Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15854
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vargas Solórzano, Jhony Willian | |
dc.date.accessioned | 2023-12-18T17:07:04Z | - |
dc.date.available | 2023-12-18T17:07:04Z | - |
dc.date.issued | 2019-12-18 | |
dc.identifier.citation | VARGAS SOLÓRZANO, Jhony Willian. Desenvolvimento de extrudados expandidos à base de cereais integrais. 2019. 143 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15854 | - |
dc.description.abstract | O consumo de grãos integrais está associado com uma alimentação saudável e incentiva a redução do impacto ambiental, economizando energia da indústria do refino de cereais. Os consumidores optam cada vez mais por produtos processados à base de grãos integrais e preservados por métodos físicos. Neste sentido, o cozimento por extrusão é uma técnica útil para produzir alimentos sem conservantes e para aumentar a gama de produtos à base de grãos integrais. Snacks extrudados prontos para consumo produzidos a partir de grãos integrais têm texturas duras e são mais escuros, o que afeta a aceitação sensorial do consumidor. O principal componente que afeta esses atributos é a fibra insolúvel depositada nas camadas de farelo. As partículas de farelo são difíceis de fundir e causam ruptura física do material fundido à saída da matriz do extrusor. A redução do tamanho de partículas do farelo melhora a expansão elástica dos extrudados. Neste trabalho, o efeito negativo das fibras naturais na expansão e nas propriedades de textura de snacks extrudados de grãos integrais foi abordado pela redução do tamanho das partículas de farelo, usando dois tipos de moinho (disco e rolo), operados em uma única etapa e sem uma placa de peneiramento, para evitar o entupimento da peneira do moinho. Durante a moagem, os tecidos do farelo e germe são desintegrados e tornam-se parte das superfícies das partículas. Para melhorar o fraccionamento das partículas e a heterogeneidade do tamanho das partículas no material de alimentação, os grãos foram secos antes do processo de moagem. Este passo favoreceu a propagação de tecidos de farelo e germe no material de alimentação. O processo de secagem afetou a fração de amido dos grãos. Os processos de secagem e moagem influenciaram na porosidade interpartícula do material de alimentação. Farinhas integrais mais porosas foram obtidas com o moinho de rolos e, durante sua extrusão, geraram menor resistência ao trabalho realizado pelo parafuso, que foi monitorado por mudanças no torque do motor. Considerando o efeito lubrificante dos lipídios e fibras presentes nas matérias-primas à base de grãos integrais, o teor de água na ração foi fixado em níveis abaixo de 14% (base úmida) para produzir snacks extrudados com boas características de expansão e textura | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Secagem de alimentos | por |
dc.subject | Moagem de grãos | por |
dc.subject | Processamento agrícola | por |
dc.subject | Processo de extrusão | por |
dc.subject | Produtos de cereais | por |
dc.subject | Food drying | eng |
dc.subject | Grain milling | eng |
dc.subject | Agricultural processing | eng |
dc.subject | Extrusion process | eng |
dc.subject | Cereal products | eng |
dc.title | Desenvolvimento de extrudados expandidos à base de cereais integrais | por |
dc.title.alternative | Development of whole-grain cereals expanded extrudates | eng |
dc.type | Tese | por |
dc.description.abstractOther | The consumption of whole grains is associated with healthy eating and encourages to reduce the environmental impact by saving energy from the grain refining industry. People increasingly opt for processed products based on whole grains and preserved by physical methods. In that regard, extrusion cooking is a useful technique to produce preservative-free foods and to increase the range of whole-grain based products. Ready-to-eat extruded snacks produced from whole grains have hard textures and are darker, which affects consumer sensory acceptance. The main component that affects these attributes is the insoluble fiber deposited in the bran layers. Bran particles are hard to melt and cause physical rupture of the melt at the die exit. A reduction in the size of the bran particles improves the elastic expansion of the extrudates. In this work, the effect of natural fibers on the expansion and textural properties of whole-grain extruded snacks was addressed by size reducing of the bran particles. This was performed using two types of mill (disc and roller), operated in a one-step and without a screening plate, to prevent clogging of the mill sieve. During grinding, the bran and germ tissues are disintegrated and become part of particle surfaces. To improve the fractionation of particles and the particle-size heterogeneity in the feeding material, the grains were dried before the grinding process. This step favored the spread of bran and germ tissues in the feed material. The drying process affected the starch fraction of the grains. The drying and grinding processes influenced on interparticle porosity of feeding material. More porous wholemeal flours were obtained with the roller mill and during its extrusion, generated lower resistance to the work performed by the screw, which was monitored by changes in the motor torque. Considering the lubricating effect of the lipids and fibers present in the whole-grain based feed materials, the water content in the feed was set to levels below 14% (wet basis) to produce extruded snacks with good expansion and texture characteristics | eng |
dc.contributor.advisor1 | Ascheri, José Luís Ramírez | |
dc.contributor.advisor1ID | 105.290.788-13 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-7449-8815 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8413338175252648 | por |
dc.contributor.advisor-co1 | Carvalho, Carlos Wanderlei Piler de | |
dc.contributor.advisor-co1ID | 009.412.587-26 | por |
dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-7602-264X | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3532473530387852 | por |
dc.contributor.referee1 | Ascheri, Jose Luis Ramírez | |
dc.contributor.referee1ID | 105.290.788-13 | por |
dc.contributor.referee1ID | https://orcid.org/0000-0001-7449-8815 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/1891994321882753 | por |
dc.contributor.referee2 | Barbosa Junior, Jose Lucena | |
