Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15852
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartins, Carolina Pinto de Carvalho
dc.date.accessioned2023-12-18T17:07:00Z-
dc.date.available2023-12-18T17:07:00Z-
dc.date.issued2021-12-22
dc.identifier.citationMARTINS, Carolina Pinto de Carvalho. Processamento de orange juice-milk por micro-ondas. 2021. 110 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos). Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttp://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15852-
dc.description.abstractAtualmente, o superaquecimento ainda é um grande problema no uso do aquecimento convencional para leite e vários produtos lácteos. O aquecimento por micro-ondas (AMO) tem o crédito de fornecer produtos lácteos de qualidade superior com vida útil estendida, representando uma boa alternativa ao tratamento térmico convencional. O presente estudo teve como objetivo avaliar o efeito do AMO (65 ◦C e 75 ◦C, por 15, 30 e 60 s) sobre os compostos bioativos, perfil de ácidos graxos, compostos orgânicos voláteis e aspectos físicos da bebida mista de suco de laranja e leite (BMSLL). E, além disso, avaliar o conhecimento sobre a tecnologia micro-ondas (MO), incluindo segurança do forno e a segurança dos alimentos para consumidores brasileiros e portugueses. O AMO apresentou menor índice de escurecimento e maiores níveis de ácido ascórbico, fenólicos totais e carotenoides, maior atividade antioxidante e maior atividade inibitória de α-amilase, α-glicosidase e enzima conversora de angiotensina (ECA) do que o produto pasteurizado, semelhante à bebida não tratada. Não foram observadas diferenças significativas nos níveis de compostos orgânicos voláteis e ácidos graxos. Temperaturas mais baixas (65 ◦C) e tempos de processo mais longos (60 s) resultaram em maior retenção de compostos bioativos. As condições operacionais ideais foram 915 MHz em comparação com 2.450 MHz devido aos maiores valores de fator de perda e profundidade de penetração, resultando em maior dissipação de calor e eficácia na distribuição de temperatura. As amostras tratadas por AMO apresentaram propriedades reológicas semelhantes às bebidas não tratadas com uma cor amarela ligeiramente mais intensa e um tamanho de partícula menor, especialmente em temperaturas e tempos de espera mais elevados. A migração dos compostos do recipiente para o alimento e as alterações da textura foram as principais preocupações relatadas. 3,6% dos brasileiros ainda usam vasilha de metal, 19,7% não leem as instruções de reaquecimento e 12,2% não leem as instruções de cozimento. Os consumidores portugueses têm um maior conhecimento dos níveis de potência e, em ambas as populações estudadas, o nível de escolaridade influenciou o conhecimento sobre a tecnologia. Brasileiros e portugueses eram indiferentes ou consideravam produtos tratados por micro-ondas como pouco seguros, respectivamente. O AMO pode ser considerado uma alternativa eficaz para o processamento de bebidas mistas de suco de laranja e leite, produzindo produtos com propriedades semelhantes ou aprimoradas em comparação com a pasteurização convencional. Entretanto, revela-se a necessidade de maior disseminação de informações que possam atingir a população de menor escolaridade, proporcionando melhor segurança operacional do forno micro-ondas e maior conhecimento dos riscos microbiológicos associados.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAquecimento micro-ondaspor
dc.subjecttecnologias inovadoraspor
dc.subjectpreservação de alimentospor
dc.subjectprodutos lácteospor
dc.subjectsegurança de alimentospor
dc.subjectMicrowave heatingeng
dc.subjectinnovative technologieseng
dc.subjectfood preservationeng
dc.subjectdairy productseng
dc.subjectfood safetyeng
dc.titleProcessamento de orange juice-milk por micro-ondaspor
dc.title.alternativeMicrowave orange juice-milk processingeng
dc.typeTesepor
dc.description.abstractOtherCurrently, overheating is still a major problem in the use of conventional heating for milk and various dairy products. Microwave heating (MWH) has been credited with providing superior-quality dairy-based products with extended shelf-life, representing a good alternative to conventional heat treatment. The present study aimed to evaluate the effect of MWH (65 ◦C and 75 ◦C, for 15, 30, and 60 s) on the bioactive compounds, fatty acids profile, volatile organic compounds, and physical aspects of orange juice-milk beverage (OJMB). In addition, evaluate the knowledge of microwave technology, including microwave oven safety and microwaved food safety for Brazilians and Portuguese consumers. MWH presented a lower browning index and higher levels of ascorbic acid, total phenolics, and carotenoids, higher antioxidant activity, and greater α-amylase, α-glucosidase, and angiotensin-converting enzyme (ACE) inhibitory activity than the pasteurized product, similar to the untreated beverage. No significant differences were observed in the volatile organic compounds and fatty acids levels. Lower temperatures (65 ◦C) and longer process times (60 s) resulted in higher retention of bioactive compounds. MH can be an alternative to conventional pasteurization for OJMB processing. The ideal operating conditions were at 915 MHz compared with 2450 MHz because of the higher loss factor values and penetration depth, resulting in higher heat dissipation and temperature distribution effectiveness. The MWH samples had rheological properties similar to untreated beverages with a slightly more intense yellow color and a smaller particle size, especially at higher temperatures and holding times. The migration of compounds from the container to the food and textural changes were the main concerns reported. 3.6% of Brazilians still use metal containers, 19.7% do not read the instructions for reheating and 12.2% do not read the cooking instructions. Portuguese consumers had a higher understanding of the power levels, and in both populations studied, the level of education influenced knowledge about the technology. Brazilians and Portuguese were indifferent or considered microwaved-treated products as slightly safe, respectively. MWH can be considered an effective alternative for processing mixed beverages of orange juice and milk, yielding products with similar or enhanced physical properties compared with conventional pasteurization. However, there is a need for greater dissemination of information that can reach the population with the lowest level of education, providing better operational safety of the microwave oven, and more excellent knowledge of associated microbiological risks.eng
