertension, v. 27, p. 1129–1137, 2014. GODFREY KM, GLUCKMAN PD, HANSON MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrin Met.; 21: 199–205, 2010. GOUL EM. The effect of ketamine/xylazine and carbon dioxide on plasma luteinizing hormone releasing hormone and testosterone concentrations in the male Norway rat. Laboratory Animals, 42: 483-488, 2008. GRAYSON BE, LEVASSEUR PR, WILLIANS SM, SMITH MS, MARKS DL, GROVE KL. Changes in melanocortin expression and inflamatory Pathways in fetal offspring of nonhuman pirates fed a high-fat diet. Endocrinology;151:1622-32, 2010. GRAUDAL NA, HUBECK-GRAUDAL T, JURGENS G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride Cochran Database of Sustematic Reviwes, v.11, 2011. GRAUDAL NA, HUBECK-GRAUDAL T, JURGENS G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database of Systematic Reviews, v.11, 2011. GREGORIO BM, SOUZA-MELLO V, CARVALHO JJ, MANDARIM-DE-LACERDA CA, AGUILLA MB. Maternal high-fat intake predisposes nonalcoholic fatty liver disease in C57BL/6 offspring. Am J Obstet and Gynecol; 203(5):495e1-495e8, 2010. GRUNDY SM, CLEEMAN JI, DANIELS SR, DONATO KA, ECKEL RH, FRANKLIN BA. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation; 112(17): 2735-52, 2005. GRUNDY SM, ABATE N, CHANDALIA M. Diet composition and the metabolic syndrome: What is the optimal fat intake? Am J méd; 113(9B): 25S-9, 2002. GUERRA A. Fatores de risco cardiovascular na infância de doença com expressão clínica na idade adulta. Acta Pediátr Port. 39(1): 23-9, 2008. GUPTA N, SHAH P, NAYYAR S, MISRA A. Childhood obesity and metabolic syndrome in developing contries. Indian J. Pediatr.; 80 Suppl 1: 28-37, 2013. HALFON N, VERHOEF PA, KUO AA. Childhood antecedents to adult cardiovascular disease. Pediatr Rev. Feb; 33 (2): 51-61, 2012. HANSON MA. Long-term maternal high-fat feeding from weaning through pregnacy and lactation predisposes offspring to hypertensin, raised plasma lipids and fatty liver in mice. BrJ Nutr; 102 (4): 514-9, 2009. HE FJ, LI J, MACGREGOR GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomized trials. British Medical Journal, p. 346: f1325, 2013. HEER M, BAISCH F, KROPP J. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol; 278: F585–F595, 2000. HEER M, FRINGS-MEUTEN P, TITZE J, BOSCHMANN M, FRISH S, BAECKER N. Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid-base balance differently. Br J Nutr.; 101(9): 1286-94, 2009. HEERWAGEN MJ, MILLER MR, BARBOUR LA, FRIEDMAN JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol.; 299 (3) 711-22, 2010. HOCHBERG Z, FEIL R, CONSTANCIA M, FRAGA M, JUNIEN C, CAREL JC, BOILEAU P, LE BOUC Y, DEAL CL, LILLYCROP K, SCHARFMANN R, SHEPPARD A, SKINNER M, SZYF M, WATERLAND RA, WAXMAN DJ, WHITELAW E, ONG K, ALBERTSSON -WIKLAND K. Child health, developmental plasticity, and epigenetic programming. Endocr Rev. Apr; 32(2): 159-224, 2011. HOFFMAN DJ, SAWAYA AL, VERRESCHI I, TUCKER KL, ROBERTS SB. Why are nutritionally stunted children at increased risk of obesity? Studies of metabolic rate and fat oxidation in shantytown children from São Paulo, Brazil. Am J Clin Nutr.; 72 (3):702-7, 2000. HOOPER L, AL-KHUDAIRY L, ABDELHAMID AS, REES K, BRAINARD JS, BROWN TJ, AJABNOOR SM, O’BRIEN AT, WINSTANLEY LE, DONALDSON DH, SONG F, DEANE KHO. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochran database of Systematic Rewies, Issue 11 . Art. N0: CD011094, 2018. HOWIE GJ, SLOOBODA DM, KAMAL T, VICKERS MH. Maternal nutrition history predicts obesity in adult offspring independet of posnatal diet. JPhysiol.;587 (Pt4): 905-15, 2009. HSUEH WA, QUINONES MJ. Role of endothelial dysfunction in insulin resistance. Am. J. Cardiol; 300(92): 10-7, 2003. HURT R T . Obesity Epidemic. Journal of Parenteral and Nutrition v35, n 5 suppll, p 4S-13S, 31 Aug, 2011. JACOB S, TEIXEIRA DS, GUILHERM C, DA ROCHA CF, ARANDA BC, REIS AR, DE SOUZA MA, FRANCHI CR, SANVITTO GL. The impact of maternal consumption of cafeteria diet on eproductive funstion in the offspring. Physiol Behav.: 129: 280-6, 2014. JACQUES J, DEBETS M, AGNIESZKA E, MICHAEL F, SMITH C ,SMITH TL. Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology, 287: H1618–H1624, 2004. JAENISH R, BIRD A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics v.33, n. 3S, p. 245-254, 2003. JANSSEN BJ, DE CELLE T, DEBETS JJ, BROUNS AE, CALLAHAN MF, SMITH TL. Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology, 287(4): H1618-24, 2004. JÜRGENS G, GRAUDAL NA. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride. Cochrane Database of Systematic Reviews, v.1, 2004. KAMBHAMN N, MARKOWITZ GS, VALERI AM, LIN J, AGATI VD. Obesity-related glomerulopathy: An emerging epidemic. Kidney International.; 59; 1498-1509, 2001. KEARNEY PM, WHELTON M, REYNOLDS K, WHELTON PK, HE J. Worldwide prevalence of hypertension: a systematic review.Nutrition in early life and the programming of adult disease: a review. J. Hypertens.:22: 9-11. 2004. KELLEY AE, SCHIHZ CA, LANDRY CF: Neural systems Recruited by drug and food related cues: Studies of gene activation in cortico-Limbic regions. Physiol Behav; 86:11-14. 2005. KINCAID-SMITH P. Hypothesis: Obesity and insulin resistance syndrome play a major role in end-stage renal failure attributed to hypertension and labeled hypertensive nephrosclerosis. J. Hypertens. V 22, p. 1052-1055. 2004. KNIGHT SF, QUIGLEY JE, YUAN J, ROY SS, ELMARAKBY A, IMIG JD. Endothelial dysfunction and the development of renal injury in Spontaneously Hypertensive rats fed a high-fat diet. Hypertension.; 51:352-359, 2008. KINSLEY CH. The neuroplastic maternal brain. Horm. Behav.; 54 (1): 1-4, 2008. KOPP C, LINZ P, DAHLMANN A. 23 Na ressonância magnética de tecido determinado sódio em indivíduos saudáveis e hipertensos. Hipertensão; 61: 635-640, 2013. KOPP C, LINZ P, HAMMON M. 23 Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension.; 61: 635-640. 2013. KOTCHEN T, COWLEY Jr A AW, FROLICH E.D. Sal em saúde e doença - um equilíbrio delicado. N Engl J Med.; 368: 1229-1237, 2013. KOTSIS V, STABOULI S, PAPAKATSIKA S, RIZOS Z, PARATI G. Mechanisms of obesity-induced hypertension. Hypertension Research; 33: 386-393, 2010. KUME S. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J. Am. Soc. Nephrol.; 18: 2715-2723, 2008. LATORRACA MQ, CARNEIRO EM, BOSCHERO AC, MELLO MR. Protein deficiency during pregnancy and lactation impairs glucose-induced insulin secretion but increases the sensitivity to insulin in weaned rats. Br J Nutr 80:291-297, 1998. LILLYCROP KA. Effect of maternal diet on the epigenome: implications for human metabolic disease. Proceedings of the Nutrition Society v. 70, n.1, p. 64-72, 2011. LOWENSOHN R I, STADLER D D, NAZE C. Current Concepts of Maternal Nutrition. Obstetrical and Gynecological Survey, vol. 71, 7-10, 2016. LUCAS A. Programming by early nutrition in man. Ciba Found Symp; 156:38-50, 1991. MAGNODOTTIR EV, THOSTEINSSON T, THOSTEINSSON S, HEIMISDOTTIR M, OLAFSDOTTIR K. Persistent organoclorines, sedentary occupation, obesity and Humam male subfertility. Hum Reprod: 20(1):208-215, 2005. MALOYAN A, MURALIMANOHARAN S, HUFFMAN S, COX LA, NATAHANIELSZ PW, MYATT L, NLJLANIJ MN. Identification and Comparative Analyses of Myocardial miRNAs Involved in the Fetal Response to Maternal Obesity. Physiol Genomic, V.50, p. 124-129, 2013. MAMUN AA, MANNAN M, DOI SA. Gestational weight gain in relation to offspring obesity over the life course: a systematic review and bias-adjusted meta-analysis. Obs Rev.;15(4):338-47, 2014. MARTELLI A. Sistema Renal e sua Influência no Controle em Longo Prazo da Pressão Arterial. UNOPAR Cient Ciênc Biol Saúde, v. 15, n. 1, 2013. MASUYAMA H, MITSU T, NOBUMOTO E, HIRAMATSU Y. The Effects of High-Fat Diet Exposure in Utero on the Obesogenic and Diabetogenic. Endocrinology:156(7), 2482-91, 2015. MATHIAS J, MAUI J, NOSTER R, MEINI H, CHAO Y, GERSTENEGER H. Sodium chloride is an ionic chekpoint for human Th2 cells and shapes the atopic skin microenvironment. Science Transllational Mediciene Vol.11, Issue 480, 2019. MENDONÇA R, RODRIGUES G. As principais alterações dermatológicas em pacientes obesos. ABCD Arq Bras Cir Dig.:24(1): 68-73, 2011. MENTE A. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet, v. 388, p. 465–475, 2016. MESHKANI R, ADELI K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem 42(13-14):1331-1346, 2009. MICHALAKIS K, MINTZIORI G, KAPRRARA A, TARLATZIZ BC, GOULIS DG. The complex interation between obesity, metabolic syndrome and reproductive axis a narrative review. Metabolism; 56 (4): 457-78, 2013. MILLER A, ADELI K. Dietary fructose and the metabolic syndrome. Curr Opin Gastroenterol 24 (2): 204-209, 2008. MOZAFFARIAN D. Global sodium consumption and death from cardiovascular causes. The New England Journal of Medicine, v. 371, n. 7, p. 624–634, 2014. NERRY C, EDLOW AG. Effects of maternal Obesity on fetal programming: Molecular Aproaches. Cold Spring Harb Perspect Med.; 6 (2), 2015. NG SF, LIN RC, LAYBUTT DR, BARRES R, OWENS JA, MORRIS MJ. Chronic High-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature.; 467: 963-6, 2010. OBEN JA, MOURALIDARAN A, SAMUELSSON AM, MATTHEWS PJ, MORGAN ML, MCKEE C. Maternal obesity during pregnancy and lactation programs the development of offspring nonalcoholic fatty liver disease in mice. J Hepatol; 52 (6): 913-920, 2010. O’DONNELL M. Urinary sodium and potassium excretion, mortality, and cardiovascular events. The New England Journal of Medicine, v. 371, p. 612–623, 2014. OLIVEIRA AMA, CERQUEIRA EMM, OLIVEIRA AC. Prevalência de Sobrepeso e Obesidade Infantil na Cidade de Feira de Santana BA: detecção na família x diagnóstico clínico. J Pediatr. 79 (4): 325-328, 2003. OZANNE SE, ROONEY KB. A Systematic review on animal models of maternal high fat feeding and offspring glycaemia control. Int J Obes.; 35 (3): 325-35. 2011. OZANNE SE, SMITH GD, TIKERPAE J, HALES CN. Altered regulation of hepatic glucose output in the male offspring of protein-mal nourished rat dams. Am J Physiol; 270 (4): E559-564, 1996. PADILHA BM. Sódio e sua associação com alterações na pressão arterial, no estado nutricional e no perfil lipídico de mulheres hipertensas 612.3 CDD (23 ed) UFPE (CCS2018-109), 2018. PARKIH A, LIPSITZ SR, NATARAJAN S. Association between a DASH-like diet and mortality in adults with hypertension: findings from a population-based follow-up study. Am J Hypertens.; 22 (4):409-16, 2009. PARRA-CABRERA S, HERNANDEZ B, DURAN-ARENAS L, LOPEZ-ARELLANO O. Alternative models for the epidemiological analysis of obesity as a public health problem. Rev. Saude Publica.; 33 (3):314-25, 1999. PATEL MS, SRINIVASAN M. Metabolic Programming: Causes and Consequences. J Biol Chem; 1629-1632, 2002. PAULA RB, FERNANDES N, CARMO VMP, ANDRADE LCF, BASTOS MG. Obesidade e Doença renal crônica. J. Bras. Nefrol.; 28(3): 158-164. 