Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15972
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cabreira, Wilbert Valkinir | |
dc.date.accessioned | 2023-12-18T17:12:36Z | - |
dc.date.available | 2023-12-18T17:12:36Z | - |
dc.date.issued | 2023-03-01 | |
dc.identifier.citation | CABREIRA, Wilbert Valkinir. Supressão de Corymbia citriodora (Hook.) K. D. Hill e L. A. S. Johnson: uma discussão sobre as alterações no solo. 2023. 83 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Floresta, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2023. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15972 | - |
dc.description.abstract | Estudos evidenciam a importância da comunidade biológica do solo na determinação de sua qualidade e no processo de transformação e estabilização da matéria orgânica do solo (MOS). Esse estudo parte da hipótese de que a adequada supressão de plantios antigos (> 25 anos) de Corymbia citriodora (Hook.) K. D. Hill e L. A. S. Johnson, em regiões tropicais com elevados índices pluviométricos e solo argiloso, aumenta o estoque e qualidade de resíduos sob o solo e intensifica a atividade biológica, considerados precursores do aumento da MOS e da qualidade do solo, gerando melhor equilíbrio entre as frações estáveis e lábeis da MOS. Nesse estudo, foram avaliados indicadores de qualidade do solo e a dinâmica da MOS em áreas de plantios de C. citriodora submetidos a três manejos que visam a priorização da restauração da vegetação nativa na Reserva Biológica (REBIO) União – RJ, a saber: supressão de plantio de C. citriodora submetido a prática do anelamento (GR); supressão de plantio de C. citriodora submetido a prática do corte raso e posterior plantio de mudas nativas (PL) e plantio de C. citriodora abandonado sem prática de manejo (EU). Esses manejos foram comparados com área de floresta nativa (FF). Para isso, foram realizadas amostragens de solo, serapilheira e fauna para determinação do Índice Geral de Qualidade do Solo (GISQ) por meio da quantificação de atributos químicos e biológicos e correlação com os atributos da serapilheira. Foram determinados também, os teores totais de C, nitrogênio (N) e fósforo (P) na terra fina seca ao ar (TFSA); na matéria orgânica leve (LFOM) e nas frações granulométricas da MOS, além do C extraído por permaganato de potássio. No solo sob FF e GR, foram observados percentuais de tOC cerca de 50% superiores a área PL. As propriedades microbiológicas foram as mais eficientes em diferir as áreas de estudo. Na área EU, foram observados os maiores valores de C: N (33,93) e N: P (38,18), além dos menores teores de C, N e P na fração particulada da MOS. Já em GR, foram quantificados valores de POXC 187,37% superiores a EU, favorecendo a produção de material menos recalcitrante e mais lábil quando comparado a EU. O curto tempo (4 anos) de implementação do sistema em PL, afetou diretamente na baixa produção de LFOM, com percentuais de 64, 58 e 57% inferiores quando comparado as áreas GR, EU e FF respectivamente. O GISQ evidenciou alta qualidade para o solo sob FF, média para GR e PL e baixa para EU. Os resultados permitem inferir que a prática do anelamento (GR) é uma estratégia em potencial, visando à supressão de C. citriodora, favorecendo a qualidade do solo, impulsionando as interações solo/planta e favorecendo principalmente a disponibilidade de N e P lábeis no solo. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Reserva Biológica | por |
dc.subject | Eucalipto | por |
dc.subject | Anelamento | por |
dc.subject | Manejo florestal | por |
dc.subject | Biological Reserve | eng |
dc.subject | Eucalyptus | eng |
dc.subject | Girdling | eng |
dc.subject | Forest management | eng |
dc.title | Supressão de Corymbia citriodora (Hook.) K. D. Hill e L. A. S. Johnson: uma discussão sobre as alterações no solo | por |