dc.contributor.advisor1Cruz, Adriano Gomes da
dc.contributor.advisor1ID048.258.657-55por
dc.contributor.advisor-co1Garcia, Sílvia Regina Magalhães Couto
dc.contributor.advisor-co1ID071.510.687-27por
dc.contributor.advisor-co2Cavalcanti, Rodrigo Nunes
dc.contributor.advisor-co2ID009.575.414-81por
dc.contributor.referee1Cruz, Adriano Gomes da|
dc.contributor.referee2Pimentel, Tatiana Colombo
dc.contributor.referee3Sant'ana, Anderson de Souza
dc.contributor.referee4Silva, Luana Cristina Andrade da
dc.contributor.referee5Esmerino, Erick Almeida
dc.creator.ID112.370.817-77por
dc.creator.Latteshttp://lattes.cnpq.br/0000422935927267por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.references1. Abbasi S and Mohammadi S (2013) Stabilization of milk-orange juice mixture using Persian gum: Efficiency and mechanism. Food Bioscience 2 53–60. 2. Ahmed, J. & Luciano, G. (2009). Dielectric properties of β-lactoglobulin as influenced by pH, concentration and temperature. Journal of Food Engineering, 95, 30–35. 3. Ahmed, J. & Ramaswamy, H. S. (2007). Microwave pasteurization and sterilization of foods. In M. S. Hahman (Ed.), Handbook of food preservation (2nd ed., pp. 692–711). Boca Rat´on, FL: CRC Press. 4. Ahmed, J., Ramaswamy, H. S., & Raghavan, V. G. S. (2007). Dielectric properties of butter in the MW frequency range as affected by salt and temperature. Journal of Food Engineering, 82, 351–358. 5. Alhabeeb H, Sohouli M H, Lari A, Fatahi S, Shidfar F, Alomar O, Salem H, Al-Badawi I A and Abu-Zaid A (2020) Impact of orange juice consumption on cardiovascular disease risk factors: a systematic review and meta-analysis of randomized-controlled trials. Critical Reviews in Food Science and Nutrition 1–14. https://doi.org/10.1080/10408398.2020.1865263. 6. Álvarez, A., Fayos-Fernández, J., Monzo´-Cabrera, J., Cocero, M. J., & Mato, R. B. (2017). Measurement and correlation of the dielectric properties of a grape pomace extraction media. Effect of temperature and composition. Journal of Food Engineering, 197, 98–106. 7. Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Cappato, L. P., Guimaraes, J. T., Alvarenga, V. O., . . . Cruz, A. G. (2017). Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends in Food Science & Technology, 64, 94–101. 8. Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Cappato, L. P., Guimaraes, J. T., Alvarenga, V. O., Cruz, A. G. (2017). Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends in Food Science & Technology, 64, 94–101. 9. Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Martins, C. P. C., Andrade, L. G. Z. S., Moraes, J., Alvarenga, V. O., Guimarães, J. T., Esmerino, E. A., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Sant’ Ana, A. S., Meireles, M. A. A., & Cruz, A. G. (2018). Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chemistry, 239, 697–703. 10. Arjmandi, M., Otón, M., Artés, F., Artés-Hernández, F., Gómez, P. A., & Aguayo, E. (2016). Semi-industrial microwave treatments positively affect the quality of orange-colored smoothies. Journal of Food Science and Technology, 53, 3695–3703. 11. Armstrong, L., Do Carmo, M. A. V., Wu, Y., Esmerino, L. A., Azevedo, L., Zhang, L., & Granato, D. (2020). Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities. Food Research International, 137, ID: 109430. 12. Atuonwu, J. C., & Tassou, S. A. (2018). Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review. Journal of Food Engineering, 234, 1-15. 13. Auad, L. I., Cortez Ginani, V., dos Santos Leandro, E., Stedefeldt, E., Costa Santos Nunes, A., Yoshio Nakano, E., & Puppin Zandonadi, R. (2019). Brazilian food truck consumers’ profile, choices, preferences, and food safety importance perception. Nutrients, 11, 1175. 14. Bai, Y., Saren, G., & Huo, W. (2015). Response surface methodology (RSM) in evaluation of the vitamin C concentrations in microwave treated milk. Journal of Food Science and Technology, 52, 4647–4651. 15. Balthazar C F, Santillo A, Figliola L, Silva H L, Esmerino E A, Freitas M Q, Cruz A G and Albenzio M (2018) Sensory evaluation of a novel prebiotic sheep milk strawberry beverage. LWT 98 94–98. 16. Balthazar, C. F., Silva, H. L., Esmerino, E. A., Rocha, R. S., Moraes, J., Carmo, M. A., … Franco, R. M. (2018). The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chemistry, 246, 464–472. 17. Baptista, R. C., Rodrigues, H., & Sant'Ana, A. S. (2020). Consumption, knowledge, and food safety practices of Brazilian seafood consumers. Food Research International, 132, 109084. 18. Barba F J, Cort´es C, Esteve M J and Fr´ıgola A (2012) Study of antioxidant capacity and quality parameters in an orange juice-milk beverage after high-pressure processing treatment. Food and Bioprocess Technology 5 2222–2232. 19. Barba, F. J., Cortés, C., Esteve, M. J., & Frígola, A. (2012). Study of Antioxidant Capacity and Quality Parameters in An Orange Juice-Milk Beverage After High-Pressure Processing Treatment. Food and Bioprocess Technology, 5, 2222–2232. 20. Batista, A. L. D., Silva, R., Cappato, L. P., Ferreira, M. V. S., Nascimento, K. O., Schmiele, M., Esmerino, E. A., Balthazar, C. F., Silva, H. L. A., Moraes, J., Pimentel, T. C., Freitas, M. Q., Raices, R. S. L., Silva, M. C., & Cruz, A. G. (2017). Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. Journal of Functional Foods, 38, 242–250. 