dc.contributor.referee2ID | https://orcid.org/0000-0001-8496-1404 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/5228796959263366 | por |
dc.contributor.referee3 | Vicente, Juarez | |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/8391566916334257 | por |
dc.contributor.referee4 | Torrezan, Renata | |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/3177558052830172 | por |
dc.contributor.referee5 | Pacheco, Sidney | |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/1148865776679739 | por |
dc.creator.ID | 061.438.477-03 | por |
dc.creator.ID | https://orcid.org/0000-0002-8254-396X | por |
dc.creator.Lattes | http://lattes.cnpq.br/8413338175252648 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | por |
dc.relation.references | ABDULLAH, N.; NAWAWI, A.; OTHMAN, I. Fungal spoilage of starch-based foods in relation to its water activity (aw). Journal of Stored Products Research. v. 36, n. 1, p. 47-54, 2000. AČKAR, Đ.; JOZINOVIĆ, A.; BABIĆ, J.; MILIČEVIĆ, B.; PANAK BALENTIĆ, J.; ŠUBARIĆ, D. Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products. Innovative Food Science & Emerging Technologies. v. 47, n. 6, p. 517- 524, 2018. AGENCY, F. S. McCance and Widdowson’s The Composition of Foods. 6th ed. Royal Society of Chemistry: Cambridge, 2002. AKDOGAN, H. High moisture food extrusion. International Journal of Food Science and Technology. v. 34, n. 3, p. 195-207, 1999. ARENDT, E. K.; ZANNINI, E. Oats. In: ARENDT, E. K.; ZANNINI, E. (Eds.). Cereal Grains for the Food and Beverage Industries. Woodhead Publishing: Cambridge, 2013a. p. 243-283. ARENDT, E. K.; ZANNINI, E. Rye. In: ARENDT, E. K.; ZANNINI, E. (Eds.). Cereal Grains for the Food and Beverage Industries. Woodhead Publishing: Cambridge, 2013b. p. 220-243. ARENDT, E. K.; ZANNINI, E. Wheat and other Triticum grains. In: ARENDT, E. K.; ZANNINI, E. (Eds.). Cereal Grains for the Food and Beverage Industries. Woodhead Publishing: Cambridge, 2013c. p. 1-67. BALA, B. K. Physical and Thermal Properties of Cereal Grains. In: BALA, B. K. (Ed.). Drying and Storage of Cereal Grains. 2nd ed. Wiley Blackwell: Chichester, 2017a. p. 55-80. BALA, B. K. Thin Layer Drying of Cereal Grains. In: BALA, B. K. (Ed.). Drying and Storage of Cereal Grains. Wiley Blackwell: Chichester, 2017b. p. 107-145. BARBOSA-CÁNOVAS, G. V.; ORTEGA-RIVAS, E.; JULIANO, P.; YAN, H. Size reduction. In: Food Powders: Physical Properties, Processing, and Functionality. Springer US: Boston, MA, 2005. p. 157-173. BARBOSA-CÁNOVAS, G. V.; VEGA-MERCADO, H. Dehydration Mechanisms. In: BARBOSA-CÁNOVAS, G. V.; VEGA-MERCADO, H. (Eds.). Dehydration of Foods. Springer US: Boston, MA, 1996. p. 101-155. BAUDELAIRE, E. D. Grinding for food powder production. In: BHANDARI, B. et al. (Eds.). Handbook of Food Powders. Woodhead Publishing: Cambridge, 2013. p. 132-149. BECHTEL, D. B.; ABECASSIS, J.; SHEWRY, P. R.; EVERS, A. D. Development, Structure, and Mechanical Properties of the Wheat Grain. In: KHAN, K.; SHEWRY, P. R. (Eds.). Wheat Chemistry and Technology. 4th ed. AACC International Press: St. Paul, 2009. p. 51-95. BECHTEL, D. B.; POMERANZ, Y. Ultrastructure of the mature ungerminated rice (Oryza sativa) caryopsis. The starchy endosperm. American Journal of Botany. v. 65, n. 6, p. 684- 691, 1978. BECHTEL, D. B.; POMERANZ, Y. Ultrastructure and cytochemistry of mature oat (Avena sativa L.) endosperm. The aleurone layer and starchy endosperm. Cereal Chemistry. v. 58, n. 1, p. 61-69, 1981. BECHTEL, D. B.; WILSON, J. D. Amyloplast Formation and Starch Granule Development in Hard Red Winter Wheat. Cereal Chemistry. v. 80, n. 2, p. 175-183, 2003. BERK, Z. Extrusion. In: BERK, Z. (Ed.). Food Process Engineering and Technology. 2nd ed. Academic Press: San Diego, 2013. p. 373-393. BERRIOS, J. J.; ASCHERI, J. L. R.; LOSSO, J. N. Extrusion processing of dry beans and pulses. In: SIDDIQ, M.; UEBERSAX, M. A. (Eds.). Dry Beans and Pulses. Wiley Blackwell: Iowa, 2013. p. 185–203. BOUVIER, J.-M.; CAMPANELLA, O. H. Extrusion Equipment. In: BOUVIER, J.-M.; CAMPANELLA, O. H. (Eds.). Extrusion Processing Technology. John Wiley & Sons, Ltd: Chichester, 2014. p. 13-51. BRENNAN, C.; BRENNAN, M.; DERBYSHIRE, E.; TIWARI, B. K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends in Food Science & Technology. v. 22, n. 10, p. 570-575, 2011. BRENT, J. J. L.; MULVANEY, S. J.; COHEN, C.; BARTSCH, J. A. Viscoelastic Properties of Extruded Cereal Melts. Journal of Cereal Science. v. 26, n. 3, p. 313-328, 1997. CAMIRE, M. E. Protein functionality modification by extrusion cooking. Journal of the American Oil Chemists' Society. v. 68, n. 3, p. 200-205, 1991. CAMIRE, M. E. Extrusion and nutritional quality. In: GUY, R. (Ed.). Extrusion Cooking Technologies and Applications. Woodhead Publishing: Cambridge, 2001. p. 108-129. CAMIRE, M. E.; CAMIRE, A.; KRUMHAR, K. Chemical and nutritional changes in foods during extrusion. Critical Reviews in Food Science and Nutrition. v. 29, n. 1, p. 35-57, 1990. CENGEL, Y. A.; BOLES, M. A. Gas–Vapor Mixtures and Air-Conditioning. In: CENGEL, Y. A.; BOLES, M. A. (Eds.). Thermodynamics: an Engineering Approach. 8th ed. McGraw- Hill Education: New York, 2015. p. 725-758. CHAKRAVERTY, A.; SINGH, R. P. Theory of Grain Drying. In: CHAKRAVERTY, A.; SINGH, R. P. (Eds.). Postharvest Technology and Food Process Engineering. CRC Press: Boca Raton, 2014. p. 31-74. CHAMPAGNE, E. T.; WOOD, D. F.; JULIANO, B. O.; BECHTEL, D. B. The rice grain and its gross composition. In: CHAMPAGNE, E. T. (Ed.). Rice: Chemistry and Technology. Grain Science References, 3rd ed. American Association of Cereal Chemists, Inc.: St. Paul, 2004. p. 77-107. CHANG, Y. K.; EL-DASH, A. A. Effects of acid concentration and extrusion variables on some physical characteristics and energy requirements of cassava starch. Brazilian Journal of Chemical Engineering. v. 20, n. 2, p. 129-137, 2003. CHIRUVELLA, R. V.; JALURIA, Y.; KARWE, M. V. Numerical simulation of the extrusion process for food materials in a single-screw extruder. Journal of Food Engineering. v. 30, n. 3, p. 449-467, 1996. CRANK, J. The mathematics of diffusion. 