Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15919
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tavares, Patricia Dias | |
dc.date.accessioned | 2023-12-18T17:11:32Z | - |
dc.date.available | 2023-12-18T17:11:32Z | - |
dc.date.issued | 2018-02-26 | |
dc.identifier.citation | TAVARES, Patricia Dias. Influência da matriz adjacente na diversidade e funções ecológicas de besouros escarabeíneos em fragmentos de Mata Atlântica. 2018. 114 f.. Tese( Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2018. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15919 | - |
dc.description.abstract | A perda e fragmentação de habitats estão entre as principais ameaças para a conservação da biodiversidade e dos serviços ecossistêmicos associados. A perda de área, aumento do isolamento e maior exposição aos distúrbios da matriz adjacente promovem mudanças com sérias consequências para a estrutura e função dos fragmentos florestais. O papel da matriz adjacente tanto enquanto habitat, quanto os efeitos do seu manejo sobre as áreas naturais remanescentes ainda permanecem mal compreendidos. Besouros escarabeíneos (Coleoptera, Scarabaeidae, Scarabaeinae) compõem um importante grupo de insetos, bem representados em regiões tropicais e muito sensíveis às mudanças nas condições ambientais e estrutura do habitat. Esses besouros podem ser utilizados para a avaliação dos impactos ambientais naturais ou antropogênicos em florestas tropicais. Eles desempenham funções ecológicas importantes, participando de processos chave nos ecossistemas, como ciclagem de nutrientes, aeração e agregação do solo, dispersão secundária de sementes e controle de parasitas de vertebrados. Nessa tese avaliamos a influência da matriz adjacente a remanescentes florestais sobre a comunidade de besouros rola bostas e as funções de remoção de fezes, revolvimento do solo e dispersão secundária de sementes pequenas, médias e grandes. Coletamos besouros Scarabaeinae em 13 áreas de floresta remanescente, com área total variando de 8,46ha a 49259,25ha. Selecionamos sete, dessas áreas, onde avaliamos as funções ecológicas. Realizamos o levantamento da abertura do dossel, declividade, textura e caracterização química do solo, além dos índices da paisagem, descrevendo o tamanho, isolamento, e a razão perímetro/área de cada área estudada. Para caracterizar a influência da matriz adjacente, calculamos a proporção do limite do fragmento composto por agricultura intensiva e pastagem convencional. Coletamos 914 indivíduos, distribuídos em dez espécies, seis gêneros e quatro tribos. Encontramos de 73% a 100% da riqueza esperada pelos estimadores para cada área. A espécie mais abundante foi Canthon staigi (Pereira, 1953), com 669 dos indivíduos, ocorrendo em 11 dos remanescentes estudados. O aumento das áreas de floresta que fazem limite com pastagem e agricultura intensiva afetaram negativamente a riqueza, abundância e biomassa de besouros escarabeídeos. A proporção de limite com agricultura intensiva afetou negativamente as taxas de revolvimento do solo. A abundância e biomassa de roladores foram responsáveis pela maioria dos serviços, exceto dispersão de sementes médias e grandes. A perda de funções ecológicas pode promover alterações em diferentes componentes que regulam os serviços ecossistêmicos, levando a processos irreversíveis nas áreas remanescentes. Assim, além da comparação entre diferentes formas de uso da terra, futuros estudos devem considerar o manejo da matriz adjacente na avaliação de distúrbios em áreas remanescentes florestais | por |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Besouro rola-bosta | por |
dc.subject | agricultura intensiva | por |
dc.subject | pastagem | por |
dc.subject | partilha de terras | por |
dc.subject | poupa terras | por |
dc.subject | Intensive farming | eng |
dc.subject | dung beetle | eng |
dc.subject | pasture | eng |
dc.subject | landsharing | eng |
dc.subject | landsparing | eng |
dc.title | Influência da matriz adjacente na diversidade e funções ecológicas de besouros escarabeíneos em fragmentos de Mata Atlântica | por |
dc.title.alternative | Influence of the adjacent matrix on the diversity and ecological functions of dung beetles on fragments of Atlantic Forest | eng |
dc.type | Tese | por |
dc.description.abstractOther | Abstract: Habitat loss and fragmentation are among the main threats to biodiversity conservation and associated ecosystem services. Loss of area, increased isolation, and increased exposure to adjacent matrix disturbances promote changes with serious consequences for the structure and function of forest fragments. The role of the adjacent matrix, both the habitat and the effects of its management on the remaining natural areas remain poorly understood. Dung beetles (Coleoptera: Scarabaeidae, Scarabaeinae) compose an important group of insects, well represented in tropical regions and are very sensitive to changes in environmental conditions and habitat structure. These dung beetles can be used to evaluate natural or anthropogenic impacts on tropical forests. They perform important ecological functions by participating in key processes in ecosystems, such as nutrient cycling, aeration and soil aggregation, secondary seed dispersal, and control of vertebrate parasites. In this thesis, we evaluated the influence of the matrix adjacent to forest remnants on the dung beetles community and the functions of fecal removal, bioturbation and secondary dispersion of small, medium and large seeds. We collected dung beetles in 13 remaining forest areas, with total area ranging from 8.46ha to 49259.25ha. We selected seven of these areas, where we evaluated ecological functions. We conducted the survey of the canopy opening, slope, texture and chemical characterization of the soil, besides the landscape indexes, describing the size, isolation, and perimeter/area ratio of each studied area. To characterize the adjacent matrix influence, we calculated the proportion of the fragment boundary composed by intensive agriculture and conventional pasture. We collected 914 individuals, distributed in ten species, six genera and four tribes. We found from 73% to 100% of the wealth expected by the estimators for each area. The most abundant species was Canthon staigi (Pereira, 1953), with 669 individuals, occurring in 11 of the remnants studied. The increase in forest areas that border on pasture and intensive agriculture negatively affected the richness, abundance and biomass of the dung beetles. The proportion of the limit with intensive agriculture negatively affected the rates of bioturbation. The abundance and biomass of rollers were responsible for most of the services except medium and large seed dispersal. The loss of ecological functions can promote changes in different components that regulate ecosystem services, leading to irreversible processes in the remaining areas. Thus, in addition to comparing different forms of land use, future studies should consider the management of the adjacent matrix in the evaluation of disturbances in remnant forest areas | eng |
dc.contributor.advisor1 | Pires, Alexandra | |
dc.contributor.advisor1ID | 04552724762 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9306076279698808 | por |
dc.contributor.advisor-co1 | Uzêda, Mariella Camardelli | |
dc.contributor.advisor-co1ID | 46556630578 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/5351884387366609 | por |
dc.contributor.referee1 | Pires, Alexandra | |
dc.contributor.referee2 | Korasaki, Vanesca | |
dc.contributor.referee3 | Vieira, Marcus Vinícius | |
dc.contributor.referee4 | Bergallo, Helena de Godoy | |
dc.contributor.referee5 | Freitas, André Felippe Nunes de | |
dc.creator.ID | 01526401690 | por |
dc.creator.Lattes | http://lattes.cnpq.br/4919235434618188 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Florestas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Ambientais e Florestais | por |