21. Bhat, Z. F., & Bhat, H. (2011). Milk and dairy products as functional foods: A review. International Journal of Dairy Science, 6, 1–12. 22. Bhat, Z. F., & Bhat, H. (2011). Milk and dairy products as functional foods: A review. International Journal of Dairy Science, 6(1), 1-12. 23. Bhunia, K., Sablani, S. S., Tang, J., & Rasco, B. (2013). Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Comprehensive Reviews in Food Science and Food Safety, 12, 523545. 24. Bhushand, D. M., Vyawarea, A. N., Wasnik, P. G., Agrawal, A. K., & Sandey, K. K. (2017). Microwave processing of milk: A rewiew. In A. K. Agrawal & M. R. Goyal (Eds.), Processing technologies for milk and milk products: Methods, applications, and energy usage (1st ed., pp. 219–251). Boca Ratón, FL: CRC Press. 25. Bhushand, D. M., Vyawarea, A. N., Wasnik, P. G., Agrawal, A. K., & Sandey, K. K. (2017). Microwave Processing of Milk: A Rewiew. In Processing Technologies for Milk and Milk Products: Methods, Applications, and Energy Usage. (pp. 219-251): Boca Ratón FL: CRC Press. 26. Birlouez-Aragon, I., Moreaux, V., Nicolas, M., & Ducauze, C. J. (1997). Effect of iron and lactose supplementation of milk on the Maillard reaction and tryptophan content. Food Additives and Contaminants, 14, 381–388. 27. Bøgh, K. L., Barkholt, V., & Madsen, C. B. (2015). Characterization of the immunogenicity and allergenicity of two cow’s milk hydrolysates: A study in brown norway rats. Scandinavian Journal of Immunology, 81, 274–283. 28. Brahm, P., Stinco, C. M., Rodrigo, M. J., Zacarías, L., & Meléndez-Martínez, A. J. (2018). Impact of thermal treatments on the bioaccessibility of phytoene and phytofluene in relation to changes in the microstructure and size of orange juice particles. Journal of Functional Foods, 46, 38–47. 29. Brands, C. M., Alink, G. M., van Boekel, M. A., & Jongen, W. M. (2000). Mutagenicity of heated sugar-casein systems: Effect of the Maillard reaction. Journal of Agricultural and Food Chemistry, 48, 2271–2275. 30. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25–30. 31. Bukreev, V. G., Eremin, A. D., & Chekrygina, I. M. (1996). Microwave heater of liquids. Patent. RU95101093 (A). Canumir, J. A., Celis, J. E., De Bruijn, J., & Vidal, L. V. (2002). 32. Cappato, L. P, Ferreira, M.V.S., Guimar˜aes, J.T., Portela, J.B., Costa, A.L.R., Freitas, M.Q, Cruz, A.G. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science and Technology, 62, 104–112. 33. Cappato, L. P, Ferreira, M.V.S., Guimarães, J.T., Portela, J.B., Costa, A.L.R., Freitas, M.Q., . . . Cruz, A.G. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science and Technology, 62, 104–112. 34. Cappato, L. P., Ferreira, M. V. S., Moraes, J., Pires, R. P. S., Rocha, R. S., Silva, R., Neto, R. P. C., Tavares, M. I. B., Freitas, M. Q., Rodrigues, F. N., Calado, V. M. A., Raices, R. S. L., Silva, M. C., & Cruz, A. G. (2018). 35. Cappato, L. P., Ferreira, M. V. S., Moraes, J., Pires, R. P., Rocha, R. S., Silva, R., . . . Cruz, A. G. (2018). Whey acerola-flavoured drink submitted to ohmic heating: Bioactive compounds, antioxidant capacity, thermal behavior, water mobility, fatty acid profile and volatile compounds. Food Chemistry, 263, 81–88. 36. Cappato, L. P., Ferreira, M. V. S., Moraes, J., Pires,R. P., Rocha, R. S., Silva, R., Cruz, A. G. (2018). Whey acerola-flavoured drink submitted to ohmic heating: Bioactive compounds, antioxidant capacity, thermal behavior, water mobility, fatty acid profile and volatile compounds. Food Chemistry, 263, 81–88. 37. Cavalcanti R N, Balthazar C F, Esmerino E A, Freitas M Q, Silva M C, Raices R S L, Gut J A W, Cruz A G and Tadini C C (2019) Correlation between the dielectric properties and the physicochemical characteristics and proximate composition of whole, semi-skimmed and skimmed sheep milk using chemometric tools. International Dairy Journal 97 120–130. 38. Centers for Disease Control and Prevention - CDC. (2008). Multistate outbreak of Salmonella infections associated with frozen pot pies--United States, 2007. MMWR. Morbidity and mortality weekly report, 57(47), 1277-1280. 39. Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing: A review. Food Research International, 52, 243–261. 40. Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—A review. Food Research International, 52(1), 243-261. 41. Chaouki J, Farag S, Attia M and Doucet J (2020) The development of industrial (thermal) processes in the context of sustainability: The case for microwave heating. The Canadian Journal of Chemical Engineering 98 832–847. 42. Chekrygin, E. H. V., Eremin, A. D., Bukreev, V. G., Rakitin, A. N., & Pikul, V. N. (1998). Microwave unit for pasteurizing and sterilizing liquids. Patent. RU2106766 (C1). 43. Chiu, C. P., Tateishi, K., Kosikowski, F. V., & Armbruster, G. (1984). Microwave treatment of pasteurized milk. Journal of Microwave Power, 19, 269–272. 44. Chizoba Ekezie, F.-G., Sun, D.-W., Han, Z., & Cheng, J.-H. (2017). Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends in Food Science & Technology, 67, 58–69. 45. Choi, H. K., Marth, E. H., & Vasavada, P.C. (1993a). Use of microwave energy to inactivate Yersinia enterocolitica and Campylobacter jejuni in milk. Milchwissenschaft, 48, 134–136. 46. Choi, K., Marth, E. H., & Vasavada, P. C. (1993b). Use of microwave energy to inactivate Listeria monocytogenes in milk. Milchwissenschaft, 48, 200–203. 47. Claeys, W. L., Cardoen, S., Daube, G., De Block, J., Dewettinck, K., Dierick, K., . . . Herman, L. (2013). Raw or heated cow milk consumption: Review of risks and benefits. Food Control, 31, 251–262. 48. Clare, D. A., Bang, W. S., Cartwright, G., Drake, M. A., Coronel, P., & Simunovic, J. (2005). Comparison of sensory, microbiological, and biochemical parameters of microwave versus indirect UHT fluid skim milk during storage. Journal of Dairy Science, 88, 4172–4182. 49. Coronel, P., Simunovic, J., & Sandeep, K. P. (2003). Temperature profiles within milk after heating in a continuous-flow tubular microwave system operating at 915 MHz. Journal of Food Science, 68, 1976–1981. 