2nd ed. Oxford Science Publications: Glasgow, 1975. CUETO, M.; FARRONI, A.; RODRÍGUEZ, S. D.; SCHOENLECHNER, R.; SCHLEINING, G.; DEL PILAR BUERA, M. J. F.; TECHNOLOGY, B. Assessing Changes in Enriched Maize Flour Formulations After Extrusion by Means of FTIR, XRD, and Chemometric Analysis. Food and Bioprocess Technology. v. 11, n. 8, p. 1586-1595, 2018. DELCOUR, J. A.; HOSENEY, R. C. Proteins of Cereals. In: DELCOUR, J. A.; HOSENEY, R. C. (Eds.). Principles of Cereal Science and Technology. Textbooks, 3rd ed. AACC International, Inc.: St. Paul, 2010a. p. 53-70. DELCOUR, J. A.; HOSENEY, R. C. Structure of cereals. In: DELCOUR, J. A.; HOSENEY, R. C. (Eds.). Principles of Cereal Science and Technology. Textbooks, 3rd ed. AACC International, Inc.: St. Paul, 2010b. p. 1-22. DELGADO, J. M. P. Q.; DA SILVA, M. V. Food Dehydration: Fundamentals, Modelling and Applications. In: DELGADO, J. M. P. Q.; BARBOSA DE LIMA, A. G. (Eds.). Transport Phenomena and Drying of Solids and Particulate Materials. Springer International Publishing: Cham, 2014. p. 69-94. DINÇER, İ.; ZAMFIRESCU, C. Basics of Drying. In: DINÇER, İ.; ZAMFIRESCU, C. (Eds.). Drying Phenomena. John Wiley & Sons, Ltd: Chichester, 2016. p. 67-98. DOBLADO-MALDONADO, A. F.; PIKE, O. A.; SWELEY, J. C.; ROSE, D. J. Key issues and challenges in whole wheat flour milling and storage. Journal of Cereal Science. v. 56, n. 2, p. 119-126, 2012. DORNEZ, E.; HOLOPAINEN, U.; CUYVERS, S.; POUTANEN, K.; DELCOUR, J. A.; COURTIN, C. M.; NORDLUND, E. Study of grain cell wall structures by microscopic analysis with four different staining techniques. Journal of Cereal Science. v. 54, n. 3, p. 363-373, 2011. DOYMAZ, İ. The kinetics of forced convective air-drying of pumpkin slices. Journal of Food Engineering. v. 79, n. 1, p. 243-248, 2007. DYKES, L.; ROONEY, L. W. Sorghum and millet phenols and antioxidants. Journal of Cereal Science. v. 44, n. 3, p. 236-251, 2006. DYKES, L.; ROONEY, L. W. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World. v. 52, n. 3, p. 105-111, 2007. DYKES, L.; SEITZ, L. M.; ROONEY, W. L.; ROONEY, L. W. Flavonoid composition of red sorghum genotypes. Food Chemistry. v. 116, n. 1, p. 313-317, 2009. EARP, C. F.; MCDONOUGH, C. M.; ROONEY, L. W. Microscopy of pericarp development in the caryopsis of Sorghum bicolor (L.) Moench. Journal of Cereal Science. v. 39, n. 1, p. 21-27, 2004. EVERS, A. D.; O'BRIEN, L.; BLAKENEY, A. B. Cereal structure and composition. Australian Journal of Agricultural Research. v. 50, n. 5, p. 629-650, 1999. EVERS, T.; MILLAR, S. Cereal Grain Structure and Development: Some Implications for Quality. Journal of Cereal Science. v. 36, n. 3, p. 261-284, 2002. FANG, C.; CAMPBELL, G. M. Stress-Strain Analysis and Visual Observation of Wheat Kernel Breakage During Roller Milling Using Fluted Rolls. Cereal Chemistry. v. 79, n. 4, p. 511-517, 2002. FANG, Q.; HAQUE, E.; SPILLMAN, C. K.; REDDY, P. V.; STEELE, J. L. Energy requeriments for size reduction of wheat using a roller mill. Transactions of the ASAE. v. 41, n. 6, p. 1713-1720, 1998. FITZGERALD, M. Starch. In: Rice Chemistry and Technology. 3rd ed. American Association of Cereal Chemists, Inc., 2004. p. 109-141. GANßMANN, W.; VORWERCK, K. Oat milling, processing and storage. In: WELCH, R. W. (Ed.). The Oat Crop: Production and Utilization. Springer Netherlands: Dordrecht, 1995. p. 369-408. GARCÍA-LARA, S.; CHUCK-HERNANDEZ, C.; SERNA-SALDIVAR, S. O. Development and Structure of the Corn Kernel. In: SERNA-SALDIVAR, S. O. (Ed.). Corn: Chemistry and Technology. 3rd ed. AACC International Press: Oxford, 2019. p. 147-163. GLITSØ, L. V.; BACH KNUDSEN, K. E. Milling of Whole Grain Rye to Obtain Fractions with Different Dietary Fibre Characteristics. Journal of Cereal Science. v. 29, n. 1, p. 89-97, 1999. GRUBER, W.; SARKAR, A. Durum Wheat Milling. In: SISSONS, M. et al. (Eds.). Durum Wheat Chemistry and Technology. AACC International Press: St. Paul, 2012. p. 139-159. GURITNO, P.; HAQUE, E. Relationship Between Energy and Size Reduction of Grains Using a Three-roller Mill. Transactions of the ASAE. v. 37, n. 4, p. 1243-1248, 1994. GUY, R. Raw materials for extrusion cooking. In: GUY, R. (Ed.). Extrusion Cooking Technologies and Applications. First ed. Woodhead Publishing: Cambridge, 2001. p. 5-28. HARPER, J. M. Food extruders and their applications. In: MERCIER, C.; LINKO, P.; HARPER, J. M. (Eds.). Extrusion Cooking. American Association of Cereal Chemists. Inc.: St. Paul, 1989. p. 1-16. HOLOPAINEN-MANTILA, U.; RAULIO, M. Cereal grain structure by microscopic analysis. In: SOZER, N. (Ed.). Imaging Technologies and Data Processing for Food Engineers. Springer International Publishing: Cham, 2016. p. 1-39. HOURSTON, J. E.; IGNATZ, M.; REITH, M.; LEUBNER-METZGER, G.; STEINBRECHER, T. Biomechanical properties of wheat grains: the implications on milling. Journal of The Royal Society Interface. v. 14, n. 126, 2017. JULIANO, B. O.; TUAÑO, A. P. P. Gross structure and composition of the rice grain. In: BAO, J. (Ed.). Rice Chemistry and Technology. 4th ed. AACC International Press, 2019. p. 31-53. KAMAL-ELDIN, A. Dietary Fiber: Bran. In: CABALLERO, B.; FINGLAS, P. M.; TOLDRÁ, F. (Eds.). Encyclopedia of Food and Health. Academic Press: Oxford, 2016. p. 378-382. KARIM, A.; ROONEY, L. W. Characterization of pentosans in sorghum grain. Journal of Food Science. v. 37, n. 3, p. 369-371, 1972. KAZEMZADEH, M. Introduction to extrusion technology. In: MASKAN, M.; ALTAN, A. (Eds.). Advances in Food Extrusion Technology. First ed. CRC Press: Boca Raton, 2012. p. 1-21. KNUDSEN, K. E. B. Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology. v. 67, n. 4, p. 319-338, 1997. KUMAR, D.; SINGH, V. Bioethanol Production From Corn. In: SERNA-SALDIVAR, S. O. (Ed.). Corn: Chemistry and Technology. 3rd ed. AACC International Press: Oxford, 2019. p. 615-631. LAI, L. S.; KOKINI, J. L. Physicochemical changes and rheological properties of starch during extrusion. (A review). Biotechnology Progress. v. 7, n. 3, p. 251-266, 1991. LÁSZTITY, R. Oat grain—a wonderful reservoir of natural nutrients and biologically active substances. Food Reviews International. v. 14, n. 1, p. 99-119, 1998. LI, E.; DHITAL, S.; HASJIM, J. Effects of grain milling on starch structures and flour/starch properties. Starch - Stärke. v. 66, n. 1-2, p. 15-27, 2014. LU, S.; LUH, B. S. Properties of the Rice Caryopsis. In: LUH, B. S. (Ed.). Rice: Volume I. Production/Volume II. Utilization. Springer US: Boston, MA, 1991. p. 389-419. MAROULIS, Z. B.; KIRANOUDIS, C. T.; MARINOS-KOURIS, D. Heat and mass transfer modeling in air drying of foods. Journal of Food Engineering. v. 26, n. 1, p. 113-130, 1995. MATSUSHIMA, R. Morphological Variations of Starch Grains. In: NAKAMURA, Y. (Ed.). Starch: Metabolism and Structure. Springer Japan: Tokyo, 2015. p. 425-441. MCCABE, W. L.; SMITH, J. C.; HARRIOTT, P. Size reduction. In: MCCABE, W. L.; SMITH, J. C.; HARRIOTT, P. (Eds.). Unit Operations of Chemical Engineering. 