dc.title.alternative | Suppression of Corymbia citriodora (Hook.) K. D. Hill and L. A. S. Johnson: a discussion of soil changes | eng |
dc.type | Tese | por |
dc.description.abstractOther | Recent studies have shown the importance of the biological community of the soil in determining its quality and in the process of transformation and stabilization of soil organic matter (SOM). This study is based on the hypothesis that the adequate suppression of old plantations (> 25 years old) of Corymbia citriodora (Hook.) K. D. Hill and L. A. S. Johnson, in tropical regions with high rainfall rates and clayey soil, increases the stock and quality of waste under the soil and intensifies biological activity, considered precursors to the increase in SOM and soil quality, generating a better balance between stable and labile SOM fractions. In this study, indicators of soil quality and SOM dynamics were evaluated in areas of C. citriodora plantations submitted to three managements that aim at prioritizing the restoration of native vegetation in the Biological Reserve (REBIO) União - RJ, namely: suppression of C. citriodora planting subjected to girdling (GR); suppression of C. citriodora planting submitted to the practice of shallow cutting and subsequent planting of native seedlings (PL) and planting of abandoned C. citriodora without management practice (EU). These managements were compared with native forest area (FF). Soil, litter and fauna were sampled to determine the General Indicator of Soil Quality (GISQ) through quantification of chemical and biological attributes and correlation with litter attributes. The total contents of C, nitrogen (N) and phosphorus (P) in air-dried fine earth (ADFE) were also determined; in light organic matter (LFOM) and in the granulometric fractions of SOM, in addition to the C extracted by potassium permaganate. In the soil under FF and GR, percentages of tOC around 50% higher than the PL area were observed. The microbiological properties were the most efficient in differentiating the study areas. In the EU area, the highest values of C: N (33.93) and N: P (38.18) were observed, in addition to the lowest levels of C, N and P in the particulate fraction of SOM. In GR, POXC values 187.37% higher than EU were quantified, favoring the production of less recalcitrant and more labile material when compared to EU. The short time (4 years) of implementation of the system in PL directly affected the low production of LFOM, with percentages of 64, 58 and 57% lower when compared to the GR, EU and FF areas respectively. GISQ showed high quality for the soil under FF, medium for GR and PL and low for EU. The results allow inferring that the practice of girdling (GR) is a potential strategy, aiming at the suppression of C. citriodora, favoring soil quality, boosting soil/plant interactions and mainly favoring the availability of labile N and P in the soil. | eng |
dc.contributor.advisor1 | Balieiro, Fabiano de Carvalho | |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5456817129473536 | por |
dc.contributor.advisor-co1 | Pereira, Marcos Gervasio | |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3657759682534978 | por |
dc.contributor.referee1 | Balieiro, Fabiano de Carvalho | |
dc.contributor.referee2 | Silva, Eduardo Vinícius da | |
dc.contributor.referee3 | Freitas, Lucas José Mazzei de | |
dc.contributor.referee4 | Resende, Alexander Silva de | |
dc.contributor.referee5 | Moraes, Luiz Fernando Duarte de | |
dc.creator.ID | https://orcid.org/0000-0002-8377-1083 | por |
dc.creator.Lattes | http://lattes.cnpq.br/9030661135044020 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Florestas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Ambientais e Florestais | por |