50. Costa N R, Cappato L P, Pereira M V S et al. (2018) Ohmic Heating: A potential technology for sweet whey processing. Food Research International 106 771–779. 51. Costa, G. M., de Carvalho Silva, J. V., Mingotti, J. D., Barão, C. E., Klososki, S. J., & Pimentel, T. C. (2017). Effect of ascorbic acid or oligofructose supplementation on L. paracasei viability, physicochemical characteristics and acceptance of probiotic orange juice. LWT, 75, 195–201. 52. Costa, N. R., Cappato, L. P., Pereira,M. V. S., Pires, R. P. S.,Moraes, J., Esmerino, E. A., . . . Cruz, A. G. (2018). Ohmic heating: A potential technology for sweet whey processing. Food Research International, 106, 771–779. 53. Costa, N. R., Cappato, L. P., Pereira,M. V. S., Pires, R. P. S.,Moraes, J., Esmerino, E. A., . . . Cruz, A. G. (2018). Ohmic heating: A potential technology for sweet whey processing. Food Research International, 106, 771–779. 54. Coutinho, N. M., Silveira, M. R., Rocha, R. S., Moraes, J., Ferreira, M. V. S., Pimentel, T. C., . . . Cruz, A. G. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science & Technology, 74, 56–68. 55. Coutinho, N. M., Silveira, M. R., Rocha, R. S., Moraes, J., Ferreira, M. V. S., Pimentel, T. C., Cruz, A. G. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science & Technology, 74, 56–68. 56. Curet, S., Rouaud, O., & Boillereaux, L. (2014). Estimation of dielectric properties of food materials during microwave tempering and heating. Food and Bioprocess Technology, 7, 371–384. 57. Datta, A. K., & Davidson, P. M. (2000). Microwave and radio frequency processing. Journal of Food Science, 65, 32–41. 58. Datta, A. K., Summu, G., & Raghavan, G. S. V. (2005). Dielectric properties of foods. In M. A. Rao, S. S. H. Rizvi, A. K. Datta, & J. Ahmed (Eds.), Engineering properties of foods (3rd ed., pp. 501–566). Boca Ratón, FL: CRC Press. 59. Datta, N., & Tomasula, P. M. (2015). Emerging dairy processing technologies: Opportunities for the dairy industry. Chichester, UK: John Wiley & Sons, Ltd. 60. de la Fuente B, Luz C, Puchol C, Meca G and Barba F J (2021) Evaluation of fermentation assisted by Lactobacillus brevis POM, and Lactobacillus plantarum (TR-7, TR-71, TR-14) on antioxidant compounds and organic acids of an orange juice-milk based beverage. Food Chemistry 343 128414. 61. Decareau, R. V. (1985). Microwaves in the food processing industry. Orlando, FL: Academic Press. 62. Deeth, H. (2010). Improving UHT processing and UHT milk products. In M. W. Griffiths (Ed.), Improving the safety and quality of milk (Vol. 1, pp. 302–329). Guelph: Woodhead Publishing Limited. 63. Dehghan, A., Jamalian, J., Farahnaky, A., Mesbahi, G., & Moosavi-Nasab, M. (2012). The effect of microwave pasteurization on some physical and chemical characteristics of milk. International Journal of Food Engineering, 8, 1–12. 64. Devi A F, Au X N, Weerakkody R, Sanguansri P, Swiergon P, Singh T, Ng S and Gamage T V (2021) Microwave pasteurised pear snack: quality and microbiological stability. Food and Bioprocess Technology 14 1615–1620. 65. Dumuta, A., Giurgiulescu, L., Mihaly-Cozmuta, L., & Vosgan, Z. (2011). Physical and chemical characteristics of milk. Variation due to microwave radiation. Croatica Chemica Acta, 84, 429–433. 66. Egger, L., & Ménard, O. (2017). Update on bioactive peptides after milk and cheese digestion. Current Opinion in Food Science, 14, 116-121. 67. El Mecherfi, E. K., Rouaud, O., Curet, S., Negaoui, H., Chobert, J. M., Kheroua, O., . . . Haertlé, T. (2015). Peptic hydrolysis of bovine beta-lactoglobulin under microwave treatment reduces its allergenicity in an ex vivo murine allergy model. International Journal of Food Science and Technology, 50, 356–364. 68. Escudero-López, B., Cerrillo, I., Gil-Izquierdo, Á., Hornero-Méndez, D., Herrero-Martín, G., Berná, G., Medina, S., Ferreres, F., Martín, F., & Fernández-Pachón, M.-S. (2016). Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. International Journal of Food Sciences and Nutrition, 67(7), 779-788. 69. Evans, M. R., Parry, S. M., & Ribeiro, C. D. (1995). Salmonella outbreak from microwave cooked food. Epidemiology & Infection, 115, 227-230. 70. FAO, Food and Agriculture Organization of the United Nations. (2016). Dairy pro- duction and products. Retrieved from http://www.fao.org/agriculture/dairy-gateway/milk-and-milk-products/ en/#.VuL1rLnSnrd/ 71. FAO, Food and Agriculture Organization of the United Nations. (2016). Dairy pro- duction and products. Retrieved from http://www.fao.org/agriculture/dairy-gateway/milk-and-milk-products/ en/#.VuL1rLnSnrd/ FAO. (2004). Codex Alimentarius. 72. FAO. (2004). Codex Alimentarius Commission. Code of hygienic practice for milk and milk products CAC/RCP 57–2004. 73. FDA. (2000). Kinetics of microbial inactivation for alternative food processing technologies: Microwave and radio frequency processing, food and drug administration. Department of Health and Human Services. USA. Journal of Food Science, 65, 32–41. 74. Ferreira, M. V. S., Cappato, L. P., Silva, R., Rocha, R. S., Guimarães, J. T., Balthazar, C. F., Esmerino, E. A., Freitas, M. Q., Rodrigues, F. N., Granato, D., Neto, R. P. C., Tavares, M. I. B., Silva, P. H. F., Raices, R. S. L., Silva, M. C., & Cruz, A. G. (2019). Ohmic heating for processing of whey-raspberry flavored beverage. Food Chemistry, 297, Article 125018. 75. Francisquini, J. d. A., Neves, L. N. O., Torres, J. K. F., Carvalho, A. F., Perrone, I. T., & da Silva, P. H. F. (2018). Physico-chemical and compositional analyses and 5-hydroxymethylfurfural concentration as indicators of thermal treatment intensity in experimental dulce de leche. Journal of Dairy Research, 85, 476-481. 76. Franco A P, Tadini C C and Gut J A W (2017) Predicting the dielectric behavior of orange and other citrus fruit juices at 915 and 2450 MHz. International Journal of Food Properties 20 1468–1488. 77. Franco A P, Yamamoto L Y, Tadini C C and Gut J A W (2015) Dielectric properties of green coconut water relevant to microwave processing: Effect of temperature and field frequency. Journal of Food Engineering 155 69–78. 