5th ed. McGraw- Hill Inc: New York, 1993. p. 960-993. MEERA, M. S.; BHASHYAM, M. K.; ALI, S. Z. Effect of heat treatment of sorghum grains on storage stability of flour. LWT - Food Science and Technology. v. 44, n. 10, p. 2199-2204, 2011. MILLER, S. S.; FULCHER, R. G. Microstructure and Chemistry of the Oat Kernel. In: WEBSTER, F. H.; WOOD, P. J. (Eds.). Oats Chemistry and Technology. 2nd ed. AACC International Press: St. Paul, 2011. p. 77-94. MIR, S. A.; MANICKAVASAGAN, A.; BOSCO, S. J. D.; SHAH, M. A. Brown rice. In: MIR, S. A.; MANICKAVASAGAN, A.; SHAH, M. A. (Eds.). Whole Grains. Processing, Product Development, and Nutritional Aspects. CRC Press: Boca Raton, 2019. p. 49-69. MOHARRAM, Y. G.; YOUSSEF, A. M. A. Sorghum grain and quality of its edible products. In: CHARALAMBOUS, G. (Ed.). Food Flavors: Generation, Analysis and Process Influence. Developments in Food Science, v. 37A. Elsevier: Amsterdam, 1995. p. 111-146. MORA, S. R.; MILÁN, A. K. N.; MILÁN, J. C. Maize. In: MIR, S. A.; MANICKAVASAGAN, A.; SHAH, M. A. (Eds.). Whole Grains. Processing, Product Development, and Nutritional Aspects. CRC Press: Boca Raton, 2019. p. 87-102. MORARU, C. I.; KOKINI, J. L. Nucleation and Expansion During Extrusion and Microwave Heating of Cereal Foods. Comprehensive Reviews in Food Science and Food Safety. v. 2, n. 4, p. 147-165, 2003. MUIR, W. E.; .SINHA, R. N. Physical properties of cereal and oilseed cultivars grown in western Canada. Canadian Agricultural Engineering. v. 30, n. 1, p. 51-55, 1988. NAPIER-MUNN, T. J.; MORRELL, S.; MORRISON, R. D.; KOJOVIC, T. Models of comminution processes. In: NAPIER-MUNN, T. J. (Ed.). Mineral Comminution Circuits: Their Operation and Optimisation. Julius Kruttschnitt Mineral Research Centre, 1996. p. 10- 31. NILSSON, M.; ÅMAN, P.; HÄRKÖNEN, H.; HALLMANS, G.; KNUDSEN, K. E. B.; MAZUR, W.; ADLERCREUTZ, H. Content of Nutrients and Lignans in Roller Milled Fractions of Rye. v. 73, n. 2, p. 143-148, 1997. O'SHEA, N.; ARENDT, E.; GALLAGHER, E. Enhancing an Extruded Puffed Snack by Optimising Die Head Temperature, Screw Speed and Apple Pomace Inclusion. Food and Bioprocess Technology. v. 7, n. 6, p. 1767-1782, 2014. PARKER, M. L. The Structure of Mature Rye Endosperm. Annals of Botany. v. 47, n. 2, p. 181-186, 1981. PARKER, M. L. The relationship between A-type and B-type starch granules in the developing endosperm of wheat. Journal of Cereal Science. v. 3, n. 4, p. 271-278, 1985. PETERSON, D. M. Composition and Nutritional Characteristics of Oat Grain and Products. In: MARSHALL, H. G.; SORRELLS, M. E. (Eds.). Oat Science and Technology. American Society of Agronomy, Inc.: Madison, 1992. p. 265-292. PIIRONEN, V.; LAMPI, A.-M.; EKHOLM, P.; SALMENKALLIO-MARTTILA, M.; LIUKKONEN, K.-H. Micronutrients and Phytochemicals in Wheat Grain. In: KHAN, K.; SHEWRY, P. R. (Eds.). Wheat: Chemistry and Technology. AACC International Press: St. Paul, 2009. p. 179-222. PITTS, K. F.; MCCANN, T. H.; MAYO, S.; FAVARO, J.; DAY, L. Effect of the Sugar Replacement by Citrus Fibre on the Physical and Structural Properties of Wheat-Corn Based Extrudates. Food and Bioprocess Technology. v. 9, n. 11, p. 1803-1811, 2016. POMERANZ, Y.; CHUNG, O. The lipid composition of a single wheat kernel and its structural parts. Journal of Chromatography A. v. 19, p. 540-550, 1965. POMERANZ, Y.; ZELENY, L. Biochemical and functional changes in stored cereal grains. C R C Critical Reviews in Food Technology. v. 2, n. 1, p. 45-80, 1971. POSNER, E. S. Wheat flour milling. In: KHAN, K.; SHEWRY, P. R. (Eds.). Wheat: Chemistry and Technology. Grain Science References, 4th ed. AACC International, Inc.: St. Paul, 2009. p. 119-152. POSNER, E. S.; HIBBS, A. N. The Flour Mill Laboratory. In: POSNER, E. S.; HIBBS, A. N. (Eds.). Wheat Flour Milling. References Series, 2nd ed. AACC International, Inc.: St. Paul, 2005a. p. 47-100. POSNER, E. S.; HIBBS, A. N. The Grinding Process. In: POSNER, E. S.; HIBBS, A. N. (Eds.). Wheat Flour Milling. References Series, 2nd ed. AACC International, Inc.: St. Paul, 2005b. p. 185-221. RAUWENDAAL, C. Functional Process Analysis. In: RAUWENDAAL, C. (Ed.). Polymer Extrusion. 5th ed. Hanser Publications: Cincinnati, 2014a. p. 255-508. RAUWENDAAL, C. Introduction. In: RAUWENDAAL, C. (Ed.). Polymer Extrusion. 5th ed. Hanser Publications: Cincinnati, 2014b. p. 1-10. RIAZ, M. N. Introduction to extruders and their principles. In: RIAZ, M. N. (Ed.). Extruders in Food Applications. CRC Press: Boca Raton, 2000. p. 1-23. ROBERTS, J. S.; KIDD, D. R.; PADILLA-ZAKOUR, O. Drying kinetics of grape seeds. Journal of Food Engineering. v. 89, n. 4, p. 460-465, 2008. ROBIN, F.; DUBOIS, C.; PINEAU, N.; LABAT, E.; THÉODULOZ, C.; CURTI, D. Process, structure and texture of extruded whole wheat. Journal of Cereal Science. v. 56, n. 2, p. 358- 366, 2012. ROSENTRATER, K. A.; EVERS, A. D. Botanical aspects. In: ROSENTRATER, K. A.; EVERS, A. D. (Eds.). Kent's Technology of Cereals (Fifth Edition). Woodhead Publishing: Cambridge, 2018a. p. 205-266. ROSENTRATER, K. A.; EVERS, A. D. Chemical components and nutrition. In: ROSENTRATER, K. A.; EVERS, A. D. (Eds.). Kent's Technology of Cereals (Fifth Edition). Woodhead Publishing: Cambridge, 2018b. p. 267-368. ROSENTRATER, K. A.; EVERS, A. D. Dry-milling technology. In: ROSENTRATER, K. A.; EVERS, A. D. (Eds.). Kent's Technology of Cereals (Fifth Edition). Woodhead Publishing: Cambridge, 2018c. p. 421-514. ROSENTRATER, K. A.; EVERS, A. D. Feed and industrial uses for cereals. In: ROSENTRATER, K. A.; EVERS, A. D. (Eds.). Kent's Technology of Cereals (Fifth Edition). Woodhead Publishing: Cambridge, 2018d. p. 785-837. SABLANI, S. S.; RAMASWAMY, H. S. Physical and thermal properties of cereal grains. In: CHAKRAVERTY, A. et al. (Eds.). Hanbook of Postharvest Technology. Marcel Dekker, Inc.: New York, 2003. p. 17-40. SAYAR, S.; WHITE, P. J. Oat Starch: Physiochemical Properties and Function. In: WEBSTER, F. H.; WOOD, P. J. (Eds.). Oats Chemistry and Technology. 