2006. PÉRUSSE L, BOUCHARD C. Gene-diet interactions in obesity. Am J Clin Nutr.;72 (5Suppl): 1285S-90S, 2000. PINHEIRO ARO, FREITAS SFT, CORSO ACT. Uma abordagem epidemiológica da obesidade. Rev Nutr Campinas; 17: 523-33, 2004. PITSAVOS C, PANGIOTAKOS DB, PAPAGEORGIU C, TSETSEKOU E, SOLDATOS C, STEFANADIS C. Anxiety in relation to inflamation and coagulation makers among healthy adults. The ATTICA study Atherosclerosis; 185: 320-6, 2006. POSTON, L. Gestacional weight gain: influences on the long-term health of the child. Curr Opin Clin Nutr Metab Care; 15 (3): 252-7, 2012. PRADOS-LIMA OS, CRUZ IBM, SCHWANKE CHA. Human food preferences are associated with a 5-HT2A serotonergic receptor polymorphism. Mol Psychiatry; 11: 889-91, 2006. PURBA M, KOURIS-BLAZOS A, WATTANAPENPAIBOON N, LUKITO W, ROTHENBER E, STEEN B. Skin wrinkling: can food make a difference? J Am Coll Nutr.; 20 (1): 71-80, 2001. PUUMALA SE, HOYME HE. Epigenetics in pediatrics. Pediatr Rev. jan; 36 (1): 14-21, 2015. QUADROS TMB, GORDIA AP, SILVA LR, SILVA DA, MOTA J. Epidemiological survey in scoolchildren: determinants asnd prevalence of cardiovascular risk factors. CAD. Saúde Publica. feb; 32(2): e00181514, 2016. RABE J, MAMELAK A, MCLEGUM P, MORISON W, SAUBER D. Photoaging: Mechanisms and repair. J Am Acad Dermatol.; 55(1):1-19, 2006. RAHMOUNI K, CORREIA ML, HAYNES WG, MARK AL. Obesity associated hypertension: new insights into mechanisms. Hypertension; 45: 9-14, 2005. RAIPURIA M, HARDY GO, BAHARI H, MORRIS MJ. Maternal obesity regulates gene expression in the hearts of offspring. Nutr Metab Cardiovasc Dis 25 (9): 881-888, 2015. RAVELLI GP, STEIN Z, SUSSER M. Obesity in Young men after famine exposure in utero and early infancy. N E J Med; 295:349-353, 1976. RAY GT, CROEN LA, HABEL LA. Mothers of children diagnosed with attention-defict hyperactivity disorder: Healthy conditions and medical care utilization in periods before and after birth of the child. Medcare: 47: 105-14, 2009. REAVEN GM. Role or insulin resistance in human disease. Diabetes.;37(12): 1595-67, 1988. RIVERA HM, CHRISTIANSEN KJ, SULLIVAN EL. The role of maternal obesity in the risk of neuropsychiatric disorder. Front Neurosci.; 9:194, 2015. ROBERTSON CM, GERRY F, FOWKES R, PRICE JF. Carotid intima-media thickness and the prediction of vascular events. Vasc Med. 17 (4): 239-48, 2012. RUST P, EKMEKCIOGLU C. Impact of salt intake on the pathogenesis and treatment of hypertension. Advances in Experimental Medicine and Biology, v. 956, p. 61-84, 2017. SACKS DA, LIU AL, WOLDE-TSALDIK G, AMINI SB, HOUSTON-PRESLEY L, CATLANO PM. What proportion of birth weight is attributable to maternal glucose among infants of diabetic women? Am J Ob Gym; 194(2): 501-7, 2006. SAKHA EEK. Recent Advances in the pathophisiology of nephrolithiasis. Kidney International.; 75: 585-595, 2009. SAMUELSSON AM, MATHEUS PA, ARGENTON M. Diet-induced obesity in female mice leads to offspring hyperfagia, adiposity, hypertension and insulin resistance: a novel murine model of developmental programming. Hypertension.; 51(2): 383-392, 2008. SAMUELSSON AM, MORRIS A, IGOSHEVA N, KIRKI SL, POMBO JM, COEN CW. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension; 55(1): 76-82, 2010. SARANTEAS T, ZOTOS N, CHANTZI C, MOUROUZIS C, RALLIS G, ABAGNOSTOPOULOU S, TESSEROMATIS C. Ketamine-induced changes in metabolic and endocrine parameters of normal and 2-kidney 1-clip rats. European Journal of Anesthesiology, 22 (11): 875-878, 2005. SCHNYDER B, PITTET M, DURAND J, SCHNYDER-CANDRIAN S. Rapid effects of glucose on the insulin signaling of endothelial NO generation and epithelial Na transport. Am J Physiol Endocrinol Metab; 282: 87-94, 2001. SCHONFELD-WARDEN N, WARDEN CH. Pediatric obesity. An overview of etiology and treatment. Pediatr Clin North Am.; 44 (2):339-61, 1997. SHEFFER- BABILA S, SUN Y, ISRAEL DD, LIU SM, NEAL-PERREY G, CHUA SC Jr. Agouti-related peptide plays a critical role in leptin’s effects on female puberty na reproduction. Am J Physiol Endocrinol Metab: 305 (12):1512-20, 2013. SILVA, JT. Perfil Metabólico e inflamatório da prole adulta oriunda de fêmeas expostas a hipertrofia cardíaca e ao diabetes, 93 fl. Dissertação (mestrado) – Universidade Federal de Pernambuco. Centro de Biociências. Bioquímica e Fisiologia, 2017. SKOOG DA, WEST DM, HOLLER FJ.Analytical Chemistry: An Introduction, 6ª ed., Saunders: Chicago, 1994. SOLEIMANI, M. Insulin resistance and hypertension: new insights. Kidney International, v. 87, p. 497-499, 2015. SOUBRY A, SCHILDKRAUT JM, MURTHA A, WANG F, HUANG Z, BERNAL A. Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Medicine., 11:29-8, 2013. SOULIMANE N, MERZOUK SA, GRESTI J. Hepatic and very low-density lipoprotein fatty acids in obese offspring of overfed dams. Metabolism; 59(12):1701-1709, 2010. SOUZA RV. Novo atlas prático de dermatologia. Porto Alegre: Artes Médicas, 2003. SPARKS JD, SPARKS CE, ADELI K . Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 32(9):2104-12, 2012. STANFORD KL. Exercise Before and During Pregnancy Prevents the deleterious effects of maternal high-fat feeding on metabolic Heallht of male offspring. Diabetes v 64, n 2, p. 427-433, 2015. STRUZEL B, CABELLO H, QUEIROZ L, FALCÃO M. Análise dos fatores de risco para o envelhecimento da pele: aspectos gerais e nutricionais. Rev Bras Nutr Clin; 22(2): 139-145, 2007. SULLIVAN EL, GRAYSON B, TAKASHIAK D, ROBERTSON N, MAIER A, BETHEA CL. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhumam primate offspring. J. Neurosci:; 30(10): 3826-30, 2010. SULLIVAN EL, NOUSEN EK, CHAMBLOU KA. Maternal High fat diet consumption during the perinatal period programs offspring behaviour. Physiol Behav.; 123: 236-42, 2014. SYMONDS ME, SEBERT SP, HYATT MA, BUDGE H. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol. Nov; 5(11): 604-10, 2009. TAVERNE F. Abdominal obesity, insulin resistance, metabolic syndrome and cholesterol homeostasis. PhamaNutrition, v.1, n.4 p. 130-136, 2013. TAUBES G. The soft science of dietary fat. SCIENCE; 291: 2536-45, 2001. TAYLOR PD, POSTON L. Developmental programming of obesity in mammals. Exp Physiol; 92: 287-298, 2007. TERKEL J, BRIDGES RS, SAWYER CH. Effects of transsecting lateral neural connections of the medial pre optic area on maternal behavior in the rat: Nest building, pup retrieval and prolactina secretion Brain Res; 169(2): 369-80. 1979. TIE HT, XIA YY, ZENG YS, ZHANG Y, DAI CL, GUO JJ. Risk of childhood overweight or obesity associated with excessive weight gain during pregnancy: a meta-analysis. Arch Gynecol Obstet.; 289 (2):247-57, 2014. TITZE J, KRAUSE H, HECHT H, DIETSCH, P, RITTWEGER J, LANG R, KIRSCH, KA, HILGERS KF. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol, 283(1):F134-41, 2002. TITZE J, LANG R, ILIES C, SCHWIND KH, KIRSCH KA, DIETSCH P,.LUFT FC, HILGERS KF. Osmotically inactive skin Na storage in rats Am JPhysiol Renal Physiol, 285: F1108–F1117, 2003. TITZE J, SHAKIBAIEI M, SCHAFFLHUBER M, SCHULZE-TANZIL G, PORST M, SHWIND KH, DIERSCH P, HILGERS KF. Glycosaminoglycanpolymerization may enable osmotically inactive Na storage in the skin. Am J Physiol Heart Circ Physiol, 287: H203–H208, 2004. TITZE J, BAUER K, SCHAFFLHUBER M, SCHWIND KH, LUFT FC, ECKARDT KU, HILGERS KF. Internal sodium balance in DOCA-salt rats: a body composition study. Am J Physiol Renal Physiol, 289(4): F793-802, 2005. TITZE, J. Sodium balance is not just a renal affair. Curr Opin Nephrol Hypertens, 23:101-5, 2014. TSO P, LIU M. Ingested fat and satiety. Physiol Behav.; 81(2): 275-87, 2004. VOLPATO AM, SCHULTZ A, MAGALHÃES-DA-COSTA E, CORREA ML, AGUILA MB, MANDARIM-DE-LACERDA CA. Maternal High-fat Diet Programs for metabolic Disturbances in offspring despite leptin Sensivity. Neuroendocrinology; 96 (4): 272-84, 2012. VUCETIC Z, KIMMEL J, TOTOKI K, HOLLENBERK E, REYES TM. Maternal High-fat diet alters methylation and gene expression. Of dopamine and opiod-related genes. Endocrinology: 151(10): 4756-4764, 2010. WAKABAYASHI K. Stress, Anesthesia and Blood Hormone Levels. Shibayagi’s Academic Information, 1-10, 2001. WANG T, GIEBISCH G. Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. Am J Physiol.; 2719 (1):143-9, 1996. WATERLND RA, GARZA C. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr.; 69 (2):179-97, 1999. WATERLAND, ROBERT A. Epigenetic Mechanisms Affecting Regulation of Energy Balance: Many questions, Few Answers. Annual Review of Nutrition v. 34, n.1, p.337-355, 2014. WHITE CL, PURPERA MN, MORRISON CD. Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am J Physiol Regul Integr Comp Physiol.; 296 (5): 1464-72, 2009. XU C, TANA S, ZHANG J, SEUBERT CN, GRAVENSTEIN N, SUMMERS C, VASILOPOULOS T, MARTYNYUK AE. Anesthesia with sevoflurane in neonatal rats: developmental neuroendocrine abnormalities and alleviating effects of the corticosteroid and Cl importer antagonists. Psychoneuroendocrinology, 60: 173–181, 2015. YAMADA-OBARA N. Maternal exposure to high-fat and high-frutose diet evokes hypoadipinectinemia and kidney injury in rat offspring. Clinical and Experimento Nephrology v.20, n 6, p. 853-861, 2016. YOSIPOVITCH G, DE VORE A, DAWN A. Obesity and the skin: skin physiology and skin manifestations of obesity. J.Am Acad Dermatol, jun; 56(6): 901 -16, 2007. ZECA, S. Efeito do consumo materno de dieta hiperlipídica sobre a função cardíaca da prole jovem. 2015. 109f. Dissertação (Mestrado em Ciências Fisiológicas)- Institituto de Biologia. Universidade Federal Rural o Rio de Janeiro. Seropédica. 2015. ZHENG J, XIAO X, ZHANG Q, YU M, XU J, WANG Z. Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring. Metab Brain Dis; 30 (5) :1129-1137, 2015. ZIMBERKNOPF E, XAVIER GF, KINSLEY CH FELÍCIO LF. Prior parity positively regulates learning and memory in Young and middle age rats. Com Med.; 61 (4): 366-77, 2011.por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/70079/2020%20-%20Selma%20Farias%20de%20Oliveira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5834
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-07-29T20:00:48Z No. of bitstreams: 1 2020 - Selma Farias de Oliveira.pdf: 985100 bytes, checksum: 88fbeae2296d37ed152ebbf20246ea64 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-07-29T20:00:48Z (GMT). No. of bitstreams: 1 2020 - Selma Farias de Oliveira.pdf: 985100 bytes, checksum: 88fbeae2296d37ed152ebbf20246ea64 (MD5) Previous issue date: 2020-09-21eng
Appears in Collections:Doutorado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Selma Farias de Oliveira.pdf962.01 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.