78. Franco, A. P., Yamamoto, L. Y., Tadini, C. C., & Gut, J. A. W. (2015). Dielectric properties of green coconut water relevant to microwave processing: Effect of temperature and field frequency. Journal of Food Engineering, 155, 69–78. 79. Fu, M. X., Requena, J. R., Jenkins, A. J., Lyons, T. J., Baynes, J. W., & Thorpe, S. R. (1996). The advanced glycation end product, N_-(carboxymethyl) lysine, is a product of both lipid peroxidation and glycoxidation reactions. Journal of Biological Chemistry, 271, 9982–9986. 80. Funcia E S, Gut J A and Sastry S K (2020) Effect of electric field on pectinesterase inactivation during orange juice pasteurization by ohmic heating. Food and Bioprocess Technology 13 1206–1214. 81. García A, Torres J L, Prieto E and De Blas M (2001) Dielectric properties of grape juice at 0.2 and 3 GHz. Journal of Food Engineering 48 203–211. 82. Garnacho, G., Kaszab, T., Horváth, M., & Géczi, G. (2019). Comparative study of heat-treated orange juice. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 446–457. 83. Gaulin, C., Levac, E., Ramsay, D., Dion, R., Ismaïl, O., SGingras, U., & Lacroix, C. (2012). Escherichia coli O157:H7 outbreak linked to raw milk cheese in quebec, canada: Use of exact probability calculation and case-case study approaches to foodborne outbreak investigation. Journal of Food Protection, 75, 812–818. 84. Gebreyowhans, S., Lu, J., Zhang, S., Pang, X., & Lv, J. (2019). Dietary enrichment of milk and dairy products with n-3 fatty acids: A review. International Dairy Journal, 97, 158–166. 85. Géczi, G., Horv´ath, M., Kaszab, T., & Alemany, G. G. (2013). No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods. PLoS ONE, 8,1–12. 86. Géczi, G., Horváth, M., Kaszab, T., & Alemany, G. G. (2013). No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods. PLoS ONE, 8, 1–12. 87. Giese, J. (1992). Advances in microwave food processing. Food Technology, 46(9)118–123. 88. Giuffrida, D., Cacciola, F., Mapelli-Brahm, P., Stinco, C. M., Dugo, P., Oteri, M., Mondello, L., & Meléndez-Martínez, A. J. (2019). Free carotenoids and carotenoids esters composition in Spanish orange and mandarin juices from diverse varieties. Food Chemistry, 300, 125139. 89. González-Monroy A D, Kaur Kataria T, Olvera-Cervantes J L, Corona- Chávez A, Ozuna C, Rodríguez-Hernández G and Sosa-Morales M E (2018) Dielectric properties of beverages (tamarind and green) relevant to microwave-assisted pasteurization. Journal of Food Science 83 2317–2323. 90. Granato, D., Koot, A., Schnitzler, E., & van Ruth, S. M. (2015). Authentication of geographical origin and crop system of grape juices by phenolic compounds and antioxidant activity using chemometrics. Journal of Food Science, 80(3), C584–C593. 91. Guan, D., Cheng, M., Wang, Y., & Tang, J. (2004). Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. Journal of Food Science, 69, FEP30–FEP37. 92. Guimarães, J. T., Silva, E. K., Alvarenga, V. O., Costa, A. L. R., Cunha, R. L., Sant’anna, A. S., . . . Cruz, A. G. (2018a). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics Sonochemistry, 44, 251–260. 93. Guimarães, J. T., Silva, E. K., Alvarenga, V. O., Costa, A. L. R., Cunha, R. L., Sant’anna, A. S., Cruz, A. G. (2018a). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics Sonochemistry, 44, 251–260. 94. Guimarães, J. T., Silva, E. K., Freitas, M. Q., Meireles, M. A. A., & Cruz, A. G. (2018b). Non-thermal emerging technologies and their effects on the functional properties of dairy products. Current Opinion in Food Science, 22, 62–66. 95. Guimarães, J. T., Silva, E. K., Freitas,M. Q., Meireles,M. A. A., & Cruz, A. G. (2018b). Non-thermal emerging technologies and their effects on the functional properties of dairy products. Current Opinion in Food Science, 22, 62–66. 96. Guo, Q., Sun, D. W., Cheng, J. H., & Han, Z. (2017). Microwave processing techniques and their recent applications in the food industry. Trends in Food Science & Technology, 67, 236–247. 97. Guo, Q., Sun, D. W., Cheng, J. H., & Han, Z. (2017). Microwave processing techniques and their recent applications in the food industry. Trends in Food Science & Technology, 67, 236-247. 98. Guo, W., Liu, Y., Zhu, X., & Wang, S. (2011). Temperature-dependent dielectric properties of honey associated with dielectric heating. Journal of Food Engineering, 102(3), 209–216. 99. Guo, W., Tiwari, G., Tang, J., & Wang, S. (2008). Frequency, moisture and temperature-dependent dielectric properties of chickpea flour. Biosystems Engineering, 101, 217–224. 100. Hamann, J. (2010). Mastitis and raw milk quality, safety and yield. In M. W. Griffiths (Ed.), Improving the safety and quality of milk (Vol. 1, pp. 246–263). Guelph: Woodhead Publishing Limited. 101. Hamid, M. A. K., Boulanger, R. J., Tong, S. C., Gallop, R. A., & Pereira, R. R. (1969). Microwave pasteurization of raw milk. Journal of Microwave Power, 4, 272–275. 102. Hamid, M. A. K., Boulanger, R. J., Tong, S. C., Gallop, R. A., & Pereira, R. R. (1969). Microwave pasteurization of raw milk. Journal of Microwave Power, 4, 272–275. 103. Hassanein, M. M., El-Shami, S. M., & El-Mallah, M. H. (2003). Changes occurring in vegetable oils composition due to microwave heating. Grasas y Aceites, 54, 343–349. 104. Hernandez-Gomez E S, Olvera-Cervantes J L, Sosa-Morales M E, Corona-Vazquez B, Corona-Chavez A, Lujan-Hidalgo M C and Kataria T K (2021) Dielectric properties of Mexican sauces for microwave-assisted pasteurization process. Journal of Food Science 86 112–119. 105. Herzallah, S. M., Humeid, M. A., & Al-Ismail, K. M. (2005). Effect of heating and processing methods of milk and dairy products on conjugated linoleic acid and trans fatty acid isomer content. Journal of Dairy Science, 88, 1301–1310. 106. Hidayat K, Du X and Shi B M (2019) Milk in the prevention and management of type 2 diabetes: The potential role of milk proteins. Diabetes/Metabolism Research and Reviews 35 1–21. 