2nd ed. AACC International Press: St. Paul, 2011. p. 77-94. SECKINGER, H. L.; WOLF, M. J. Sorghum protein ultrastructure as it relates to composition. Cereal Chemistry. v. 50, n. 4, p. 455-464, 1973. SERNA-SALDIVAR, S. O. Cereal Grains. The Staff of Life. In: SERNA-SALDIVAR, S. O. (Ed.). Cereal Grains. Properties, Processing, and Nutritional Attributes. Food Preservation Technology Series. CRC Press: Boca Raton, 2010a. p. 1-42. SERNA-SALDIVAR, S. O. Grain Development, Morphology, and Structure. In: SERNASALDIVAR, S. O. (Ed.). Cereal Grains. Properties, Processing, and Nutritional Attributes. Food Preservation Technology Series. CRC Press: Boca Raton, 2010b. p. 109-128. SERNA-SALDIVAR, S. O.; ESPINOSA-RAMÍREZ, J. Grain Structure and Grain Chemical Composition. In: TAYLOR, J. R. N.; DUODU, K. G. (Eds.). Sorghum and Millets: Chemistry, Technology and Nutritional Attributes. 2nd ed. AACC International Press, 2019. p. 85-129. SHASHIDHAR, M. G.; MURTHY, T. P. K.; GIRISH, K. G.; MANOHAR, B. Grinding of Coriander Seeds: Modeling of Particle Size Distribution and Energy Studies. Particulate Science and Technology. v. 31, n. 5, p. 449-457, 2013. SHEWRY, P. R.; D’OVIDIO, R.; LAFIANDRA, D.; JENKINS, J. A.; MILLS, E. N. C.; BÉKÉS, F. Wheat Grain Proteins. In: KHAN, K.; SHEWRY, P. R. (Eds.). Wheat: Chemistry and Technology. AACC International Press: St. Paul, 2009. p. 223-298. SHIBUYA, N.; NAKANE, R.; YASUI, A.; TANAKA, K.; IWASAKI, T. Comparative Studies on Cell Wall Preparations from Rice Bran, Germ and Endosperm. Cereal Chemistry Journal. v. 62, n. 4, p. 252-258, 1985. SIMMONDS, D. H. The ultrastructure of the mature wheat endosperm. Cereal Chemistry. v. 49, n. 2, p. 212-222, 1972. SINGH, R. P.; HELDMAN, D. R. Dehydration. In: SINGH, R. P.; HELDMAN, D. R. (Eds.). Introduction to Food Engineering (Fifth Edition). Academic Press: San Diego, 2014a. p. 675-710. SINGH, R. P.; HELDMAN, D. R. Psychrometrics. In: SINGH, R. P.; HELDMAN, D. R. (Eds.). Introduction to Food Engineering (Fifth Edition). Academic Press: San Diego, 2014b. p. 593-616. SMITH, O. B. Extrusion Cooking. In: ALTSCHUL, A. M. (Ed.). New Protein Foods. Academic Press, 1976. p. 86-121. SRIKIATDEN, J.; ROBERTS, J. S. Moisture Transfer in Solid Food Materials: A Review of Mechanisms, Models, and Measurements. International Journal of Food Properties. v. 10, n. 4, p. 739-777, 2007. STEEL, C. J.; LEORO, M. G. V.; SCHMIELE, M.; FERREIRA, R. E.; CHANG, Y. K. Thermoplastic Elastomers. In: EL-SONBATI, A. Z. (Ed.). Thermoplastic Extrusion in Food Processing. First ed. InTech: Rijeka, Croatia, 2012. p. 265-290. STONE, B. A. Cell walls of cereal grains. Cereal Foods World. v. 51, n. 2, p. 62-65, 2006. SUAREZ, C.; VIOLLAZ, P.; CHIRIFE, J. Diffusional analysis of air drying of grain sorghum. International Journal of Food Science and Technology. v. 15, n. 5, p. 523-531, 1980. SUNDERLAND, R. Hot Air Dryers. In: LUSAS, E. W.; ROONEY, L. W. (Eds.). Snack foods processing. 1st ed. CRC Press: Boca Raton, 2001. p. 205-223. VACCAREZZA, L. M.; LOMBARDI, J. L.; CHIRIFE, J. Heat transfer effects on drying rate of food dehydration. The Canadian Journal of Chemical Engineering. v. 52, n. 5, p. 576- 579, 1974. VELU, V.; NAGENDER, A.; PRABHAKARA RAO, P. G.; RAO, D. G. Dry milling characteristics of microwave dried maize grains (Zea mays L.). Journal of Food Engineering. v. 74, n. 1, p. 30-36, 2006. WAGNER, J. R.; MOUNT, E. M.; GILES, H. F. Single Screw Extruder: Equipment. In: WAGNER, J. R.; MOUNT, E. M.; GILES, H. F. (Eds.). Extrusion: The Definitive Processing Guide and Handbook. 2nd ed. William Andrew Publishing: Oxford, 2014a. p. 17-46. WAGNER, J. R.; MOUNT, E. M.; GILES, H. F. Twin Screw Extruder Equipment. In: WAGNER, J. R.; MOUNT, E. M.; GILES, H. F. (Eds.). Extrusion: The Definitive Processing Guide and Handbook. 2nd ed. William Andrew Publishing: Oxford, 2014b. p. 125-148. WALL, J. S.; BLESSIN, C. W. Composition of sorghum plant and grain. In: WALL, J. S.; ROSS, W. M. (Eds.). Sorghum Production and Utilization: Major Feed and Food Crops in Agriculture and Food Series. Avi Publishing Company Inc.: Westport, 1970. p. 118-166. WELCH, R. W. The chemical composition of oats. In: WELCH, R. W. (Ed.). The Oat Crop: Production and Utilization. Springer Netherlands: Dordrecht, 1995. p. 279-320. WELCH, R. W. Nutrient Composition and Nutritional Quality of Oats and Comparisons with Other Cereals. In: WEBSTER, F. H.; WOOD, P. J. (Eds.). Oats Chemistry and Technology. 2nd ed. AACC International Press: St. Paul, 2011. p. 95-107. WRIGLEY, C.; BÉKÉS, F.; BUSHUK, W. Gluten: a balance of gliadin and glutenin. In: WRIGLEY, C.; BÉKÉS, F.; BUSHUK, W. (Eds.). Gliadin and Glutenin: The Unique Balance of Wheat Quality. AACC International Press: St Paul, 2006. p. 3-32. YACU, W. A. Modeling a twing screw co-rotating extruder. Journal of Food Process Engineering. v. 8, n. 1, p. 1-21, 1985. YANNIOTIS, S.; PETRAKI, A.; SOUMPASI, E. Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. Journal of Food Engineering. v. 80, n. 2, p. 594-599, 2007. ZWER, P. Oats: Grain-Quality Characteristics and Management of Quality Requirements. In: WRIGLEY, C.; BATEY, I.; MISKELLY, D. (Eds.). Cereal Grains. 2nd ed. Woodhead Publishing: Cambridge, 2017. p. 235-256. AČKAR, Đ.; JOZINOVIĆ, A.; BABIĆ, J.; MILIČEVIĆ, B.; PANAK BALENTIĆ, J.; ŠUBARIĆ, D. Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products. Innovative Food Science & Emerging Technologies. v. 47, n. 6, p. 517- 524, 2018. ALAM, S. A.; JÄRVINEN, J.; KIRJORANTA, S.; JOUPPILA, K.; POUTANEN, K.; SOZER, N. Influence of Particle Size Reduction on Structural and Mechanical Properties of Extruded Rye Bran. Food and Bioprocess Technology. v. 7, n. 7, p. 2121-2133, 2014. ALVAREZ-MARTINEZ, L.; KONDURY, K. P.; HARPER, J. M. A General Model for Expansion of Extruded Products. Journal of Food Science. v. 53, n. 2, p. 609-615, 1988. AOAC. Official Methods of Analysis of AOAC International. 18th ed. AOAC International: Gaithersburg, 2005. BOUVIER, J.-M.; CAMPANELLA, O. H. Quality analysis of extrusion-textured food products. In: BOUVIER, J.-M.; CAMPANELLA, O. H. (Eds.). Extrusion Processing Technology. John Wiley & Sons, Ltd: Chichester, 2014. p. 311-349. CISNEROS, F. H.; KOKINI, J. L. A generalized theory linking barrel fill length and air bubble entrapment during extrusion of starch. Journal of Food Engineering. v. 51, n. 2, p. 139-149, 2002. DOBLADO-MALDONADO, A. F.; PIKE, O. A.; SWELEY, J. C.; ROSE, D. J. Key issues and challenges in whole wheat flour milling and storage. Journal of Cereal Science. v. 56, n. 2, p. 119-126, 2012. DODDS, J. Techniques to analyse particle size of food powders. In: BHANDARI, B. et al. (Eds.). Handbook of Food Powders. Woodhead Publishing: Cambridge, 2013. p. 309-338. GURITNO, P.; HAQUE, E. Relationship Between Energy and Size Reduction of Grains Using a Three-roller Mill. Transactions of the ASAE. v. 37, n. 4, p. 1243-1248, 1994. LI, E.; DHITAL, S.; HASJIM, J. Effects of grain milling on starch structures and flour/starch properties. Starch - Stärke. v. 66, n. 1-2, p. 15-27, 2014. MAROUSIS, S. N.; SARAVACOS, G. D. Density and Porosity in Drying Starch Materials. Journal of Food Science. v. 55, n. 5, p. 1367-1372, 1990. MCCABE, W. L.; SMITH, J. C.; HARRIOTT, P. Size reduction. In: MCCABE, W. L.; SMITH, J. C.; HARRIOTT, P. (Eds.). Unit Operations of Chemical Engineering. 