dc.relation.references | ANDERSON, J.M.; INGRAN, J.S.I. Tropical soil biology and fertility: a handbook of methods. CAB International. 171p. 1989. ARNONE, J. A.; ZALLER, J. G.; ZIEGLER, C.; ZANDT, H.; KORNER, C. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2. Oecologia, v. 104, p. 72–78, 1995. AWALE, R.; CHATTERJEE, A.; AND FRANZEN, D. Tillage and N-fertilizer influences on selected organic carbon fractions in a North Dakota silty clay soil. Soil Till. Res, v. 134, p. 213–222, 2013. BAIS, H. P.; WEIR, T. L.; PERRY, L. G.; GILROY, S.; VIVANCO, J. M.; The role of root exudates in rhizosphere interactions with plants and Other organisms. Annual Review of Plant Biology, v. 57, p. 233 – 266, 2006. BARRET M.; MORRISSEY J. P.; O’GARA F. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils, v, 47, p. 729–743, 2011. BARRETO, R.C.; MADARI, B.E.; MADDOCK, J. E. L.; MACHADO, P. L. O. A.; TORRES E. The impact of soil management on aggregation, carbon stabilisation and carbon loss as CO2 in the surface layer of a rhodic ferralsol in Southern Brazil. Agriculture, Ecosystems and Environment, v. 132: 243–251, 2009. BAYER, C.; MARTIN-NETO, L.; MIELNICZUK, J.; PAVINATO, A. Armazenamento de carbono em frações lábeis da matéria orgânica de um Latossolo Vermelho sob plantio direto. Pesquisa Agropecuária Brasileira, v. 39, p. 677–683, 2004 BINKLEY, D.; STAPE, J. L.; TAKAHASHI, E.N.; RYAN, M. G. Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil. Oecologia, v. 148, p. 447–454, 2006. CAMBARDELLA, C. A.; ELLIOTT, E. T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, Madison, v. 56, p. 777-783, 1992. CABREIRA, W.V.; PEREIRA, M. G.; BALIEIRO, F. C.; MATOS, E. S.; RODRIGUES, R. A. R.; SANTOS, R. N. Mixed-species plantations of Eucalyptus and Acaciamangium increase labile carbon and phosphorus levels in Ferralsol soils in the Cerrado biome, Brazil, Southern Forests: a Journal of Forest Science, v. 82, p. 342-351, 2020. CABREIRA, W. V.; SANTANA, J. E. S.; MOREIRA, R.P.; MENDONÇA, V. M. M.; BALIEIRO, F. C.; PEREIRA, M. G. Deposição de nitrogênio e influência das copas das árvores no efluxo de C-CO2 no solo. Pesquisa Florestal Brasileira, v.42. 2022. CHAER, G.M.; TÓTOLA, M.R. Impacto do manejo de resíduos orgânicos nos indicadores de qualidade do solo durante o replantio de povoamentos de eucalipto. Revista Brasileira de Ciência do Solo, v. 31, p. 1381-1396, 2007. CHRISTENSEN, B.T. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science, v. 20, p. 2-76, 1992. CLEVELAND, C.C.; LIPTZIN, D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, v. 85: 235–252. 2007. CULMAN, S. W.; SNAPP, S. S.; FREEMAN, M. A. Permanganate oxidizable carbono reflects a processed soil fraction that is sensitive to management. Soil Science Society of America Journal, v. 76, p. 494-504, 2012. CULMAN, S. W.; SNAPP, S. S.; GREEN, J. M.; GENTRY, L. E. Short- and long-term labile soil carbon and nitrogen dynamics reflect management and predict corn agronomic performance. Agronomy Journal, v. 105, p. 493–502, 2013. DENEF, K.; BUBENHEIM, H.; LENHART, K.; VERMEULEN J.; VAN CLEEMPUT, O. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences, v. 4, p. 1–11, 2007. DIEKOW, J.; MIELNICZUK, J.; KNICKER, H.; BAYER, C.; DICK, D. P.; KÖGEL KNABNER, I. Soil C and N stocks as affected by cropping systems and nitrogen fertilization in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil e Tillage Research, v. 81, p. 87-95, 2005. FAUSET, S.; JOHNSON, M.; GLOOR, M. Hyperdominance in Amazonian forest carbon cycling. Nat Commun, v. 6, p .6857, 2015. FELLER, C.; BEARE, M. H. Physical control of soil organic matter dynamics in the tropics. Geoderma, v. 79, p. 69–116, 1997. FONTAINE, S.; BARDOUX, G.; BENEST, D.; VERDIER, B.; MARIOTTI, A.; ABBADIE, L. Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Science Society of America Journal, v. 68, p. 125-131, 2004. FORRESTER, D. I.; PARES, A.; O’HARA, C.; KHANNA, P. K.; BAUHUS, J. Soil organic carbon is increased in mixed-species plantations of eucalyptus and nitrogen-fixing acacia. Ecosytems, v. 16, p. 123-132, 2013. GHANI, A.; DEXTER, M.; PERROTT, K.W. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry, v.35, p.1231-1243, 2003. GOLLEY, F. B.; Mc GINNIS, J. T.; CLEMENTS, R. G.; CHILD, G. L.; DUEVE, M. S. Ciclagem de minerais em um ecossistema de floresta tropical úmida. São Paulo, Pedagógica e Universitária. 256p. 1978. HARRIS, N. L.; GIBBS, D. A.; BACCINI, A.; BIRDSEY, R. A.; DE BRUIN, S.; FARINA, M.; TYUKAVINA, A. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, v. 11, p. 234-240, 2021. HÄTTENSCHWILER, S.; COQ S.; BARANTAL, S.; HANDA, I. T. Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol, v. 189, p. 950–965, 2011. HÄTTENSCHWILER, S.; JØRGENSEN, H.B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol, v. 98, p. 754–763, 2010. HAYNES, R. J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology and Biochemistry, v.2, p. 211–219, 2020. HAYNES, R. J. Labile organic matter fractions as central components of the quality of agricultural components of the quality of agricultural soils: an overview. Advances in Agronomy, v. 85, p. 221–268, 2005. HIRSCHEL, G., C. KORNER, AND J. A. ARNONE. Will rising atmospheric CO2 affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia, v. 110, p. 387–392, 1997. HOOGMOED, M.; CUNNINGHAM, S. C.; BAKER, P.; BERINGER, J.; CAVAGNARO, T. R. N-fixing trees in restoration plantings: effects on nitrogen supply and soil microbial communities. Soil Biology and Biochemistry, v. 77, 2014, 203-212. HÖGBERG, M.N.; HÖGBERG, P.; MYROLD, D. D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, v. 150, p. 590–601, 2007. HÖGBERG, P.; READ, D. J. Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution, v. 21, p. 548–554, 2006. HOPKINS, B. C. L.; BRECHET, L. M.; TRUJILLO, B. C.; SAYER, E. J. Tree functional diversity affects litter decomposition and arthropod Community composition in a tropical forest. Biotropica, v. 49, p. 903-911, 2017. HOUGHTON, R. A. Aboveground forest biomass and the global carbon balance. Global Change Biology, v. 11, n. 6, p. 945-958, 2005. HSU, P. H. Aluminium oxides and oxydroxides. In: DIXON, J.B. & WEED, S.B. (Eds.) Minerals in soil environments. 2 ed. Madison: Soil Science Society of America Journal, p.331-378, 1989. INAGAKI. M.; KAMO, K.; MIYAMOTO, K. Nitrogen and phosphorus retranslocation and N:P ratios of litterfall in three tropical plantations: luxurious N and efficient P use by Acacia mangium. Plant and Soil, v. 34, p. 295–307, 2011. ISLAM, M. J.; JANG, C.; EOM, J.; JUNG, S.; SHIN, M. S.; LEE, Y. The decomposition rates of organic phosphorus and organic nitrogen in river waters. J Freshw Ecol, v. 28, p. 239–50, 2013. JACKSON, L. E.; BURGER, M.; CAVAGNARO, T. R. Roots, nitrogen transformations, and ecosystem services. Annual Review of Plant Biology, v. 59, p. 341-363, 2008. JANSSENS, I. A.; FREIBAUER, A.; SCHLAMADINGER, B.; CEULEMANS, R.; CIAIS, P.; DOLMAN, A. J.; SCHULZE, E. D. The carbon budget of terrestrial ecosystems at country-scale–a European case study. Biogeosciences, v. 2, p. 15-26, 2005. JANZEN, H. H.; CAMPBELL, C. A.; BRANDT, S. A.; LAFOND, G. P.; TOWNLEY-SMITH, L. Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, v. 56, p. 1799-1806, 1992. JEANNEAU, L.; RICHARD, R.; SHREERAM, I. Molecular fingerprinting of particulate organic matter as a new tool for its apportionment: changes along a headwater drainage in coarse, medium and fine particles as a function of rainfalls. Biogeosciences, v. 15, p. 973–85, 2018. KIRKBY, C. A.; KIRKEGAARD, J. A.; RICHARDSON, A. E.; WADE, L. J.; BLANCHARD, C.; BATTEN, G. Stable soil organic matter: a comparison of C: N: P: S ratios in Australian and other world soils. Geoderma, v. 163, p. 197-208, 2011. LAL, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global change biology, v, 24, p. 3285-3301, 2018. LUCAS, S. T.; WEIL, R. R. Can a labile cabon test be used to predict crop responses to improve soil organic matter management? Agronomy