107. Hidayat, K., Du, X., & Shi, B.-M. (2019). Milk in the prevention and management of type 2 diabetes: The potential role of milk proteins. Diabetes/Metabolism Research and Reviews, 35, Article e3187. 108. Hidayat, K., Du, X., & Shi, B.-M. (2019). Milk in the prevention and management of type 2 diabetes: The potential role of milk proteins. Diabetes/Metabolism Research and Reviews, 35(8), e3187. 109. Hornero-Méndez, D., Cerrillo, I., Ortega, Á., Rodríguez-Griñolo, M.-R., Escudero- López, B., Martín, F., & Fernández-Pachón, M.-S. (2018). β-Cryptoxanthin is more bioavailable in humans from fermented orange juice than from orange juice. Food Chemistry, 262, 215–220. 110. Hornero-Méndez, D., Cerrillo, I., Ortega, Á., Rodríguez-Griñolo, M.-R., Escudero-López, B., Martín, F., & Fernández-Pachón, M.-S. (2018). β-Cryptoxanthin is more bioavailable in humans from fermented orange juice than from orange juice. Food Chemistry, 262, 215-220. 111. Hossan, M. R., Byun, D., & Dutta, P. (2010). Analysis of microwave heating for cylindrical shaped objects. International Journal of Heat and Mass Transfer, 53, 5129–5138. 112. Hossan, M. R., Byun, D., & Dutta, P. (2010). Analysis of microwave heating for cylindrical shaped objects. International Journal of Heat and Mass Transfer, 53(23-24), 5129-5138. 113. Hunt, K., Drummond, N., Murphy, M., Butler, F., Buckley, J., & Jordan, K. (2012). A case of bovine raw milk contamination with Listeria monocytogenes. Irish Veterinary Journal, 65, 13–17. 114. Hussain S Z, Naseer B, Qadri T, Fatima T and Bhat T A (2021) Citrus fruits—morphology, taxonomy, composition and health benefits. In Fruits Grown in Highland Regions of the Himalayas, pp. 229–244. 115. Hussain, S Z, Naseer, B, Qadri, T, Fatima, T and Bhat, T A, eds. Cham: Springer. 116. Icier, F., & Baysal, T. (2004). Dielectrical properties of food materials - 1: Factors affecting and industrial uses. Critical Reviews in Food Science and Nutrition, 44, 465–471. 117. Iris K M, Fan J, Budarin V L, Bouxin F P, Clark J H and Tsang D C (2020) NaCl-promoted phase transition and glycosidic bond cleavage under microwave heating for energy-efficient biorefinery of rice starch. Green Chemistry 22 7355–7365. 118. Iuliana, C., Rodica, C., Sorina, R., & Oana, M. (2015). Impact of microwaves on the physico-chemical characteristics of cow milk. Romanian Reports in Physics, 67, 423–430 119. Iuliana, C., Rodica, C., Sorina, R., & Oana, M. (2015). Impact of microwaves on the physico-chemical characteristics of cow milk. Romanian Reports in Physics, 67, 423–430. 120. Jaynes, H. O. (1975). Microwave pasteurization of milk. Journal of Milk Food Technology, 38, 386–387. 121. Jideani A I, Silungwe H, Takalani T, Omolola A O, Udeh H O and Anyasi T A (2021) Antioxidant-rich natural fruit and vegetable products and human health. International Journal of Food Properties 24 41–67. 122. Jinxia, D. (2016). Microwave pasteurization apparatus. Patent. CN204969303 (U). 123. Kalla, A. M., & Devaraju, R. (2017). Microwave energy and its application in food industry: A review. Asian Journal of Dairy & Food Research, 36, 37–44. 124. Kamel, A., Ali, C., Farid, B., & Nadji, M. M. (2014). Microwave effect on the physicochemical and emulsifying properties of crude whey. Der Pharma Chemica, 6, 97–107. 125. Kasahara, I., Carrasco, V., & Aguilar, L. (2015). Inactivation of Escherichia coli in goat milk using pulsed ultraviolet light. Journal of Food Engineering, 152, 43–49. 126. Kasahara, I., Carrasco, V., & Aguilar, L. (2015). Inactivation of Escherichia coli in goat milk using pulsed ultraviolet light. Journal of Food Engineering, 152, 43–49. 127. Kenyon, E. M., Berkowitz, D., & Ayoub, J. A. (1976). Apparatus for continuous microwave sterilization of food in pouches. Patent. US3961569. 128. Ketnawa, S., Suwal, S., Huang, J.-Y., & Liceaga, A. M. (2019). Selective separation and characterisation of dual ACE and DPP-IV inhibitory peptides from rainbow trout (Oncorhynchus mykiss) protein hydrolysates. International Journal of Food Science & Technology, 54, 1062–1073. 129. Khan, M. K., Ahmad, K., Hassan, S., Imran, M., Ahmad, N., & Xu, C. (2018). Effect of novel technologies on polyphenols during food processing. Innovative Food Science & Emerging Technologies, 45, 361–381. 130. Kindratovych, S. Y. (2009). Microwave device for disinfection water, silt, pasteurization of milk and other liquid substances. Patent. UA85613 (C2). 131. Komarov, V., Wang, S., & Tang, J. (2005). Permittivity and measurements. In K. Chang (Ed.), Encyclopedia of RF and Microwave Engineering (pp. 3693–3711). New Jersey: John Wiley & Sons, Inc. 132. Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945-960. 133. Kubo M T K T K, Curet S, Augusto P E D and Boillereaux L (2018) Artificial neural network for prediction of dielectric properties relevant to microwave processing of fruit juice. Journal of Food Process Engineering 41 1–16. 134. Kudra, T., de Voort, F. R. Van, Raghavan, G. S. V., & Ramaswamy, H. S. (1991). Heating characteristics of milk constituents in a microwave pasteurization system. Journal of Food Science, 56, 931–934. 135. Kumar R, Mada S B, Reddi S, Kaur T, Kapila R and Kapila S (2021) Comparative evaluation of the protective effects of cow, buffalo and goat milk in glucocorticoid-induced bone alterations in mice. International Journal of Dairy Technology 74 316–323. 136. Kutlu N, Isci A, Sakiyan O and Yilmaz A E (2021) Extraction of phenolic compounds from cornelian cherry (Cornus mas L.) using microwave and ohmic heating assisted microwave methods. Food and Bioprocess Technology 14 650–664. 137. Laguerre, J.-C., Pascale, G.-W., David, M., Evelyne, O., Lamia, A.-A., & Ines, B.-A. (2011). The impact of microwave heating of infant formula model on neo-formed contaminant formation, nutrient degradation, and spore destruction. Journal of Food Engineering, 107, 208–213. 138. Laguerre, J.-C., Pascale, G.-W., David, M., Evelyne, O., Lamia, A.-A., & Inès, B.