dc.relation.references | ALMEIDA, S.; LOUZADA, J.; SPERBER, C.; BARLOW, J. Subtle Land‐Use Change and Tropical Biodiversity: Dung Beetle Communities in Cerrado Grasslands and Exotic Pastures. Biotropica, v. 43, n. 6, p. 704-710, 2011. ANDRESEN, E. Dung beetles in a Central Amazonian rainforest and their ecological role as secondary seed dispersers. Ecological Entomology, v. 27, n. 3, p. 257-270, 2002. AUDINO, L. D.; MURPHY, S. J.; ZAMBALDI, L.; LOUZADA, J.; COMITA, L. S. Drivers of community assembly in tropical forest restoration sites: role of local environment, landscape and space. Ecological Applications, 2017. BEYNON, S. A.; MANN, D. J.; SLADE, E. M.; LEWIS, O. T. Species‐rich dung beetle communities buffer ecosystem services in perturbed agro‐ecosystems. Journal of Applied Ecology, v. 49, n. 6, p. 1365-1372, 2012. Blitzer, E. J.; Dormann, C. F.; Holzschuh, A.; Klein, A. M.; Rand, T. A.; Tscharntke, T. Spillover of functionally important organisms between managed and natural habitats. Agriculture, Ecosystems & Environment, v. 146, n. 1, p. 34-43, 2012. CAMPOS, R.C.; HERNÁNDEZ, M.I.M. Changes in the dynamics of functional groups in communities of dung beetles in Atlantic forest fragments adjacent to transgenic maize crops. Ecological Indicators, v. 49, p. 216-227, 2015. DIDHAM, R. K.; BARKER, G. M.; BARTLAM, S.; DEAKIN, E. L.; DENMEAD, L. H., FISK, L. M.; PETERS, J.M.R.; TYLIANAKIS, J.M.; WRIGHT, H. R.; SCHIPPER, L. A. Agricultural intensification exacerbates spillover effects on soil biogeochemistry in adjacent forest remnants. PLoS One, v. 10, n. 1, p. e0116474, 2015. DRISCOLL, D. A.; BANKS, S. C.; BARTON, P. S; LINDENMAYER, D. B.; SMITH, A. L. Conceptual domain of the matrix in fragmented landscapes. Trends in ecology & evolution, v. 28, n. 10, p. 605-613, 2013. BEIROZ, W.; SLADE, E. M.; BARLOW, J.; SILVEIRA, J. M.; LOUZADA, J.; SAYER, E. Dung beetle community dynamics in undisturbed tropical forests: implications for ecological evaluations of land‐use change. Insect Conservation and Diversity, v. 10, n. 1, p. 94-106, 2017. BRAGA, R. F.; KORASAKI, V.; ANDRESEN, E.; LOUZADA, J. Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: a rapid assessment of ecological functions associated to biodiversity. PLoS One, v. 8, n. 2, p. e57786, 2013. BRUSSAARD, L.; CARON, P.; CAMPBELL, B.; LIPPER, L.; MAINKA, S.; RABBINGE, R., BABIN, D.; PULLEMAN, M. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Current opinion in Environmental sustainability, v. 2, n. 1, p. 34-42, 2010. 20 FARDILA, D.; KELLY, L. T.; MOORE, J. L.; MCCARTHY, M. A. A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20years. Biological Conservation, v. 212, p. 130-138, 2017. FARIAS, P. M.; ARELLANO, L.; HERNÁNDEZ, M. I. M.; ORTIZ, S. L. Response of the copro-necrophagous beetle (Coleoptera: Scarabaeinae) assemblage to a range of soil characteristics and livestock management in a tropical landscape. Journal of insect conservation, v. 19, n. 5, p. 947-960, 2015. FARIAS, P.M.D.; HERNÁNDEZ, M. I.M. Beetles Associated with Agroecosystems of Southern Brazil: Relationship with Soil Properties. Revista Brasileira de Ciência do Solo, v. 41, 2017. FAHRIG, L. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecological applications, v. 12, n. 2, p. 346-353, 2002. FISCHER, J.; LINDENMAYER, D.B. Beyond fragmentation: the continuum model for fauna research and conservation in human‐modified landscapes. Oikos, v. 112, n. 2, p. 473-480, 2006. FOLEY, J. A.; RAMANKUTTY, N.; BRAUMAN, K. A.; CASSIDY, E. S.; GERBER, J. S.; JOHNSTON, M.; MUELLER, N. D.; O‟CONNELL, C.; RAY, D. K.; WEST, P. C.; BALZER, C.; BENNETT, E. M.; CARPENTER, S. R.; HILL, J.; MONFREDA, C.; POLASKY, S.; ROCKSTROM, J.; SHEEHAN, J.; SIEBERT, S.; TILMAN, D.; ZAKS, D. P. M. Solutions for a cultivated planet. Nature, v. 478, n. 7369, p. 337-342, 2011. FRANÇA, F. M.; FRAZÃO, F. S.; KORASAKI, V., LOUZADA, J.; BARLOW, J. Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. Biological Conservation, v. 216, p. 115-122, 2017. GOULART, F. F.; CARVALHO-RIBEIRO, S.; SOARES-FILHO, B. Farming-biodiversity segregation or integration? revisiting land sparing versus land sharing debate. Journal of Environmental Protection, v. 7, n. 07, p. 1016, 2016. HALFFTER, G.; EDMONDS, W. D. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach., 1982. HALFFTER, G.; FAVILA, M. The Scarabaeinae (Insecta: Coleoptera) an animal group for analyzing, inventorying and monitoring biodiversity in tropical rainforest and modified landscapes. Biology international, v. 27, n. 27, p. 15-21, 1993. HASLEM, A.; BENNETT, A. F. Birds in agricultural mosaics: the influence of landscape pattern and countryside heterogeneity. Ecological Applications, v. 18, n. 1, p. 185-196, 2008. HADDAD, N. M.; BRUDVIG, L. A.; CLOBERT, J.; DAVIES, K. F.; GONZALEZ, A.; HOLT, R. D.; Lovejoy, T.E.; Sexton, J. O.; Austin, M. P.; Collins, C. D.; Cook, W. M.; 21 Damschen, E. I.; Ewers, R. M.; Foster, B. L..; Jenkins, C. N.; King, A. J.; Laurance, W. F.; Levey, D. J.; Margules, C. R.; Melbourne, B. A.; Nicholls, A. O.; Orrock, J. L.; Song, D.; Townshend, R. Habitat fragmentation and its lasting impact on Earth‟s ecosystems. Science Advances, v. 1, n. 2, p. e1500052, 2015. JACOBS, C. T.; SCHOLTZ, C. H.; ESCOBAR, F.; DAVIS, A. L. V. How might intensification of farming influence dung beetle diversity (Coleoptera: Scarabaeidae) in Maputo Special Reserve (Mozambique)?. Journal of Insect Conservation, v. 14, n. 4, p. 389-399, 2010. KORASAKI, V.; BRAGA, R. F.; ZANETTI, R.; MOREIRA, F. M.;VAZ-DE-MELLO, F. Z.; LOUZADA, J. Conservation value of alternative land-use systems for dung beetles in Amazon: valuing traditional farming practices. Biodiversity and conservation, v. 22, n. 6-7, p. 1485-1499, 2013. LAMB, A.; BALMFORD, A.; GREEN, R. E.; PHALAN, B. To what extent could edge effects and habitat fragmentation diminish the potential benefits of land sparing?. Biological Conservation, v. 195, p. 264-271, 2016. LUMARET, J. P.; MARTÍNEZ, M. El impacto de productos veterinarios sobre insectos coprófagos: consecuencias sobre la degradación del estiércol en pastizales. Acta zoológica mexicana, v. 21, n. 3, p. 137-148, 2005. MITCHELL, M. G.; SUAREZ-CASTRO, A. F.; MARTINEZ-HARMS, M.; MARON, M.; MCALPINE, C.; GASTON, K. J.; JOHANSEN, K.; RHODES, J. R. Reframing landscape fragmentation's effects on ecosystem services. Trends in Ecology & Evolution, v. 30, n. 4, p. 190-198, 2015. MORTELLITI, A.; AMORI, G.; CAPIZZI, D.; CERVONE, C.; FAGIANI, S.; POLLINI, B.; BOITANI, L. Independent effects of habitat loss, habitat fragmentation and structural connectivity on the distribution of two arboreal rodents. Journal of Applied Ecology, v. 48, n. 1, p. 153-162, 2011. NERVO, B.; TOCCO, C.; CAPRIO, E.; PALESTRINI, C.; ROLANDO, A. The effects of body mass on dung removal efficiency in dung beetles. PloS one, v. 9, n. 9, p. e107699, 2014. NERVO, B.; CAPRIO, E.; CELI, L.; LONATI, M.; LOMBARDI, G.; FALSONE, G.; IUSSIG, G; PALESTRINI, C.; SAID‐PULLICINO, C. D.; ROLANDO, A. Ecological functions provided by dung beetles are interlinked across space and time: evidence from 15N isotope tracing. Ecology, v. 98, n. 2, p. 433-446, 2017. NICHOLS, E.; LARSEN, T.; SPECTOR, S.; DAVIS, A. L.; ESCOBAR, F.; FAVILA, M.; VULINECE, K. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biological conservation, v. 137, n. 1, p. 1-19, 2007. 22 NICHOLS, E.; SPECTOR, S.; LOUZADA, J.; LARSEN, T.; AMEZQUITA, S.; FAVILA, M. E.; NETWORK, T. S. R. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological conservation, v. 141, n. 6, p. 1461-1474, 2008. NICHOLS, E.; URIARTE, M.; BUNKER, D. E.; FAVILA, M. E.; SLADE, E. M.; VULINEC, K.; LARSEN, T.; VAZ-DE-MELLO, F. Z.; LOUZADA, J.; NAEEM, S.; SPECTOR, S. H. Trait‐dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology, v. 94, n. 1, p. 180-189, 2013. PERFECTO, I.; VANDERMEER, J. Biodiversity conservation in tropical agroecosystems. Annals of the New York Academy of Sciences, v. 1134, n. 1, p. 173-200, 2008. PERFECTO, I; VANDERMEER, J. The agroecological matrix as alternative to the landsparing/ agriculture intensification model. Proceedings of the National Academy of Sciences, v. 107, n. 13, p. 5786-5791, 2010. PHALAN, B.; ONIAL, M.; BALMFORD, A.; GREEN, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science, v. 333, n. 6047, p. 1289-1291, 2011. RADFORD, J.Q.; BENNETT, A.F. The relative importance of landscape properties for woodland birds in agricultural environments. Journal of Applied Ecology, v. 44, n. 4, p. 737-747, 2007. RIBEIRO, M. C.; METZGER, J. P.; MARTENSEN, A. C.; PONZONI, F. J.; HIROTA, M. M.The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological conservation, v. 142, n. 6, p. 1141- 1153, 2009. SIMELANE, T. S. Impacts of traditional land uses on biodiversity outside conservation areas: effects on dung beetle communities of Vaalbos National Park. African journal of ecology, v. 48, n. 2, p. 490-501, 2010 SLADE, E. M.; MANN, D. J.; VILLANUEVA, J. F.; LEWIS, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. Journal of Animal Ecology, v. 76, n. 6, p. 1094-1104, 2007. TABARELLI, M.; AGUIAR, A. V.; GIRAO, L. C.; PERES, C. A.; LOPES, A. V. Effects of pioneer tree species hyperabundance on forest fragments in northeastern Brazil. Conservation Biology, v. 24, n. 6, p. 1654-1663, 2010. TILMAN, D. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proceedings of the National Academy of Sciences, v. 96, n. 11, p. 5995-6000, 1999. 23 TSCHARNTKE, T.; KLEIN, A. M.; KRUESS, A.; STEFFAN‐DEWENTER, I.; THIES, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology letters, v. 8, n. 8, p. 857-874, 2005. TSCHARNTKE, T.; CLOUGH, Y.; WANGER, T. C.; JACKSON, L.; MOTZKE, I.; PERFECTO, I.; Vandermeer, J.; WHITBREAD, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biological conservation, v. 151, n. 1, p. 53-59, 2012. UZÊDA, M. C.; FIDALGO, E. C. C.; MOREIRA, R. V. D. S.; FONTANA, A.; DONAGEMMA, G. K. Soil eutrophication and tree community in patches of an agricultural landscape. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1120-1130, 2016 VERDÚ, J. R.; LOBO, J. M.; SÁNCHEZ-PIÑERO, F.; GALLEGO, B.; NUMA, C.; LUMARET, J. P.; CORTEZ, V.; ORTIZ, A.; TONELLIA, M.; GARCÍA-TEBA, J. P.; REY, A.; RODRÍGUEZ, A.; DURÁNG, J. Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Science of The Total Environment, v. 618, p. 219-228, 2018. YAMADA, D.; IMURA, O.; SHI, K.; SHIBUYA, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassland Science, v. 53, n. 2, p. 121-129, 2007. Balmford A, Green R, Phalan B. What conservationists need to know about farming. Proceedings of the Royal Society of London B: Biological Sciences 2012; 279(1739): 2714-2724. Barlow J, Lennox GD, Ferreira J, Berenguer E, Lees AC, Mac Nally, et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016; 535(7610):144-147. Benítez-Malvido J, Martínez-Falcón AP, Dáttilo W, Del Val E. Diversity and network structure of invertebrate communities associated to Heliconia species in natural and human disturbed tropical rain forests. Global Ecology and Conservation 2014; 2:107-117. Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitat heterogeneity the key?. Trends in Ecology & Evolution 2003; 18(4): 182-188. Birkhofer K, Diehl E, Andersson J, Ekroos J, Früh-Müller A, Machnikowski F. Ecosystem services-current challenges and opportunities for ecological research. Frontiers in Ecology and Evolution 2015; 2:87. Blitzer EJ, Dormann CF, Holzschuh A, Klein AM, Rand TA, Tscharntke T. Spillover of functionally important organisms between managed and natural habitats. Agriculture, Ecosystems & Environment 2012; 146(1):34-43. Brodzińska K, Gazzano I, Altieri MA, Achkar M, Burgueño J, Gliessman E et al. Agroecology and Sustainable Food Systems 2014. Brussaard L, Caron P, Campbell B, Lipper L, Mainka S, Rabbinge R, et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Current opinion in Environmental sustainability 2010; 2(1):34-42. Butchart SH, Walpole M, Collen B, Van Strien A, Scharlemann JP, Almond RE, et al. Global biodiversity: indicators of recent declines. Science 2010; 328(5982): 1164-1168. Cadenasso ML, Pickett STA. Linking forest edge structure to edge function: mediation of herbivore damage. Journal of Ecology 2000; 88(1): 31-44. Campos RC, Hernández MI. Changes in the dynamics of functional groups in communities of dung beetles in Atlantic forest fragments adjacent to transgenic maize crops. Ecological Indicators 2015; 49: 216-227. Carson, R. Silent Spring. 368 pp. Honghton Mifflin Co., Boston, 1962. D‟Anunciação PER, Silva MFV, Ferrante L, Assis DS, Casagrande T, Coelho AZG. Forest fragments surrounded by sugar cane are more inhospitable to terrestrial Amphibian abundance than fragments surrounded by pasture. International Journal of Ecology 2013; 2013. 41 Dallimer M, Rouquette JR, Skinner AM, Armsworth PR, Maltby LM, Warren PH, et al. Contrasting patterns in species richness of birds, butterflies and plants along riparian corridors in an urban landscape. Diversity and Distributions. 2012; 18(8): 742-753. Didham RK, Barker GM, Bartlam S, Deakin EL, Denmead LH, Fisk LM. Agricultural intensification exacerbates spillover effects on soil biogeochemistry in adjacent forest remnants. PloS one 2015; 10(1): 0116474. Didham RK, Lawton JH. Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 1999; 1999: 17-30. Driscoll MJL, Donovan TM. Landscape context moderates edge effects: nesting success of wood thrushes in central New York. Conservation Biology 2004; 18(5): 1330-1338. Dubois O. The state of the world's land and water resources for food and agriculture: managing systems at risk. Earthscan. 2011. Dupouey JL, Dambrine E, Laffite JD, Moares C. Irreversible impact of past land use on forest soils and biodiversity. Ecology 2002; 83(11): 2978-2984. Ewers RM, Didham RK. Continuous response functions for quantifying the strength of edge effects. Journal of Applied Ecology 2006; 43(3): 527-536. Fagan WF, Cantrell RS, Cosner C. How habitat edges change species interactions. The American Naturalist 1999; 53 (2): 165-182. Fahrig L. Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography 2013; 40(9): 1649-1663. FAO. State of the World‟s Forests 2016. Forests and agriculture: land-use challenges and opportunities. Rome; 2016 Fischer J, Brosi B, Daily GC, Ehrlich PR, Goldman R, Goldstein J. Should agricultural policies encourage land sparing or wildlife‐friendly farming?. Frontiers in Ecology and the Environment 2008; 6(7): 380-385. Fischer JB, Lindenmayer D. Beyond fragmentation: the continuum model for fauna research and conservation in human‐modified landscapes. Oikos 2006;112(2):473-480. Flinn KM, Marks PL. Agricultural legacies in forest environments: tree communities, soil properties, and light availability. Ecological Applications 2007;17(2): 452-463. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR et al. Global consequences of land use. Science 2005; 309(5734):570-574. Forman RT, Godron M. Landscape ecology. New York: Jhon Wiley & Sons; 1986 Forman RT. Some general principles of landscape and regional ecology. Landscape ecology 1995; 10(3):133-142. 42 Frost CM, Didham RK, Rand TA, Peralta, Tylianakis JM. Community‐level net spillover of natural enemies from managed to natural forest 2015 Ecology; 96(1), 193-202. Gaigher R, Pryke JS, Samways MJ. High parasitoid diversity in remnant natural vegetation, but limited spillover into the agricultural matrix in South African vineyard agroecosystems. Biological Conservation2015; 186:69-74. Gardner TA, Caro TIM, Fitzherbert EB, Banda T, Lalbhai P. Conservation value of multiple‐use areas in East Africa. Conservation Biology 2007; 21(6):1516-1525. Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton, TG, Bloomer P, et al.. Sustainable intensification in agriculture: premises and policies. Science 2013; 341(6141):33-34. Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 2010; 11(2): 97-105. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty NA et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 990s. Proceedings of the National Academy of Sciences 2010; 107(38):16732-16737. Gliessman S. How to leave industrial agriculture behind by shifting food systems toward agroecology. Agroecology and Sustainable Food Systems 2016; 40(8):757-758. Goulart FF, Carvalho-Ribeiro S, Soares-Filho B. Farming-Biodiversity Segregation or Integration? Revisiting Land Sparing versus Land Sharing Debate. Journal of Environmental Protection 2016; 7(07):1016. Goulart FF, Vandermeer J, Perfecto I, da Matta-Machado RP. Frugivory by five bird species in agroforest home gardens of Pontal do Paranapanema, Brazil. Agroforestry systems 2011; 82(3):239-246. Haenke S, Kovács‐Hostyánszki A, Fründ J, Batáry P, Jauker B, Tscharntke T, et al. Landscape configuration of crops and hedgerows drives local syrphid fly abundance. Journal of Applied Ecology 2014; 51(2):505-513. Haila, Y. A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecological applications 2002; 12(2):321-334. Harper KA, Macdonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, et al. Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology 2005; 19(3):768-782. Hobbs RJ, Harris JA. Restoration ecology: repairing the earth's ecosystems in the new millennium. Restoration ecology 2001; 9(2):239-246. Holt-Giménez E, Altieri M A. Agroecology, food sovereignty, and the new green revolution. Agroecology and sustainable Food systems 2013; 37(1): 90-102. 43 Honnay O, Verheyen K, Butaye J, Jacquemyn H, Bossuyt B, Hermy M. Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecology Letters 2002; 5(4):525-530. Hosonuma N, Herold M, De Sy V, De Fries RS, Brockhaus M, Verchot L, et al. An assessment of deforestation and forest degradation drivers in developing countries. Environmental Research Letters 2012; 7(4):044009. Hurst ZM, McCleery RA, Collier BA, Fletcher Jr RJ, Silvy NJ, Taylor PJ, et al. Dynamic edge effects in small mammal communities across a conservation-agricultural interface in Swaziland. PLoS One 2013; 8(9):74520. Iverson L, Echeverria C, Nahuelhual L, Luque S. Ecosystem services in changing landscapes: An introduction. Landscape Ecology 2014; 2(29):181-186. ISAAA. 20th Anniversary of the Global Commercialization of Biotech Crops (1996 to 2015) and Biotech Crop Highlights in 2015. (acessado 2016 nov 21) Disponível em: http://isaaa.org/resources/publications/briefs/51/executivesummary/default.asp Kennedy CM, Marra PP. Matrix mediates avian movements in tropical forested landscapes: inference from experimental translocations. Biological Conservation 2010; 143(9):2136-2145. Kleijn D, Snoeijing G, Ineke J. Field boundary vegetation and the effects of agrochemical drift: botanical change caused by low levels of herbicide and fertilizer. Journal of Applied Ecology1997; 1997:1413-1425. Kohler F, Verhulst J, Van Klink R, Kleijn D. At what spatial scale do high‐quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes?. Journal of Applied Ecology 2008; 45(3):753-762. Kupfer JA, Malanson GP, Franklin SB. Not seeing the ocean for the islands: the mediating influence of matrix‐based processes on forest fragmentation effects. Global ecology and biogeography 2006; 15(1):8-20. Laliberté E, Tylianakis JM. Cascading effects of long-term land-use changes on plant traits and ecosystem functioning. Ecology 2012; 93(1):145-155. Laurance WF, Cochrane MA. Synergistic effects in fragmented landscapes. Conservation Biology 2001; 15:1488–1489. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC et al. Ecosystem decay of Amazonian forest fragments: a 22‐year investigation. Conservation Biology 2002; 16(3):605-618. Laurance WF, Nascimento HE, Laurance SG, Andrade A, Ewers RM, Harms KE et al. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS one 2007; 2(10):1017. Laurance WF. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biological conservation 2008; 141(7):1731-1744. 44 Laurance WF, Sayer J, Cassman KG. Agricultural expansion and its impacts on tropical nature. Trends in ecology & evolution 2014; 29(2):107-116. Lindenmayer DB, Franklin JF. Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press; 2002. Lôbo D, Leão T, Melo FP, Santos AM, Tabarelli M. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity and Distributions 2011; 17(2):287-296. Macarthur RH, Wilson EO. An equilibrium theory of insular zoogeography. Evolution 1963;1963:373-387. Macarthur RH, Wilson EO. The theory of island biogeography. Princeton Univ. Press. Princeton, NJ; 1967. Madeira F, Tscharntke T, Elek Z, Kormann UG, Pons X, Rösch V et al. Spillover of arthropods from cropland to protected calcareous grassland–the neighbouring habitat matters. Agriculture, Ecosystems & Environment 2016; 235:127-133. Magura T. Carabids and forest edge: spatial pattern and edge effect. Forest Ecology and management 2002; 157(1):23-37. Marshall EJP, Moonen AC. Field margins in northern Europe: their functions and interactions with agriculture. Agriculture, Ecosystems & Environment 2002; 89(1):5-21. Matson PA, Parton WJ, Power AG, Swift MJ. Agricultural intensification and ecosystem properties. Science 1997; 277(5325):504-509. Meire RO, Lee SC, Yao Y, Targino AC, Torres JPM, Harner T. Seasonal and altitudinal variations of legacy and current-use pesticides in the Brazilian tropical and subtropical mountains. Atmospheric environment 2012; 59:108-116. Melo FP, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M. On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology & Evolution 2012; 28(8):462- 468. Monadjem A, Garcelon DK. Nesting distribution of vultures in relation to land use in Swaziland. Biodiversity & Conservation 2005; 14(9):2079-2093. Montero‐Castaño A, Vila M. Impact of landscape alteration and invasions on pollinators: a meta‐analysis. Journal of Ecology 2012; 100(4):884-893. Murcia, C. Edge effects in fragmented forests: implications for conservation. Trends in ecology & evolution 1995; 10(2):58-62. Neumann JL, Griffiths GH, Hoodless A, Holloway GJ. The compositional and configurational heterogeneity of matrix habitats shape woodland carabid communities in wooded-agricultural landscapes. Landscape ecology 2016; 31(2):301-315. 45 Öckinger E, Lindborg R, Sjödin NE, Bommarco R. Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography 2012; 35(3):259-267. Pardini R, Faria D, Accacio GM, Laps RR, Mariano-Neto E, Paciencia ML, et al. The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biological Conservation 2009; 142(6): 1178-1190. Pascual U, Perrings C. Developing incentives and economic mechanisms for in situ biodiversity conservation in agricultural landscapes. Agriculture, Ecosystems & Environment 2007; 121(3):256-268. Pe‟er G, van Maanen C, Turbé A, Matsinos YG, Kark S. Butterfly diversity at the ecotone between agricultural and semi‐natural habitats across a climatic gradient. Diversity and Distributions 2011; 17(6):1186-1197. Peres CA. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conservation Biology 2011;15(6):1490-1505. Perfecto I, Vandermeer J, Wright A. Nature's matrix: linking agriculture, conservation and food sovereignty. Earthscan; 2009. Perfecto I, Vandermeer J. The agroecological matrix as alternative to the landsparing/ agriculture intensification model. Proceedings of the National Academy of Sciences 2010; 107(13):5786-5791. Perfecto I, Vandermeer J, Hanson P, Cartín V. Arthropod biodiversity loss and the transformation of a tropical agro-ecosystem. Biodiversity and conservation 1997; 6(7):935- 945. Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 2011; 333(6047):1289-1291. Prevedello JA; Vieira MV. Does the type of matrix matter? A quantitative review of the evidence. Biodiversity and Conservation 2010; 19(5):1205-1223. Ramankutty N, Evan AT, Monfreda C, Foley, JA. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles 2008; 22(1). Reganold JP, Wachter JM. Organic agriculture in the twenty-first century. Nature Plants 2016; 2:15221. Ries L, Fletcher Jr RJ, Battin J, Sisk TD. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annual Review of Ecology, Evolution, and Systematics 2004; 2004:491-522. Rodenhouse NL, Best LB, O'Connor RJ, Bollinger EK. Effects of agricultural practices and farmland structures. Ecology and management of Neotropical migratory birds. Oxford University Press, New York, New York, USA 1995; 1995:269-293. 46 Rösch, V., Tscharntke, T., Scherber, C., & Batáry, P. (2015). Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia, 179(1), 209-222. Sánchez-de-Jesús HA, Arroyo-Rodríguez V, Andresen E, Escobar F. Forest loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landscape Ecology 2016; 31(4):843-854. Santos-Barrera G, Urbina-Cardona, JN. The role of the matrix-edge dynamics of amphibian conservation in tropical montane fragmented landscapes. Revista Mexicana de Biodiversidad 2011; 82(2):679-687. Saunders DA, HOBBS RJ, Margules CR. Biological consequences of ecosystem fragmentation: a review. Conservation biology 1991; 5(1):8-32. Scherr SJ, McNeely JA. Biodiversity conservation and agricultural sustainability: towards a new paradigm of „ecoagriculture‟landscapes. Philosophical Transactions of the Royal Society of London B: Biological Sciences 2008; 363(1491):477-494. Tabarelli M, Aguiar AV, Girao LC, Peres CA, Lopes AV. Effects of pioneer tree species hyperabundance on forest fragments in northeastern Brazil. Conservation Biology 2010; 24(6):1654-1663. Toledo VM, Barrera-Bassols N. La memoria biocultural: la importancia ecológica de las sabidurías tradicionales (Vol. 3). Icaria editorial; 2008. Tscharntke T, Klein AM, Kruess A, Steffan‐Dewenter I, Thies C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology letters 2005;8(8): 857-874. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, et al. Landscape moderation of biodiversity patterns and processes‐eight hypotheses. Biological Reviews 2012; 87(3):661-685. Uezu A, Beyer DD, Metzger JP. Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region?. Biodiversity and Conservation 2008; 17(8):1907-1922. Uzêda MC, Fidalgo ECC, de Sousa Moreira RV, Fontana A, Donagemma GK. Eutrofização de solos e comunidade arbórea em fragmentos de uma paisagem agrícola. Pesquisa Agropecuária Brasileira 2016; 51(9):11120-1130. Vandermeer, J., & Perfecto, I. (2007). The agricultural matrix and a future paradigm for conservation. Conservation biology, 21(1), 274-277. Vanreusel W, Van Dyck H. When functional habitat does not match vegetation types: a resource-based approach to map butterfly habitat. Biological Conservation 2007; 135(2):202- 211. 47 Vanreusel W, Van Dyck H. When functional habitat does not match vegetation types: a resource-based approach to map butterfly habitat. Biological Conservation 2007; 135(2): 202- 211. Verburg PH, van Asselen S, van der Zanden EH, Stehfest E. The representation of landscapes in global scale assessments of environmental change. Landscape Ecology 2013; 28(6):1067- 1080. Viveiros de Castro EB, Fernandez FAS. Determinants of differential extinction vulnerabilities of small mammals in Atlantic Forest fragments in Brazil. Biological Conservation 2004; 119:73-80. Walker S, Wilson JB, Steel JB, Rapson GL, Smith B, King WM, Cottam YH. Properties of ecotones: evidence from five ecotones objectively determined from a coastal vegetation gradient. Journal of Vegetation Science 2003; 14(4):579-590. Wermelinger B, Flückiger PF, Obrist MK, Duelli P. Horizontal and vertical distribution of saproxylic beetles (Col., Buprestidae, Cerambycidae, Scolytinae) across sections of forest edges. Journal of Applied Entomology 2007; 131(2):104-114. Wuyts K, De Schrijver A, Vermeiren F, Verheyen K. Gradual forest edges can mitigate edge effects on throughfall deposition if their size and shape are well considered. Forest Ecology and Management 2009; 257(2):679-687. ANDRESEN, E. Effects of dung presence, dung amount and secondary dispersal by dung beetles on the fate of Micropholius guyanensis (Sapotaceae) seeds in Central Amazonia. Journal of Tropical Ecology, v. 17, n. 1, p. 61-78, 2001. ANDRESEN, E. Dung beetles in a Central Amazonian rainforest and their ecological role as secondary seed dispersers. Ecological Entomology, v. 27, n. 3, p. 257-270, 2002. ANDRESEN, E.; LAURANCE, S. G. Possible indirect effects of mammal hunting on dung beetle assemblages in Panama. Biotropica, v. 39, n. 1, p. 141-146, 2007. ALMEIDA, S. D. S.; LOUZADA, J. N. Estrutura da comunidade de Scarabaeinae (Scarabaeidae: Coleoptera) em fitofisionomias do Cerrado e sua importância para a conservação. Neotropical entomology, 2009. AUDINO, L. D.; MURPHY, S. J.; ZAMBALDI, L.; LOUZADA, J.; COMITA, L. S. Drivers of community assembly in tropical forest restoration sites: role of local environment, landscape and space. Ecological Applications, 2017. BANG, H. S.; LEE, J. H.; KWON, O. S.; NA, Y. E.; JANG, Y. S.; KIM, W. H. Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Applied Soil Ecology, v. 29, n. 2, p. 165-171, 2005. BARRAGÁN, F.; MORENO, C. E.; ESCOBAR, F.; HALFFTER, G.; NAVARRETE, D. Negative impacts of human land use on dung beetle functional diversity. PloS one, v. 6, n. 3, p. e17976, 2011. BARRAGÁN, F.; MORENO, C. E.; ESCOBAR, F.; BUENO‐VILLEGAS, J.; HALFFTER, G. The impact of grazing on dung beetle diversity depends on both biogeographical and ecological context. Journal of biogeography, v. 41, n. 10, p. 1991-2002, 2014. BARLOW, J.; LOUZADA, J.; PARRY, L.; HERNÁNDEZ, M. I.; HAWES, J.; PERES, C. A.; VAZ-DE-MELLO, F. R.; GARDNER, T. A. Improving the design and management of forest strips in human‐dominated tropical landscapes: a field test on Amazonian dung beetles. Journal of Applied Ecology, v. 47, n. 4, p. 779-788, 2010. BEIROZ, W., SLADE, E. M., BARLOW, J., SILVEIRA, J. M., LOUZADA, J., & SAYER, E. Dung beetle community dynamics in undisturbed tropical forests: implications for ecological evaluations of land‐use change. Insect Conservation and Diversity, v. 10, n. 1, p. 94-106, 2017. BELSKY, A.J.; BLUMENTHAL, D.M. Effects of livestock grazing on stand dynamics and soils in upland forests of the Interior West. Conservation Biology, v. 11, n. 2, p. 315-327, 1997. BOESING, A. L.; NICHOLS, E.; METZGER, J. P. Effects of landscape structure on avianmediated insect pest control services: a review. Landscape ecology, v. 32, n. 5, p. 931-944, 2017 71 BORNEMISSZA, G. F. A new type of brood care observed in the dung beetle Oniticellus cinctus (Scarabaeidae). Pedobiologia, v. 9, p. 223-225, 1969. BRAGA, R. F.; KORASAKI, V.; AUDINO, L. D.; LOUZADA, J. Are dung beetles driving dung-fly abundance in traditional agricultural areas in the Amazon?. Ecosystems, v. 15, n. 7, p. 1173-1181, 2012. BRAGA, R. F.; KORASAKI, V.; ANDRESEN, E.; LOUZADA, J. Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: a rapid assessment of ecological functions associated to biodiversity. PLoS One, v. 8, n. 2, p. e57786, 2013. BURNHAM, K. P.; ANDERSON, D. R. Model selection and multimodel inference New York. NY: Springer, 2002. DOUBE, Bernard M.; HANSKI, I.; CAMBEFORT, Y. Dung beetles of southern Africa. Dung beetle ecology, p. 133-155, 1991. CAMPOS, R. C.; HERNÁNDEZ, M. I. Changes in the dynamics of functional groups in communities of dung beetles in Atlantic forest fragments adjacent to transgenic maize crops. Ecological Indicators, v. 49, p. 216-227, 2015. CEBALLOS, G.; EHRLICH, P. R.; BARNOSKY, A. D.; GARCÍA, A.; PRINGLE, R. M.; PALMER, T. M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science advances, v. 1, n. 5, p. e1400253, 2015. COLWELL, R. EstimateS: biodiversity estimation. Viceroy. University of Connecticut, 2012. COSTA, F. C.; PESSOA, K. K.; LIBERAL, C. N.; FILGUEIRAS, B. K.; SALOMÃO, R. P.; IANNUZZI, L. What is the importance of open habitat in a predominantly closed forest area to the dung beetle (Coleoptera, Scarabaeinae) assemblage?. Revista Brasileira de Entomologia, v. 57, n. 3, p. 329-334, 2013. CULOT, L.; BOVY, E.; VAZ-DE-MELLO, F. Z.; GUEVARA, R.; GALETTI, M. Selective defaunation affects dung beetle communities in continuous Atlantic rainforest. Biological Conservation, v. 163, p. 79-89, 2013. CULTID, C. A.; MEDINA, C. A.; MARTÍNEZ, B.; ESCOBAR, A. F.; CONSTANTINO, L. M.; BETANCUR, N. J. Escarabajos coprófagos (Scarabaeinae) del Eje Cafetero: guía para el estudio ecológico. WCS-Colombia, CENICAFÉ y Federación Nacional de Cafeteros. Villa María. Colombia, 2012. DIDHAM, R. K.; BARKER, G. M.; BARTLAM, S.; DEAKIN, E. L.; DENMEAD, L. H.; FISK, L. M.; PETERS, J.M.R.; TYLIANAKIS, J.M.; WRIGHT , H.R.; SCHIPPER, L. A. 72 Agricultural intensification exacerbates spillover effects on soil biogeochemistry in adjacent forest remnants. PLoS One, v. 10, n. 1, p. e0116474, 2015. DUFRENE, M.; LEGENDRE, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological monographs, v. 67, n. 3, p. 345-366, 1997. EMBRAPA. Centro Nacional de Pesquisa de Solos. Manual de Métodos de Análise de Solo. 2a edição. Revista Atual. Rio de Janeiro. 212 p., 1997. ENGELBRECHT, B. M. J.; HERZ, H. M. Evaluation of different methods to estimate understorey light conditions in tropical forests. Journal of Tropical Ecology. v. 17, p. 207- 224, 2001. ESCOBAR, F.; HALFFTER, G.; SOLÍS, Á.; HALFFTER, V.; NAVARRETE, D. Temporal shifts in dung beetle community structure within a protected area of tropical wet forest: a 35‐year study and its implications for long‐term conservation. Journal of Applied Ecology, v. 45, n. 6, p. 1584-1592, 2008. ESTAVILLO, C.; PARDINI, R.; ROCHA, P. L. B.. Forest loss and the biodiversity threshold: an evaluation considering species habitat requirements and the use of matrix habitats. PloS one, v. 8, n. 12, p. e82369, 2013. FAHRIG, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography, v. 40, n. 9, p. 1649-1663, 2013. FARDILA, D.; KELLY, L. T.; MOORE, J. L.; MCCARTHY, M. A. A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20years. Biological Conservation, v. 212, p. 130-138, 2017. FARIAS, P. M.; ARELLANO, L.; HERNÁNDEZ, M. I. M.; ORTIZ, S. L. Response of the copro-necrophagous beetle (Coleoptera: Scarabaeinae) assemblage to a range of soil characteristics and livestock management in a tropical landscape. Journal of insect conservation, v. 19, n. 5, p. 947-960, 2015. FARIAS, P. M. D.; HERNÁNDEZ, M. I. M. Dung Beetles Associated with Agroecosystems of Southern Brazil: Relationship with Soil Properties. Revista Brasileira de Ciência do Solo, v. 41, 2017. FIDALGO, E. C. C.; PEDREIRA, B. C. C. G.; DE ABREU, M. B.; DE MOURA, I. B.; GODOY, M. D. P. Uso e cobertura da terra na bacia hidrográfica do rio Guapi- Macacu. Embrapa Solos-Documentos (INFOTECA-E), 2008. FILGUEIRAS, B. K.; TABARELLI, M.; LEAL, I. R.; VAZ-DE-MELLO, F. Z., & IANNUZZI, L. Dung beetle persistence in human-modified landscapes: combining indicator species with anthropogenic land use and fragmentation-related effects. Ecological Indicators, v. 55, p. 65-73, 2015. FRANÇA, F. M.; FRAZÃO, F. S.; KORASAKI, V.; LOUZADA, J.; BARLOW, J. Identifying thresholds of logging intensity on dung beetle communities to improve the 73 sustainable management of Amazonian tropical forests. Biological Conservation, v. 216, p. 115-122, 2017. FRAZER, G. W.; CANHAM, C. D.; LERTZMAN, K. P. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York, v. 36, 1999. FROST, C. M.; DIDHAM, R. K.; RAND, T. A.; PERALTA, G.; TYLIANAKIS, J. M. Community‐level net spillover of natural enemies from managed to natural forest. Ecology, v. 96, n. 1, p. 193-202, 2015. GARDNER, T. A.; CARO, T. I. M.; FITZHERBERT, E. B.; BANDA, T.; LALBHAI, P. Conservation value of multiple‐use areas in East Africa. Conservation Biology, v. 21, n. 6, p. 1516-1525, 2007. GARDNER, T. A.; BARLOW, J.; ARAUJO, I. S.; ÁVILA‐PIRES, T. C.; BONALDO, A. B.; COSTA, J. E.; ESPOSITO, M.C.; FERREIRA, L.V.; HAWES, J.; HERNANDEZ, M.I.M.; HOOGMOED, M.S.; LEITE, R.N.; LO-MAN-HUNG, N.; MALCOLM, J.R.; MARTINS, M.B.; MESTRE, L.A.M.; MIRANDA-SANTOS, R.; OVERAL, W.L.; PARRY, L.; PETERS, S.L.; RIBEIRO-JUNIOR, A.A.; SILVA, M.N.F.; MOTTA, C.S.; PERES, C.A. The cost‐effectiveness of biodiversity surveys in tropical forests. Ecology letters, v. 11, n. 2, p. 139-150, 2008. GARDNER, T. A.; BARLOW, J.; CHAZDON, R.; EWERS, R. M.; HARVEY, C. A.; PERES, C. A.; SODHI, N. S. Prospects for tropical forest biodiversity in a human‐modified world. Ecology letters, v. 12, n. 6, p. 561-582, 2009. GOULART, F. F.; CARVALHO-RIBEIRO, S.; SOARES-FILHO, B. Farming-biodiversity segregation or integration? revisiting land sparing versus land sharing debate. Journal of Environmental Protection, v. 7, n. 07, p. 1016, 2016. HALFFTER, G.; EDMONDS, W. D. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach., 1982. HADDAD, N. M.; BRUDVIG, L. A.; CLOBERT, J.; DAVIES, K. F.; GONZALEZ, A.; HOLT, R. D.; LOVEJOY, T.E.; SEXTON, J.O.; AUSTIN, M.P.; COLLINS, C.D.; COOK,W.M.; DAMSCHEN, E.D.; EWERS, R.M.; FOSTER, B.L.; JENKINS, C.N.; KING, A.J.; LAURANCE, W.F.; LEVEY, D.J.; MARGULES, C.R.; MELBOURNE, B.A.; NICHOLLS, A.O.; ORROCK, J.L.; SONG, D.; TOWNSHEND, J.R. Habitat fragmentation and its lasting impact on Earth‟s ecosystems. Science Advances, v. 1, n. 2, p. e1500052, 2015. HANSKI, I.; AND Y. CAMBEFORT. Dung beetle ecology. Princeton University Press, 2014. 74 Hernández, M.I.M. Besouros escarabeíneos (Coleoptera: Scarabaeidae) da caatinga paraibana, Brasil. Oecologia Australis, v. 11, n. 3, p. 356-364, 2009. HERNÁNDEZ, M. I.; BARRETO, P. S.; COSTA, V. H.; CREAO-DUARTE, A. J.; FAVILA, M. E. Response of a dung beetle assemblage along a reforestation gradient in Restinga forest. Journal of insect conservation, v. 18, n. 4, p. 539-546, 2014. HORGAN, F.G. Effects of deforestation on diversity, biomass and function of dung beetles on the eastern slopes of the Peruvian Andes. Forest Ecology and Management, v. 216, n. 1, p. 117-133, 2005. HORGAN, F. G. Dung beetles in pasture landscapes of Central America: proliferation of synanthropogenic species and decline of forest specialists. Biodiversity and Conservation, v. 16, n. 7, p. 2149-2165, 2007. JACOBS, C. T.; SCHOLTZ, C. H.; ESCOBAR, F.; DAVIS, A. L. How might intensification of farming influence dung beetle diversity (Coleoptera: Scarabaeidae) in Maputo Special Reserve (Mozambique)?. Journal of Insect Conservation, v. 14, n. 4, p. 389-399, 2010. KLEIN, B.C. Effects of forest fragmentation on dung and carrion beetle communities in central Amazonia. Ecology, v. 70, n. 6, p. 1715-1725, 1989. KORASAKI, V.; BRAGA, R. F; ZANETTI, R.; MOREIRA, F. M.; VAZ-DE-MELLO, F. Z.; LOUZADA, J. Conservation value of alternative land-use systems for dung beetles in Amazon: valuing traditional farming practices. Biodiversity and conservation, v. 22, n. 6-7, p. 1485-1499, 2013. LALIBERTÉ, E.; TYLIANAKIS, J.M. Cascading effects of long‐term land‐use changes on plant traits and ecosystem functioning. Ecology, v. 93, n. 1, p. 145-155, 2012. LAURANCE, W. F.; DELAMÔNICA, P.; LAURANCE, S. G.; VASCONCELOS, H. L.; LOVEJOY, T. E. Conservation: rainforest fragmentation kills big trees. Nature, v. 404, n. 6780, p. 836-836, 2000. LAURANCE, W. F.; LOVEJOY, T.; VASCONCELOS, H. L.; BRUNA, E. M.;DIDHAM, R. K.; STOUFFER, P.; GASCON, C.; BIERREGAARD, R.; LAURANCE, S.; SAMPAIO, E. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, Nova Iorque, vol. 16, n. 3, p. 605-618, 2002. LAURANCE, W.F. Have we overstated the tropical biodiversity crisis?. Trends in Ecology & Evolution, v. 22, n. 2, p. 65-70, 2007. LAURANCE, W. F.; CAMARGO, J. L.; LUIZÃO, R. C.; LAURANCE, S. G.; PIMM, S. L.; BRUNA, E. M.; STOUFFER, P.S.; WILLIAMSON , G.B.; MALVIDO , J.B.; VASCONCELOS , H.L.; VAN HOUTAN, K. S.; ZARTMAN, C.E.; BOYLE, S.A.; 75 DIDHAM, R. K.; ADRADE, A.; LOVEJOY, T.E. The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, v. 144, n. 1, p. 56-67, 2011. LEWIS, S. L.; MASLIN, M. A. Defining the anthropocene. Nature, v. 519, n. 7542, p. 171- 180, 2015. LUMARET, J. P.; MARTÍNEZ, M. El impacto de productos veterinarios sobre insectos coprófagos: consecuencias sobre la degradación del estiércol en pastizales. Acta zoológica mexicana, v. 21, n. 3, p. 137-148, 2005. MCGARIGAL, K. Fragstats: user guideline. Version 3.Disponível em: <http://www.umass.edu/landeco/research/fragstats/documents/User%20guidelines/User%20g uidelines%20content.htm>. Acesso em: set. 2015. MARSHALL, E. J. P.; MOONEN, A. C. Field margins in northern Europe: their functions and interactions with agriculture. Agriculture, Ecosystems & Environment, v. 89, n. 1, p. 5- 21, 2002. MEIRE, R. O.; LEE, S. C.; YAO, Y.; TARGINO, A. C.; TORRES, J. P. M.; HARNER, T. Seasonal and altitudinal variations of legacy and current-use pesticides in the Brazilian tropical and subtropical mountains. Atmospheric environment, v. 59, p. 108-116, 2012. MEIRE, R. O.; KHAIRY, M.; TARGINO, A. C.; GALVÃO, P. M. A.; TORRES, J. P. M., MALM, O.; LOHMANN, R. Use of passive samplers to detect organochlorine pesticides in air and water at wetland mountain region sites (S-SE Brazil). Chemosphere, v. 144, p. 2175- 2182, 2016. MONADJEM, A.; GARCELON, D. K. Nesting distribution of vultures in relation to land use in Swaziland. Biodiversity and Conservation, v. 14, n. 9, p. 2079-2093, 2005. NERVO, B.; CAPRIO, E.; CELI, L.; LONATI, M.; LOMBARDI, G.; FALSONE, G.; LUSSIG, G.; PALESTRINI, C.; SAID-PULLICINO, D.; ROLANDO, A. Ecological functions provided by dung beetles are interlinked across space and time: evidence from 15N isotope tracing. Ecology, v. 98, n. 2, p. 433-446, 2017. NEWTON, I. The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis, v. 146, n. 4, p. 579-600, 2004 NICHOLS, E.; LARSEN, T.; SPECTOR, S.; DAVIS, A. L., ESCOBAR, F.; FAVILA, M.; NETWORK, T. S. R. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biological conservation, v. 137, n. 1, p. 1-19, 2007. ÖCKINGER, E.; LINDBORG, R.; SJÖDIN, N. E.; BOMMARCO, R. Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography, v. 35, n. 3, p. 259- 267, 2012. 76 PARDINI, R.; DE SOUZA, S. M.; BRAGA-NETO, R.; METZGER, J. P. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological conservation, v. 124, n. 2, p. 253-266, 2005. PEDREIRA, B. C. C. G.; FIDALGO, E. C. C.; ABREU, M. B., EPIPHANIO, J. C. N.; GALVAO, L. S. Mapeamento do uso e cobertura da terra da bacia hidrográfica do rio Guapi- Macacu, RJ. In: Anais XIV Simposio Brasileiro de Sensoriamento Remoto. Natal, INPE. 2009. p. 2111-2118. MASSERA DA HORA, M. A. G.; GONÇALVES COSTA, P. H. M. Coordenadoria de recursos hídricos. Projeto Macacu. 2010. PREVEDELLO, J. A.; VIEIRA, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodiversity and Conservation, v. 19, n. 5, p. 1205-1223, 2010. QUINTERO, I.; HALFFTER, G. Temporal changes in a community of dung beetles (Insecta: Coleoptera: Scarabaeinae) resulting from the modification and fragmentation of tropical rain forest. Acta Zoológica Mexicana (nueva serie), v. 25, n. 3, 2009. RIBEIRO, M. C.; METZGER, J. P.; MARTENSEN, A. C.; PONZONI, F. J.; HIROTA, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological conservation, v. 142, n. 6, p. 1141- 1153, 2009. ROSSINI, M.; VAZ-DE-MELLO, F. Z. A review of the genus Chalcocopris Burmeister, 1846 (Coleoptera: Scarabaeidae: Scarabaeinae), with description of a new species. Zootaxa, v. 3920, n. 2, p. 291-300, 2015. SCHEFFLER, P. Y. Dung beetle (Coleoptera: Scarabaeidae) diversity and community structure across three disturbance regimes in eastern Amazonia. Journal of Tropical Ecology, v. 21, n. 1, p. 9-19, 2005. SILVA, P. G.; HERNÁNDEZ, M. I. M. Local and regional effects on community structure of dung beetles in a mainland-island scenario. PLoS One, v. 9, n. 10, p. e111883, 2014. SILVA, R. J.; PELISSARI, T. D.; KRINSKI, D.; CANALE, G.; VAZ-DE-MELLO, F. Z. Abrupt species loss of the Amazonian dung beetle in pastures adjacent to species-rich forests. Journal of Insect Conservation, p. 1-8, 2017 SLADE, E. M.; ROSLIN, T.; SANTALAHTI, M.; BELL, T. Disentangling the „brown world‟faecal–detritus interaction web: dung beetle effects on soil microbial properties. Oikos, v. 125, n. 5, p. 629-635, 2016. SPECTOR, S.; AYZAMA, S. Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian Neotropical forest–savanna ecotone. Biotropica, v. 35, n. 3, p. 394-404, 2003. 77 SPECTOR, S. Scarabaeine dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae): an invertebrate focal taxon for biodiversity research and conservation. The coleopterists bulletin, v. 60, n. sp5, p. 71-83, 2006. TEAM, R. Core. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. R Foundation for Statistical Computing. 2016. UZÊDA, M. C.; FIDALGO, E.C.C.; IGUATEMY, M.A.; ALVES, R.C.; ROWUS, J.R.C. Explorando as relações entre estrutura da paisagem e atributos de qualidade de fragmentos em região de Mata Atlântica no Estado do Rio de Janeiro. Embrapa Solos-Artigo em periódico indexado (ALICE), 2011. UZÊDA, M. C.; FIDALGO, E. C. C.; DE SOUSA MOREIRA, R. V.; FONTANA, A.; DONAGEMMA, G. K. Eutrofização de solos e comunidade arbórea em fragmentos de uma paisagem agrícola. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 11120-1130, 2016. VELOSO, H. P.; RANGEL FILHO, A. L. R.; LIMA, J. C. A. Classificação da vegetação brasileira, adaptada a um sistema universal. Ministério da Economia, Fazenda e Planejamento, Fundação Instituto Brasileiro de Geografia e Estatística, Diretoria de Geociências, Departamento de Recursos Naturais e Estudos Ambientais, 1991. VERDÚ, J. R.; LOBO, J. M.; SÁNCHEZ-PIÑERO, F.; GALLEGO, B., NUMA, C.; LUMARET, J. P.; CORTEZ, V.; ORTIZ, A.; TONELLI, O.M.; GARCÍA-TEBA, J.P.; REY, A.; RODRÍGUEZ, A.; DURÁN, J. Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Science of The Total Environment, v. 618, p. 219-228, 2018. YAMADA, D.; IMURA, O.; SHI, K.; SHIBUYA, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassland Science, v. 53, n. 2, p. 121-129, 2007. ALBUQUERQUE C.; C. M., PUKER, A.; FERREIRA, K. R.; CRISTALDO, C. M.; FERREIRA, F. N. F.; ABOT, A. R.; KORASAKI, V. Using dung beetles to evaluate the conversion effects from native to introduced pasture in the Brazilian Pantanal. Journal of insect conservation, v. 20, n. 3, p. 447-456, 2016. ANDRESEN, E. Dung beetles in a Central Amazonian rainforest and their ecological role as secondary seed dispersers. Ecological Entomology, v. 27, n. 3, p. 257-270, 2002. ANDRESEN, E. Effect of forest fragmentation on dung beetle communities and functional consequences for plant regeneration. Ecography, v. 26, n. 1, p. 87-97, 2003. BATILANI-FILHO, M.; HERNANDEZ, M. I. M. Decline of Ecological Functions Performed by Dung Beetles in Areas of Atlantic Forest and Contribution of Rollers and Tunnellers in Organic Matter Removal. Environmental Entomology, p. nvx091, 2017. BARLOW, J.; LENNOX, G. D.; FERREIRA, J.; BERENGUER, E.; LEES, A. C.; MAC NALLY, R.; THOMSON, J.R.; FERRAZ, S.F.B.; LOUZADA, J.; OLIVEIRA, V.H.F.; PARRY, L.; SOLAR, R.R.C.; VIEIRA, I.C.G.; ARAGÃO, L.E.O.C.; BEGOTTI, R.A.; BRAGA, R.F.; CARDOSO, T.M.; OLIVEIRA JR, R.C.; SOUZA JR, C.M.; MOURA, N.G.; NUNES, S.S.; SIQUEIRA, J.V.; PARDINI, R.; SILVEIRA, J.M., VAZ-DE-MELLO, F.Z.; VEIGA, R.C.S.; VENTURIEIRI, A.; GARDNER, T.A. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, v. 535, n. 7610, p. 144-147, 2016. BARRAGÁN, F.; MORENO, C. E., ESCOBAR, F.; HALFFTER, G.; NAVARRETE, D. Negative impacts of human land use on dung beetle functional diversity. PloS one, v. 6, n. 3, p. e17976, 2011. BRAGA, R. F.; KORASAKI, V.; AUDINO, L. D.; LOUZADA, J. Are dung beetles driving dung-fly abundance in traditional agricultural areas in the Amazon?. Ecosystems, v. 15, n. 7, p. 1173-1181, 2012. BRAGA, R. F.; KORASAKI, V.; ANDRESEN, E.; LOUZADA, J. Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: a rapid assessment of ecological functions associated to biodiversity. PLoS One, v. 8, n. 2, p. e57786, 2013. CULOT, L.; BOVY, E.,; VAZ-DE-MELLO, F. Z.; GUEVARA, R.; GALETTI, M. Selective defaunation affects dung beetle communities in continuous Atlantic rainforest. Biological Conservation, v. 163, p. 79-89, 2013. DIDHAM, R. K.; BARKER, G. M.; BARTLAM, S.; DEAKIN, E. L.; DENMEAD, L. H.; FISK, L. M.; PETERS, J.M.R.; TYLIANAKIS, J.M.; WRIGHT , H.R.; SCHIPPER, L. A. Agricultural intensification exacerbates spillover effects on soil biogeochemistry in adjacent forest remnants. PLoS One, v. 10, n. 1, p. e0116474, 2015. 96 FARIAS, P. M.; ARELLANO, L.; HERNÁNDEZ, M. I. M.; ORTIZ, S. L. Response of the copro-necrophagous beetle (Coleoptera: Scarabaeinae) assemblage to a range of soil characteristics and livestock management in a tropical landscape. Journal of insect conservation, v. 19, n. 5, p. 947-960, 2015. FARIAS, P. M. D.; HERNÁNDEZ, M. I. M. Dung Beetles Associated with Agroecosystems of Southern Brazil: Relationship with Soil Properties. Revista Brasileira de Ciência do Solo, v. 41, 2017. FILGUEIRAS, B. K.; TABARELLI, M.; LEAL, I. R.; VAZ-DE-MELLO, F. Z.; IANNUZZI, L. Dung beetle persistence in human-modified landscapes: combining indicator species with anthropogenic land use and fragmentation-related effects. Ecological Indicators, v. 55, p. 65- 73, 2015. GÓMEZ-CIFUENTES, A.; MUNEVAR, A.; GIMENEZ, V. C.; GATTI, M. G.; ZURITA, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. Journal of Insect Conservation, v. 21, n. 1, p. 147-156, 2017. HADDAD, N. M.; BRUDVIG, L. A.; CLOBERT, J.; DAVIES, K. F.; GONZALEZ, A.; HOLT, R. D.; LOVEJOY, T.E.; SEXTON, J.O.; AUSTIN, M.P.; COLLINS, C.D.; COOK,W.M.; DAMSCHEN, E.D.; EWERS, R.M.; FOSTER, B.L.; JENKINS, C.N.; KING, A.J.; LAURANCE, W.F.; LEVEY, D.J.; MARGULES, C.R.; MELBOURNE, B.A.; NICHOLLS, A.O.; ORROCK, J.L.; SONG, D.; TOWNSHEND, J.R. Habitat fragmentation and its lasting impact on Earth‟s ecosystems. Science Advances, v. 1, n. 2, p. e1500052, 2015. HALFFTER, G.; EDMONDS, W. D. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach., 1982. KORASAKI, V.; BRAGA, R. F.; ZANETTI, R.; MOREIRA, F. M.; VAZ-DE-MELLO, F. Z.; LOUZADA, J. Conservation value of alternative land-use systems for dung beetles in Amazon: valuing traditional farming practices. Biodiversity and conservation, v. 22, n. 6-7, p. 1485-1499, 2013 LÄHTEENMÄKI, S.; SLADE, E. M.; HARDWICK, B.; SCHIFFLER, G.; LOUZADA, J., BARLOW, J.; ROSLIN, T. MESOCLOSURES–increasing realism in mesocosm studies of ecosystem functioning. Methods in Ecology and Evolution, v. 6, n. 8, p. 916-924, 2015. LARSEN, T. H.; WILLIAMS, N. M.; KREMEN, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecology letters, v. 8, n. 5, p. 538-547, 2005. 97 LAURANCE, W. F.; LOVEJOY, T.; VASCONCELOS, H. L.; BRUNA, E. M.;DIDHAM, R. K.; STOUFFER, P.; GASCON, C.; BIERREGAARD, R.; LAURANCE, S.; SAMPAIO, E. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, Nova Iorque, vol. 16, n. 3, p. 605-618, 2002. Laurance, W.F. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biological conservation, v. 141, n. 7, p. 1731-1744, 2008. LAURANCE, W. F.; CAMARGO, J. L.; LUIZÃO, R. C.; LAURANCE, S. G.; PIMM, S. L.; BRUNA, E. M.; STOUFFER, P.S.; WILLIAMSON , G.B.; MALVIDO , J.B.; VASCONCELOS , H.L.; VAN HOUTAN, K. S.; ZARTMAN, C.E.; BOYLE, S.A.; DIDHAM, R. K.; ADRADE, A.; LOVEJOY, T.E. The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, v. 144, n. 1, p. 56-67, 2011. LAURANCE, W.F.; SAYER, J.; CASSMAN, K. G. Agricultural expansion and its impacts on tropical nature. Trends in ecology & evolution, v. 29, n. 2, p. 107-116, 2014. LÔBO, D.; LEÃO, T.; MELO, F. P.; SANTOS, A. M.; TABARELLI, M. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity and Distributions, v. 17, n. 2, p. 287-296, 2011. MELO, F. P.; ARROYO-RODRÍGUEZ, V.; FAHRIG, L.; MARTÍNEZ-RAMOS, M.; TABARELLI, M. On the hope for biodiversity-friendly tropical landscapes. Trends in ecology & evolution, v. 28, n. 8, p. 462-468, 2013. MURCIA, C. Edge effects in fragmented forests: implications for conservation. Trends in ecology & evolution, v. 10, n. 2, p. 58-62, 1995. PERFECTO, I.; VANDERMEER, J. The agroecological matrix as alternative to the landsparing/ agriculture intensification model. Proceedings of the National Academy of Sciences, v. 107, n. 13, p. 5786-5791, 2010. NERVO, B.; TOCCO, C.; CAPRIO, E.; PALESTRINI, C.; ROLANDO, A. The effects of body mass on dung removal efficiency in dung beetles. PloS one, v. 9, n. 9, p. e107699, 2014. NERVO, B.; CAPRIO, E.; CELI, L.; LONATI, M.; LOMBARDI, G.; FALSONE, G.; LUSSIG, G.; PALESTRINI, C.; SAID-PULLICINO, D.; ROLANDO, A. Ecological functions provided by dung beetles are interlinked across space and time: evidence from 15N isotope tracing. Ecology, v. 98, n. 2, p. 433-446, 2017. NICHOLS, E.; LARSEN, T.; SPECTOR, S.; DAVIS, A. L., ESCOBAR, F.; FAVILA, M.; NETWORK, T. S. R. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biological conservation, v. 137, n. 1, p. 1-19, 2007. 98 NICHOLS, E.; SPECTOR, S.; LOUZADA, J.; LARSEN, T.; AMEZQUITA, S.; FAVILA, M. E.; NETWORK, T. S. R. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological conservation, v. 141, n. 6, p. 1461-1474, 2008. NICHOLS, E.S.; GARDNER, T. A. Dung beetles as a candidate study taxon in applied biodiversity conservation research. Ecology and evolution of dung beetles, p. 267-291, 2011. SILVA, R. J.; PELISSARI, T. D.; KRINSKI, D.; CANALE, G.; VAZ-DE-MELLO, F. Z. Abrupt species loss of the Amazonian dung beetle in pastures adjacent to species-rich forests. Journal of Insect Conservation, p. 1-8, 2017. SLADE, E. M.; MANN, D. J.; VILLANUEVA, J. F.; LEWIS, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. Journal of Animal Ecology, v. 76, n. 6, p. 1094-1104, 2007. TEAM, R. Core. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. R Foundation for Statistical Computing. 2016. TABARELLI, M.; AGUIAR, A. V.; GIRAO, L. C.; PERES, C. ;A. LOPES, A. V. Effects of pioneer tree species hyperabundance on forest fragments in northeastern Brazil. Conservation Biology, v. 24, n. 6, p. 1654-1663, 2010. UZÊDA, M. C.; FIDALGO, E. C. C.; DE SOUSA MOREIRA, R. V.; FONTANA, A.; DONAGEMMA, G. K. Eutrofização de solos e comunidade arbórea em fragmentos de uma paisagem agrícola. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 11120-1130, 2016. VERBURG, P. H.; VAN ASSELEN, S.; VAN DER ZANDEN, E. H.; STEHFEST, E. The representation of landscapes in global scale assessments of environmental change. Landscape Ecology, v. 28, n. 6, p. 1067-1080, 2013. VULINEC, K. Dung beetle communities and seed dispersal in primary forest and disturbed land in Amazonia. Biotropica, v. 34, n. 2, p. 297-309, 2002. WALSH, C.; MAC NALLY, R.; WALSH, M. C. Package „hier. part‟. R package Version, p. 1.0-4, 2013. YAMADA, D.; IMURA, O.; SHI, K.; SHIBUYA, T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassland Science, v. 53, n. 2, p. 121-129, 2007. | por |
dc.subject.cnpq | Recursos Florestais e Engenharia Florestal | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/66124/2018%20-%20Patr%c3%adcia%20Dias%20Tavares.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/4896 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-08-02T15:49:33Z No. of bitstreams: 1 2018 - Patrícia Dias Tavares.pdf: 1518046 bytes, checksum: 943f2394deafa9d314e5d1c07a292bc0 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2021-08-02T15:49:33Z (GMT). No. of bitstreams: 1 2018 - Patrícia Dias Tavares.pdf: 1518046 bytes, checksum: 943f2394deafa9d314e5d1c07a292bc0 (MD5) Previous issue date: 2018-02-26 | eng |
Appears in Collections: | Doutorado em Ciências Ambientais e Florestais |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018 - Patrícia Dias Tavares.pdf | Patrícia Dias Tavares | 1.48 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.