Journal Abstract - Soil Tillage, Conservation & Management, v. 104, p. 1160-1170, 2012. MACHADO, S. Soil organic carbon dynamics in the pendleton long-term experiments: implications for biofuel production in Pacific Northwest. Agron. J. v. 103, p .253–260, 2011. MACHADO, S.; PETRIE, S.; RHINHART, K.; RAMIG, R. E. Tillage effects on water use and grain yield of winter wheat and green pea in rotation. Agron. J. v. 100, p. 165–162, 2008. MANZONI, S.; TROFYMOW, J.A.; JACKSON, R.B.; PORPORATO, A. Stoichiometric controls on carbon, nitrogen and phosphorus dynamics in decomposing litter. Ecol Monogr. v. 80, p. 89–106, 2010. MARSCHNER, H. Functions of mineral nutrients: macronutrients. In: MARSCHNER, H. Mineral nutrition of higher plants. 2nd ed. London: Academic Press, 1995. p.231-255 MAYER, M.; PRESCOTT, C. E.; ABAKER, W. E.; AUGUSTO, L.; CÉCILLON, L.; FERREIRA, G. W.; VESTERDAL, L. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management, v. 466, 118127, 2020. MENDONÇA, E.S.; MATOS, E.S. Matéria orgânica do solo: métodos de análises. Viçosa: UFV; 2005. 107 p. MELO, V. F.; CASLHOS, R. M. V.; PINTO, L. F. S. Reserva mineral do solo. In: MELO, V. F; ALLEONI, L. R. F. (eds.) Química e mineralogia do solo - Parte 1. SBCS, Viçosa, p. 251-332, 2009. MINASNY, B.; MALONE, B. P.; MCBRATNEY, A. B.; ANGERS, D, A.; ARROUAYS, D.; CHAMBERS, A.; CHAPLOT, V.; CHEN, Z.; CHENG, K.; DAS, B. S.; CAMPO, D. J.; GIMONA, A.; HEDLEY, C. B.; HONG, S. Y.; MANDAL, B.; MARCHANT, B. P.; MARTIN, M.; MCCONKEY, B. G.; WINOWIECKI, L. Soil carbon 4 per mille. Geoderma, v.292, p.59-86, 2017. MMA-ICMBio (Ministério do Meio Ambiente e Instituto Chico Mendes de conservação da biodiversidade). Plano de manejo da Reserva Biológica União. MMA-ICMBio, Brasília, DF, 04 encartes + resumo executivo, 2008. MORROW, J. G.; HUGGINS, D. R.; CARPENTER-BOGGS, L. A.; AND REGANOLD, J. P. Evaluating measures to assess soil health in long-term agroecosystem trials. Soil Science Society of America Journal, v. 80, p. 450–462, 2016. NAVE, L.E.; NAVE, E.D.; VANCE, C.W.; SWANSTON, P.S. Curtis Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manage., v. 259, p. 857-866, 2010. NOVAIS, R. F.; SMYTH, T. J. Fósforo em solo e planta em condições tropicais. Universidade Federa de Viçosa, Viçosa, MG. 1999. 399p. PAULA, R. R.; BOUILLET, J.P.; DE M. GONÇALVES, J. L. Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures. Annals of Forest Science, v. 75, p. 14, 2018. PARROTTA, J. A.; BAKER, D.D.; FRIED, M. Changes in dinitrogen fixation in maturing stands of Casuarina equisetifolia and Leucaena leucocephala. Can J For Res, v. 26, p. 1684–91, 1996. PURAKAYASTHA, T. J.; HUGGINS, D. R.; SMITH, J. L. Carbon sequestration in native prairie, perennial grass, no-till and cultivated Palouse silt loam. Soil Science Society of America Journal, v. 72, p. 534–540, 2008. RAMESH, T.; BOLAN, N. S.; KIRKHAM, M. B.; WIJESEKARA, H.; KANCHIKERIMATH, M.; RAO, C. S.; FREEMAN II, O. W. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in agronomy, v. 156, p. 1-107, 2019. RANGEL, O. J. P.; SILVA, C. A.; GUIMARÃES, P. T. G.; GUILHERMES, L. R. G. Frações oxidáveis do carbono orgânico de latossolo cultivado com cafeeiro em diferentes espaçamentos de plantio. Revista Ciência e Agrotecnologia, v. 32, p. 429-437, 2008. ROCHA JUNIOR, P. R.; DONAGEMMA, G. K.; ANDRADE, F.V.; PASSOS, R.R.; BALIEIRO, F. C. Can soil organic carbon pools indicate the degradation levels of pastures in the Atlantic Forest biome. Journal of Agricultural Science, v. 6, p. 84 95, 2014. RUI, Y.; MURPHY, D. V.; WANG, X.; HOYLE, F. C. Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: consequences for carbon sequestration. Scientific reports, v. 6, p. 1-9, 2016. SKORUPA, A. L. A.; BARROS, N. F. D.; NEVES, J. C. L. Forest litter decomposition as affected by Eucalyptus stand age and topography in South-Eastern Brazil. Revista Árvore, v. 39, p. 1055-1064, 2015. SUBKE, J. A.; HAHN, V.; BATTIPAGLIA, G.; LINDER, S.; BUCHMANN, N.; COTRUFO, M. F. Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia, v. 139, p. 551–559, 2004. SILVA, J. E.; RESCK, D. V. S.; CORAZZA, E. J.; VIVALDI, L. Carbon storage in clayey Oxisol cultivated pastures in the “Cerrado” region, Brazil. Agriculture, Ecosystems and Environment, v. 103, p. 357-363, 2004. SONG, S.K; HUANG, P.M. Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids. Soil Sci. Soc. Am. J., v. 52, p. 383-390, 1988. SONG, B.; NIU, S.; ZHANG, Z.; YANG, H.; LI, L.; WAN, S. Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe. PloS one, v. 7, e33217, 2012. SOKOL, N.W.; BRADFORD, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geosci, v. 12, 46–53, 2019. SPARKS, D. L. Potassium dynamics in soils. Advances in Soil Science, 6. Springer-Verlag, New York, 1987. 63 pp. STEVENSON, F. J. Humus chemistry: genesis, composition, reactions. New York: John Wiley and Sons, 1994, 496 p. TANG, G. L.; LI, X. Y.; LIN, L. S.; ZENG, F. J. Different causes of photosynthetic decline and water status in different stages of girdling in Alhagi sparsifolia Shap. (Fabaceae). Brazilian Journal of Botany, v. 39, p. 519-529, 2016. TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, J. Análise de solo, plantas e outros materiais. 2ed. Porto Alegre, Universidade Federal do Rio Grande do Sul, 1995. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de métodos de análise de solo. 3ª ed. – Brasília, DF: Embrapa, 573 p, 2017. TIAN, H.; CHEN, G.; ZHANG, C.; MELILLO, J. M.; HALL, C. A. S. Pattern and variation of C: N: P ratios in China‘s soils: a synthesis of observational data. Biogeochemistry, v. 98, p. 139–151, 2010. UEHARA, G.; GILLMAN, G. The mineralogy, chemistry, and physics of tropical soils with variable charge clays. Boulder, CO: Westview. 1981. VIEIRA, R. F. Ciclo do nitrogênio em sistemas agrícolas. Brasília, DF: Embrapa, 2017. 163 p. VITOUSEK, P. M.; CASSMAN, K. E. N.; CLEVELAND, C.; CREWS, T.; FIELD, C. B.; GRIMM, N. B.; SPRENT, J. I. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, v. 57(1), p. 1-45, 2002. VITOUSEK, P. M.; SANFORD, R. L. Nutrient cycling in moist tropical forest. Annual Review of Ecological Systems, v. 17, p. 137–167, 1986. WALKER, L. R. Integration of the study of natural and anthropogenic disturbances using severity gradients. Austral Ecology, v. 36, p. 916-922, 2011. WEIL, R. R.; ISLAN, K. R.; STINE, M. A.; GRUVER, J. B.; SAMSON-LIEBIG, S. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture, v. 18, p. 3–17, 2003. WEST, T. O.; POST, W. M. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci. Soc. Am. J, v. 66, p. 1963–1946, 2002. YARWOOD, S. A.; MYROLD, D. D.; HÖGBERG, M. N. Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest. FEMS Microbiology Ecology, v. 70: p. 151-162, 2009. ZELLER, B.; LIU, J.; BUCHMANN, N.; RICHTER, A. Tree girdling increases soil N mineralisation in two spruce stands. Soil Biology and Biochemistry, v. 40, p. 1155-1166, 2008. | por |
dc.subject.cnpq | Recursos Florestais e Engenharia Florestal | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/74905/2023%20-%20Wilbert%20Valkinir%20Cabreira.Pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6955 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-09-26T17:04:09Z No. of bitstreams: 1 2023 - Wilbert Valkinir Cabreira.Pdf: 2405246 bytes, checksum: 9485e3dc9070ed6fba256a204d6d10a2 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-09-26T17:04:09Z (GMT). No. of bitstreams: 1 2023 - Wilbert Valkinir Cabreira.Pdf: 2405246 bytes, checksum: 9485e3dc9070ed6fba256a204d6d10a2 (MD5) Previous issue date: 2023-03-01 | eng |
Appears in Collections: | Doutorado em Ciências Ambientais e Florestais |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2023 - Wilbert Valkinir Cabreira.Pdf | 2.35 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.