-A. (2011). The impact of microwave heating of infant formula model on neo-formed contaminant formation, nutrient degradation, and spore destruction. Journal of Food Engineering, 107, 208–213. 139. Laguerre, J.-C., Pascale, G.-W., David, M., Evelyne, O., Lamia, A.-A., & Inès, B.-A. (2011). The impact of microwave heating of infant formula model on neo-formed contaminant formation, nutrient degradation, and spore destruction. Journal of Food Engineering, 107, 208–213. 140. Lau, M. H., & Tang, J. (2002). Pasteurization of pickled asparagus using 915 MHz microwaves. Journal of Food Engineering, 51, 283–290. 141. Leclère, J., Birlouez-Aragon, I., & Meli, M. (2002). Fortification of milk with iron-ascorbate promotes lysine glycation and tryptophan oxidation. Food Chemistry, 76, 491–499. 142. Li, J., Liu, D., Sun, L., Lu, Y., & Zhang, Z. (2012). Advanced glycation end products and neurodegenerative diseases: Mechanisms and perspective. Journal of the Neurological Sciences, 317, 1–5. 143. Lin, M., & Ramaswamy, H. S. (2011). Evaluation of phosphatase inactivation kinetics in milk under continuous flow microwave and conventional heating conditions. International Journal of Food Properties, 14, 110–123. 144. Lin, M., & Ramaswamy, H. S. (2011). Evaluation of phosphatase inactivation kinetics in milk under continuous flow microwave and conventional heating conditions. International Journal of Food Properties, 14, 110–123. 145. Maniglia B C, Lima D C, Junior M D M, Le-Bail P, Le-Bail A and Augusto P E (2020) Preparation of cassava starch hydrogels for application in 3D printing using dry heating treatment (DHT): A prospective study on the effects of DHT and gelatinization conditions. Food Research International 128 108803. 146. Manjunatha, H., Prabha, R., Ramachandra, B., Krishna, R., & Shankar, P. (2012). Bactericidal effect of microwave on isolated bacterial cells in milk, paneer and khoa. Journal of Dairying Foods & Home Sciences, 31, 85–90. 147. Manjunatha, H., Prabha, R., Ramachandra, B., Krishna, R., & Shankar, P. (2012). Bactericidal effect of microwave on isolated bacterial cells in milk, paneer and khoa. Journal of Dairying Foods & Home Sciences, 31, 85–90. 148. Margraf, T., Karnopp, A. R., Rosso, N. D., & Granato, D. (2015). Comparison between Folin-Ciocalteu and Prussian Blue assays to estimate the total phenolic content of juices and teas using 96-well microplates. Journal of Food Science, 80, C2397–C2403. 149. Marszałek, K., Mitek, M., & Skąpska, S. (2015). Effect of Continuous Flow Microwave and Conventional Heating on the Bioactive Compounds, Colour, Enzymes Activity, Microbial and Sensory Quality of Strawberry Purée. Food and Bioprocess Technology, 8(9), 1864-1876. 150. Martins C P C, Cavalcanti R N R N, Cardozo T S F et al. (2021) Effects of microwave heating on the chemical composition and bioactivity of orange juice-milk beverages. Food Chemistry 345 128746. 151. Martins C P C, Cavalcanti R N, Couto S M et al. (2019) Microwave processing: current background and effects on the physicochemical and microbiological aspects of dairy products. Comprehensive Reviews in Food Science and Food Safety 18 67–83. 152. Martins, C. P. C., Cavalcanti, R. N., Couto, S. M., Moraes, J., Esmerino, E. A., Silva, M. C., Raices, R. S. L., Gut, J. A. W., Ramaswamy, H. S., Tadini, C. C., & Cruz, A. G. (2019). Microwave Processing: Current Background and Effects on the Physicochemical and Microbiological Aspects of Dairy Products. Comprehensive Reviews in Food Science and Food Safety, 18, 67–83. 153. Mazzei, F., Botrè, F., Favero, G., Podestà, E., & Botrè, C. (2009). Partially disposable biosensors for the quick assessment of damage in foodstuff after thermal treatment. Microchemical Journal, 91, 209–213. 154. McAuley, C. M., Singh, T. K., Haro-Maza, J. F., Williams, R., & Buckow, R. (2016). Microbiological and physicochemical stability of raw, pasteurized or pulsed electric field-treated milk. Innovative Food Science and Emerging Technologies, 38, 365–373. 155. McAuley, C. M., Singh, T. K., Haro-Maza, J. F., Williams, R., & Buckow, R. (2016). Microbiological and physicochemical stability of raw, pasteurized or pulsed electric field-treated milk. Innovative Food Science and Emerging Technologies, 38, 365–373. 156. McConnell, D. R. (1974). Energy consumption: A comparison between the microwave oven and the conventional electric range. Journal of Microwave Power, 9(4), 341–347. 157. Metaxas, A. C., & Meredith, R. J. (1983). Industrial microwave heating. London: Peter Peregrinus Ltd. 158. MicroMilk Project Website. (2013). In Nutritional and shelf stable milk by novel microwave processing. Retrieved from https://www.micromilk.fraunhofer.eu/index.html 159. MicVac. (2015). Quality without compromising on safety. Retrieved from http://www.micvac.com/customers-partners/success-stories/quality-without-compromising-onsafety 160. Miles E A and Calder P C (2021) Effects of citrus fruit juices and their bioactive components on inflammation and immunity: A narrative review. Frontiers in Immunology 12 2558. 161. Miller, B. M., Sauer, A., & Moraru, C. I. (2012). Inactivation of Escherichia coli in milk and concentrated milk using pulsed-light treatment. Journal of Dairy Science, 95, 5597–5603. 162. Miller, B. M., Sauer, A., & Moraru, C. I. (2012). Inactivation of Escherichia coli in milk and concentrated milk using pulsed-light treatment. Journal of Dairy Science, 95, 5597–5603. 163. Miranda, R. F., de Paula, M. M., da Costa, G. M., Barão, C. E., da Silva, A. C. R., Raices, R. S. L., Gomes, R. G., & Pimentel, T. C. (2019). Orange juice added with L. casei: Is there an impact of the probiotic addition methodology on the quality parameters? LWT, 106, 186–193. 164. Mishra, V. K., & Ramchandran, L. (2015). Novel thermal methods in dairy processing. In N. Datta & P. M. Tomasula (Eds.), Emerging dairy processing technologies (pp. 33–70). New Jersey: John Wiley & Sons, Ltd. 165. Mizrahi, S. (2012). Mechanisms of objectionable textural changes by microwave reheating of foods: a review. Journal of Food Science, 77, R57-R62. 