5th ed. McGraw- Hill Inc: New York, 1993. p. 960-993. MONTGOMERY, D. C. Fitting regression models. In: Design and analysis of experiments. 8th ed. Wiley: Hoboken, 2013. p. 449-477. ORTEGA-RIVAS, E. Bulk Properties of Food Particulate Materials: An Appraisal of their Characterisation and Relevance in Processing. Food and Bioprocess Technology. v. 2, n. 1, p. 28, 2008. RAUWENDAAL, C.; GONZALEZ‐NUNEZ, R.; RODRIGUE, D. Polymer Processing: Extrusion. In: Encyclopedia of Polymer Science and Technology. 2017. p. 1-67. ROSENTRATER, K. A.; EVERS, A. D. Dry-milling technology. In: ROSENTRATER, K. A.; EVERS, A. D. (Eds.). Kent's Technology of Cereals (Fifth Edition). Woodhead Publishing: Cambridge, 2018. p. 421-514. SHASHIDHAR, M. G.; MURTHY, T. P. K.; GIRISH, K. G.; MANOHAR, B. Grinding of Coriander Seeds: Modeling of Particle Size Distribution and Energy Studies. Particulate Science and Technology. v. 31, n. 5, p. 449-457, 2013. VERGNES, B.; VILLEMAIRE, J. P. Rheological behaviour of low moisture molten maize starch. Rheologica Acta. v. 26, n. 6, p. 570-576, 1987. YANNIOTIS, S.; PETRAKI, A.; SOUMPASI, E. Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. Journal of Food Engineering. v. 80, n. 2, p. 594-599, 2007 AKDOGAN, H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International. v. 29, n. 5, p. 423-429, 1996. ALAM, S. A.; JÄRVINEN, J.; KIRJORANTA, S.; JOUPPILA, K.; POUTANEN, K.; SOZER, N. Influence of Particle Size Reduction on Structural and Mechanical Properties of Extruded Rye Bran. Food and Bioprocess Technology. v. 7, n. 7, p. 2121-2133, 2014. AOAC. Official Methods of Analysis of AOAC International. 18th ed. AOAC International: Gaithersburg, 2005. ASABE STANDARDS. Method of determining and expressing fineness of feed materials by sieving. In. ANSI/ASAE S319.4. American Society of Agricultural and Biological Engineers: Michigan, 2008. BADMUS, A. A.; RAJI, A. O.; AKINOSO, R. Effect of Process Parameters on Work Index, Milling Efficiency and Some Technological Properties of Yam Flour Using Attrition Mill. Food and Bioprocess Technology. v. 6, n. 1, p. 160-168, 2013. BALA, B. K. Principles of drying. In: BALA, B. K. (Ed.). Drying and Storage of Cereal Grains. 2nd ed. Wiley Blackwell: Chichester, 2017. p. 1-3. BARBOSA-CÁNOVAS, G. V.; JULIANO, P. Physical and chemical properties of food powders. In: ONWULATA, C. (Ed.). Encapsulated and Powdered Foods. CRC Press: Boca Raton, 2005. p. 39-71. BARBOSA-CÁNOVAS, G. V.; ORTEGA-RIVAS, E.; JULIANO, P.; YAN, H. Size reduction. In: Food Powders: Physical Properties, Processing, and Functionality. Springer US: Boston, MA, 2005. p. 157-173. BAUDELAIRE, E. D. Grinding for food powder production. In: BHANDARI, B. et al. (Eds.). Handbook of Food Powders. Woodhead Publishing: Cambridge, 2013. p. 132-149. BECKER, A.; HILL, S. E.; MITCHELL, J. R. Milling—A Further Parameter Affecting the Rapid Visco Analyser (RVA) Profile. Cereal Chemistry. v. 78, n. 2, p. 166-172, 2001. BOOTKOTE, P.; SOPONRONNARIT, S.; PRACHAYAWARAKORN, S. Process of Producing Parboiled Rice with Different Colors by Fluidized Bed Drying Technique Including Tempering. Food and Bioprocess Technology. v. 9, n. 9, p. 1574-1586, 2016. BOUVIER, J.-M.; CAMPANELLA, O. H. Quality analysis of extrusion-textured food products. In: BOUVIER, J.-M.; CAMPANELLA, O. H. (Eds.). Extrusion Processing Technology. John Wiley & Sons, Ltd: Chichester, 2014. p. 311-349. CHEN, H. H. Investigation of Properties of Long-grain Brown Rice Treated by Low-pressure Plasma. Food and Bioprocess Technology. v. 7, n. 9, p. 2484-2491, 2014. CISNEROS, F. H.; KOKINI, J. L. A generalized theory linking barrel fill length and air bubble entrapment during extrusion of starch. Journal of Food Engineering. v. 51, n. 2, p. 139-149, 2002. DING, C.; KHIR, R.; PAN, Z.; ZHAO, L.; TU, K.; EL-MASHAD, H.; MCHUGH, T. H. Improvement in Shelf Life of Rough and Brown Rice Using Infrared Radiation Heating. Food and Bioprocess Technology. v. 8, n. 5, p. 1149-1159, 2015. DING, Q.-B.; AINSWORTH, P.; TUCKER, G.; MARSON, H. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering. v. 66, n. 3, p. 283-289, 2005. DODDS, J. Techniques to analyse particle size of food powders. In: BHANDARI, B. et al. (Eds.). Handbook of Food Powders. Woodhead Publishing: Cambridge, 2013. p. 309-338. FITZGERALD, M. Starch. In: Rice Chemistry and Technology. 3rd ed. American Association of Cereal Chemists, Inc., 2004. p. 109-141. GONZÁLEZ, R. J.; PASTOR CAVADA, E.; VIOQUE PEÑA, J.; TORRES, R. L.; DE GREEF, D. M.; DRAGO, S. R. Extrusion Conditions and Amylose Content Affect Physicochemical Properties of Extrudates Obtained from Brown Rice Grains. International Journal of Food Science. v. 2013, p. 1-8, 2013. GUJRAL, H. S.; SHARMA, P.; KUMAR, A.; SINGH, B. Total phenolic content and antioxidant activity of extruded brown rice. International Journal of Food Properties. v. 15, n. 2, p. 301-311, 2012. HICKEY, A. J.; GIOVAGNOLI, S. Powder and particle-dependent traditional manufacturing processes (Unit Operations). In: Pharmaceutical Powder and Particles. Springer International Publishing: Cham, 2018. p. 61-71. HOURSTON, J. E.; IGNATZ, M.; REITH, M.; LEUBNER-METZGER, G.; STEINBRECHER, T. Biomechanical properties of wheat grains: the implications on milling. Journal of The Royal Society Interface. v. 14, n. 126, 2017. HUANG, M.-s.; ZHANG, M.; BHANDARI, B. Assessing the 3D Printing Precision and Texture Properties of Brown Rice Induced by Infill Levels and Printing Variables. Food and Bioprocess Technology. v. 12, n. 7, p. 1185-1196, 2019. JOSHI, N. D.; MOHAPATRA, D.; JOSHI, D. C. Varietal Selection of Some Indica Rice for Production of Puffed Rice. Food and Bioprocess Technology. v. 7, n. 1, p. 299-305, 2014. JULIANO, B. O. Rice properties and processing. Food Reviews International. v. 1, n. 3, p. 423-445, 1985. KIM, M. Y.; LEE, S. H.; JANG, G. Y.; LI, M.; LEE, Y. R.; LEE, J.; JEONG, H. S. Influence of Applied Pressure on Bioactive Compounds of Germinated Rough Rice (Oryza sativa L.). Food and Bioprocess Technology. v. 8, n. 10, p. 2176-2181, 2015. MA, J.; KAORI, F.; MA, L.; GAO, M.; DONG, C.; WANG, J.; LUAN, G. The effects of extruded black rice flour on rheological and structural properties of wheat-based dough and bread quality. International Journal of Food Science and Technology. v. 54, n. 5, p. 1729- 1740, 2019. MAROUSIS, S. N.; SARAVACOS, G. D. Density and Porosity in Drying Starch Materials. Journal of Food Science. v. 55, n. 5, p. 1367-1372, 1990. MARTI, A.; SEETHARAMAN, K.; PAGANI, M. A. Rice-based pasta: A comparison between conventional pasta-making and extrusion-cooking. Journal of Cereal Science. v. 52, n. 3, p. 404-409, 2010. MATHEW, J. M.; HOSENEY, R. C.; FAUBION, J. M. Effects of corn sample, mill type, and particle size on corn curl and pet food extrudates. Cereal Chemistry. v. 76, n. 5, p. 621-624, 1999. MONTGOMERY, D. C. The 2k factorial design. In: Design and analysis of experiments. 8th ed. Wiley: Hoboken, 2013a. p. 233-303. MONTGOMERY, D. C. Fitting regression models. In: Design and analysis of experiments. 8th ed. Wiley: Hoboken, 2013b. p. 449-477. O'SHEA, N.; ARENDT, E.; GALLAGHER, E. Enhancing an Extruded Puffed Snack by Optimising Die Head Temperature, Screw Speed and Apple Pomace Inclusion. Food and Bioprocess Technology. v. 7, n. 6, p. 1767-1782, 2014. OHTSUBO, K. i.; SUZUKI, K.; YASUI, Y.; KASUMI, T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of Food Composition and Analysis. v. 18, n. 4, p. 303-316, 2005. ORTEGA-RIVAS, E. Bulk Properties of Food Particulate Materials: An Appraisal of their Characterisation and Relevance in Processing. Food and Bioprocess Technology. v. 2, n. 1, p. 28, 2008. PARDHI, S. D.; SINGH, B.; NAYIK, G. A.; DAR, B. N. Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology. Journal of the Saudi Society of Agricultural Sciences. v. 18, n. 1, p. 7-16, 2019. ROBIN, F.; DATTINGER, S.; BOIRE, A.; FORNY, L.; HORVAT, M.; SCHUCHMANN, H. P.; PALZER, S. Elastic properties of extruded starchy melts containing wheat bran using online rheology and dynamic mechanical thermal analysis. Journal of Food Engineering. v. 109, n. 3, p. 414-423, 2012a. ROBIN, F.; DUBOIS, C.; PINEAU, N.; LABAT, E.; THÉODULOZ, C.; CURTI, D. Process, structure and texture of extruded whole wheat. Journal of Cereal Science. v. 56, n. 2, p. 358- 366, 2012b. SHASHIDHAR, M. G.; MURTHY, T. P. K.; GIRISH, K. G.; MANOHAR, B. Grinding of Coriander Seeds: Modeling of Particle Size Distribution and Energy Studies. Particulate Science and Technology. v. 31, n. 5, p. 449-457, 2013. SINGH GUJRAL, H.; SINGH, N. Extrusion behaviour and product characteristics of brown and milled rice grits. International Journal of Food Properties. v. 5, n. 2, p. 307-316, 2002. SINGH, S.; GAMLATH, S.; WAKELING, L. Nutritional aspects of food extrusion: a review. International Journal of Food Science and Technology. v. 42, n. 8, p. 916-929, 2007. SINIJA, V. R.; SULOCHANA, S.; SHWETHA, M. S. Engineering properties of brown rice from selected indian varieties. In: MANICKAVASAGAN, A.; SANTHAKUMAR, C.; VENKATACHALAPATHY, N. (Eds.). Brown Rice. Springer International Publishing: Cham, 2017. p. 45-65. SRICHUWONG, S.; SUNARTI, T. C.; MISHIMA, T.; ISONO, N.; HISAMATSU, M. Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohydrate Polymers. v. 62, n. 1, p. 25-34, 2005. VERGNES, B.; VILLEMAIRE, J. P. Rheological behaviour of low moisture molten maize starch. Rheologica Acta. v. 26, n. 6, p. 570-576, 1987. WALDE, S. G.; BALASWAMY, K.; VELU, V.; RAO, D. G. Microwave drying and grinding characteristics of wheat (Triticum aestivum). Journal of Food Engineering. v. 55, n. 3, p. 271- 276, 2002. WANG, L.; DUAN, W.; ZHOU, S.; QIAN, H.; ZHANG, H.; QI, X. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chemistry. v. 204, p. 320-325, 2016. WANG, S.; KOWALSKI, R. J.; KANG, Y.; KISZONAS, A. M.; ZHU, M.-J.; GANJYAL, G. M. Impacts of the Particle Sizes and Levels of Inclusions of Cherry Pomace on the Physical and Structural Properties of Direct Expanded Corn Starch. Food and Bioprocess Technology. v. 10, n. 2, p. 394-406, 2017. WEBB, P. A. Volume and density determinations for particle technologists. Micromeritics Instrument Corp. v. 2, n. 16, p. 01-16, 2001. XU, E.; WU, Z.; LONG, J.; WANG, F.; PAN, X.; XU, X.; JIN, Z.; JIAO, A. Effect of Thermostable α-Amylase Addition on the Physicochemical Properties, Free/Bound Phenolics and Antioxidant Capacities of Extruded Hulled and Whole Rice. Food and Bioprocess Technology. v. 8, n. 9, p. 1958-1973, 2015. ZHANG, W.; HOSENEY, R. C. Factors affecting expansion of corn meals with poor and good expansion properties. Cereal Chemistry. v. 75, n. 5, p. 639-643, 1998. ZHU, S. M.; HU, F. F.; RAMASWAMY, H. S.; YU, Y.; YU, L.; ZHANG, Q. T. Effect of High Pressure Treatment and Degree of Milling on Gelatinization and Structural Properties of Brown Rice. Food and Bioprocess Technology. v. 9, n. 11, p. 1844-1853, 2016. AKDOGAN, H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International. v. 29, n. 5, p. 423-429, 1996. ALAM, M. S.; PATHANIA, S.; SHARMA, A. Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings. LWT - Food Science and Technology. v. 74, p. 135-144, 2016. ALVAREZ-MARTINEZ, L.; KONDURY, K. P.; HARPER, J. M. A General Model for Expansion of Extruded Products. Journal of Food Science. v. 53, n. 2, p. 609-615, 1988. AOAC. Official Methods of Analysis of AOAC International. 18th ed. AOAC International: Gaithersburg, 2005. BOUVIER, J.-M.; CAMPANELLA, O. H. Quality analysis of extrusion-textured food products. In: BOUVIER, J.-M.; CAMPANELLA, O. H. (Eds.). Extrusion Processing Technology. John Wiley & Sons, Ltd: Chichester, 2014. p. 311-349. BOUZAZA, D.; ARHALIASS, A.; BOUVIER, J. M. Die design and dough expansion in low moisture extrusion-cooking process. Journal of Food Engineering. v. 29, n. 2, p. 139-152, 1996. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. v. 72, n. 1, p. 248-254, 1976. BRENNAN, C.; BRENNAN, M.; DERBYSHIRE, E.; TIWARI, B. K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends in Food Science & Technology. v. 22, n. 10, p. 570-575, 2011. DEHGHAN-SHOAR, Z.; HARDACRE, A. K.; BRENNAN, C. S. The physico-chemical characteristics of extruded snacks enriched with tomato lycopene. Food Chemistry. v. 123, n. 4, p. 1117-1122, 2010. HARPER, J. M. Food extruders and their applications. In: MERCIER, C.; LINKO, P.; HARPER, J. M. (Eds.). Extrusion Cooking. American Association of Cereal Chemists. Inc.: St. Paul, 1989. p. 1-16. LENTH, R. V. Quick and Easy Analysis of Unreplicated Factorials. Technometrics. v. 31, n. 4, p. 469-473, 1989. LIU, C.; ZHANG, Y.; LIU, W.; WAN, J.; WANG, W.; WU, L.; ZUO, N.; ZHOU, Y.; YIN, Z. Preparation, physicochemical and texture properties of texturized rice produce by Improved Extrusion Cooking Technology. Journal of Cereal Science. v. 54, n. 3, p. 473-480, 2011. LIU, H. J.; CHANG, B. Y.; YAN, H. W.; YU, F. H.; LIU, X. X. Determination of Amino Acids in Food and Feed by Derivatization with 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate and Reversed-Phase Liquid Chromatographic Separation. Journal of AOAC AKDOGAN, H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International. v. 29, n. 5, p. 423-429, 1996. ALAM, M. S.; PATHANIA, S.; SHARMA, A. Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings. LWT - Food Science and Technology. v. 74, p. 135-144, 2016. ALVAREZ-MARTINEZ, L.; KONDURY, K. P.; HARPER, J. M. A General Model for Expansion of Extruded Products. Journal of Food Science. v. 53, n. 2, p. 609-615, 1988. AOAC. Official Methods of Analysis of AOAC International. 18th ed. AOAC International: Gaithersburg, 2005. BOUVIER, J.-M.; CAMPANELLA, O. H. Quality analysis of extrusion-textured food products. In: BOUVIER, J.-M.; CAMPANELLA, O. H. (Eds.). Extrusion Processing Technology. John Wiley & Sons, Ltd: Chichester, 2014. p. 311-349. BOUZAZA, D.; ARHALIASS, A.; BOUVIER, J. M. Die design and dough expansion in low moisture extrusion-cooking process. Journal of Food Engineering. v. 29, n. 2, p. 139-152, 1996. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. v. 72, n. 1, p. 248-254, 1976. BRENNAN, C.; BRENNAN, M.; DERBYSHIRE, E.; TIWARI, B. K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends in Food Science & Technology. v. 22, n. 10, p. 570-575, 2011. DEHGHAN-SHOAR, Z.; HARDACRE, A. K.; BRENNAN, C. S. The physico-chemical characteristics of extruded snacks enriched with tomato lycopene. Food Chemistry. v. 123, n. 4, p. 1117-1122, 2010. HARPER, J. M. Food extruders and their applications. In: MERCIER, C.; LINKO, P.; HARPER, J. M. (Eds.). Extrusion Cooking. American Association of Cereal Chemists. Inc.: St. Paul, 1989. p. 1-16. LENTH, R. V. Quick and Easy Analysis of Unreplicated Factorials. Technometrics. v. 31, n. 4, p. 469-473, 1989. LIU, C.; ZHANG, Y.; LIU, W.; WAN, J.; WANG, W.; WU, L.; ZUO, N.; ZHOU, Y.; YIN, Z. Preparation, physicochemical and texture properties of texturized rice produce by Improved Extrusion Cooking Technology. Journal of Cereal Science. v. 54, n. 3, p. 473-480, 2011. LIU, H. J.; CHANG, B. Y.; YAN, H. W.; YU, F. H.; LIU, X. X. Determination of Amino Acids in Food and Feed by Derivatization with 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate and Reversed-Phase Liquid Chromatographic Separation. Journal of AOAC INTERNATIONAL. v. 78, n. 3, p. 736-743, 1995. MONTGOMERY, D. C. Fitting regression models. In: Design and analysis of experiments. 8th ed. Wiley: Hoboken, 2013a. p. 449-477. MONTGOMERY, D. C. Two-level fractional factorial designs. In: MONTGOMERY, D. C. (Ed.). Design and analysis of experiments. 8th ed. Wiley: Hoboken, 2013b. p. 320-393. PARDHI, S. D.; SINGH, B.; NAYIK, G. A.; DAR, B. N. Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology. Journal of the Saudi Society of Agricultural Sciences. v. 18, n. 1, p. 7-16, 2019. PASTOR-CAVADA, E.; DRAGO, S. R.; GONZÁLEZ, R. J.; JUAN, R.; PASTOR, J. E.; ALAIZ, M.; VIOQUE, J. Effects of the addition of wild legumes (Lathyrus annuus and Lathyrus clymenum) on the physical and nutritional properties of extruded products based on whole corn and brown rice. Food Chemistry. v. 128, n. 4, p. 961-967, 2011. RAUWENDAAL, C. Extruder Hardware. In: RAUWENDAAL, C. (Ed.). Polymer Extrusion. 5th ed. Hanser Publications: Cincinnati, 2014. p. 49-83. ROBIN, F.; DUBOIS, C.; PINEAU, N.; LABAT, E.; THÉODULOZ, C.; CURTI, D. Process, structure and texture of extruded whole wheat. Journal of Cereal Science. v. 56, n. 2, p. 358- 366, 2012. SINGH, B.; SEKHON, K. S.; SINGH, N. Effects of moisture, temperature and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chemistry. v. 100, n. 1, p. 198-202, 2007. SONG, S.; LEE, J. E.; SONG, W. O.; PAIK, H.-Y.; SONG, Y. Carbohydrate Intake and Refined-Grain Consumption Are Associated with Metabolic Syndrome in the Korean Adult Population. Journal of the Academy of Nutrition and Dietetics. v. 114, n. 1, p. 54-62, 2014. SUMARGO, F.; GULATI, P.; WEIER, S. A.; CLARKE, J.; ROSE, D. J. Effects of processing moisture on the physical properties and in vitro digestibility of starch and protein in extruded brown rice and pinto bean composite flours. Food Chemistry. v. 211, p. 726-733, 2016. VARGAS-SOLÓRZANO, J. W.; CARVALHO, C. W. P.; TAKEITI, C. Y.; ASCHERI, J. L. R.; QUEIROZ, V. A. V. Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Research International. v. 55, p. 37-44, 2014. WAGNER, J. R.; MOUNT, E. M.; GILES, H. F. Single Screw Extruder: Equipment. In: WAGNER, J. R.; MOUNT, E. M.; GILES, H. F. (Eds.). Extrusion: The Definitive Processing Guide and Handbook. 2nd ed. William Andrew Publishing: Oxford, 2014. p. 17-46. YAĞCı, S.; GÖĞÜŞ, F. Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. Journal of Food Engineering. v. 86, n. 1, p. 122-132, 2008. ZHOU, Z.; ROBARDS, K.; HELLIWELL, S.; BLANCHARD, C. The distribution of phenolic acids in rice. Food Chemistry. v. 87, n. 3, p. 401-406, 2004. | por |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/69526/2019%20-%20Jhony%20Willian%20Vargas-Solrzano.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5709 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-05-30T16:57:36Z No. of bitstreams: 1 2019 - Jhony Willian Vargas-Solrzano.pdf: 6217977 bytes, checksum: 6fb3c339fafcfe44cb2d97a9c29138c3 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-05-30T16:57:36Z (GMT). No. of bitstreams: 1 2019 - Jhony Willian Vargas-Solrzano.pdf: 6217977 bytes, checksum: 6fb3c339fafcfe44cb2d97a9c29138c3 (MD5) Previous issue date: 2019-12-18 | eng |
Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019 - Jhony Willian Vargas-Solórzano.pdf | 2019 - Jhony Willian Vargas-Solrzano | 6.07 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.