166. Mondoulet, L., Paty, E., Drumare, M. F., Ah-Leung, S., Scheinmann, P., Willemot, R. M., . . . Bernard, H. (2005). Influence of thermal processing on the allergenicity of peanut proteins. Journal of Agricultural and Food Chemistry, 53, 4547–4553. 167. Monteiro, S. H. M. C., Silva, E. K., Alvarenga, V. O., Moraes, J., Freitas, M. Q., Silva, M. C., . . . Cruz, A. G. (2018). Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage. Ultrasonics Sonochemistry, 42, 1–10. 168. Monteiro, S. H. M. C., Silva, E. K., Alvarenga, V. O., Moraes, J., Freitas, M. Q., Silva, M. C., Cruz, A. G. (2018). Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage. Ultrasonics Sonochemistry, 42, 1–10. 169. Mudgett, R. E. (1986). Electrical properties of foods. Engineering properties of foods. In Engineering properties of foods (pp. 329–390). New York: Marcel Dekker, Inc. 170. Munoz, I., Gou, P., Picouet, P. A., Barlabe, A., & Felipe, X. (2018). Dielectric properties of milk during ultra-heat treatment. Journal of Food Engineering, 219, 137–146. 171. Munoz, I., Gou, P., Picouet, P. A., Barlabe, A., & Felipe, X. (2018). Dielectric properties of milk during ultra-heat treatment. Journal of Food Engineering, 219, 137-146. 172. Muñoz, I., Gou, P., Picouet, P. A., Barlabé, A., & Felipe, X. (2018). Dielectric properties of milk during ultra-heat treatment. Journal of Food Engineering, 219, 137–146. 173. Murthy, V. J., Kiranmai, N. S., & Kumar, S. (2017). Study of dielectric properties of adulterated milk concentration and freshness. In IOP Conference Series: Materials Science and Engineering (1st ed., vol. 225), India. 174. Muthukumarappan, K., & Swamy, G. J. (2019). Microwave processing of foods. In Handbook of Farm, Dairy and Food Machinery Engineering (pp. 417-438). Academic Press. 175. Neetoo, H., Chen, H., & Hoover, D. G. (2012). Emerging methods for post-packaging microbial decontamination of food. In A. Demirci & M. O. Ngadi (Eds.), Woodhead publishing series in food science, technology and nutrition, microbial decontamination in the food industry (pp. 746–787). Cambridge: Woodhead Publishing Limited. 176. Nelson, S. O. (1996). Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Transactions of the American Society of Agricultural Engineers, 39, 1475–1484. 177. Nelson, S. O., & Datta, A. K. (2001). Dielectric properties of food materials and electric field interactions. In A. K. Datta (Ed.), Handbook of microwave technology for food applications (pp. 69–114). New York: Marcel Dekker. 178. New, C. Y., Thung, T. Y., Premarathne, J. M. K. J. K., Russly, A. R., Abdulkarim, S. M., & Son, R. (2017). Microwave oven safety: A food safety consumer survey in Malaysia. Food Control, 80, 420-427. 179. Nunes, A. C., Bohigas, X., & Tejada, J. (2006) Dielectric study of milk for frequencies between 1 and 20 GHz. Journal of Food Engineering, 76, 250–255. 180. Oh, M. J., Kim, Y., Hoon Lee, S., Lee, K. W., & Park, H. Y. (2017). Prediction of CML contents in the Maillard reaction products for casein-monosaccharides model. Food Chemistry, 267, 271–276. 181. Oral, R. A., Mortas, M., Dogan, M., Sarioglu, K., & Yazici, F. (2014). New approaches to determination of HMF. Food Chemistry, 143, 367–370. 182. Pang, B., Guo, N., & He, H. (1987). Milk-sterilizing equipment with microwave. Patent. CN86203061 (U). 183. Paniagua-Martínez, I., Mulet, A., García-Alvarado, M. A., & Benedito, J. (2018). Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality. Innovative Food Science & Emerging Technologies, 47, 362–370. 184. Paravisini L and Peterson D G (2019) Mechanisms non-enzymatic browning in orange juice during storage. Food Chemistry 289 320–327. 185. Pardo, R. P., Altahona, L., & Pérez, J. P. (2013). Milk as functional food: A review. Livestock Research for Rural Development, 25(8), Article #139. Retrieved from http://www.lrrd.org/lrrd25/8/pati25139.htm. 186. Pasteurisation of apple juice by using microwaves. LWT - Food Science and Technology, 35, 389–392. 187. Pathare P B, Opara U L and Al-Said F A J (2013) Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology 6 36–60. 188. Pina-Pérez, M. C., Benlloch-Tinoco, M., Rodrigo, D., & Martinez, A. (2014). Cronobacter sakazakii inactivation by microwave processing. Food and Bioprocess Technology, 7, 821–828. 189. Pina-Pérez, M. C., Benlloch-Tinoco, M., Rodrigo, D., & Martinez, A. (2014). Cronobacter sakazakii inactivation by microwave processing. Food and Bioprocess Technology, 7, 821–828. 190. Portela, J. B., Coimbra, P. T., Cappato, L. P., Alvarenga, V. O., Oliveira, R. B., Pereira, K. S., ... & Cruz, A. G. (2019). Predictive model for inactivation of Salmonella in infant formula during microwave heating processing. Food Control, 104, 308-312. 191. Pradeep, P. M., & Sreerama, Y. N. (2015). Impact of processing on the phenolic profiles of small millets: Evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chemistry, 169, 455–463. 192. Ragni, L., Al-Shami, A., Berardinelli, A., Mikhaylenko, G., & Tang, J. (2007). Quality evaluation of shell eggs during storage using a dielectric technique. Transactions of the ASABE, 50, 1331–1340. 193. Ramaswamy, H. S., & Tang, J. (2008). Microwave and radiofrequency heating. Food Science and Technology International, 14, 423–430. 194. Ramaswamy, H. S., & Tang, J. (2008). Microwave and radiofrequency heating. Food Science and Technology International, 14, 423–430. 195. Ramos, G. L., Nascimento, J. S., Margalho, L. P., Duarte, M. C. K., Esmerino, E. A., Freitas, M. Q., ... & Sant’Ana, A. S. (2021). Quantitative microbiological risk assessment in dairy products: Concepts and applications. Trends in Food Science & Technology, 111, 610-616. 196. Ranadheera, C. S., Evans, C. A., Baines, S. K., Balthazar, C. F., Cruz, A. G., Esmerino, E. A., … Graça, J. S. (2019). Probiotics in goat milk products: Delivery capacity and ability to improve sensory attributes. Comprehensive Reviews in Food Science and Food Safety, 18, 867–882. 197. Rasooly, R., Hernlem, B., He, X., & Friedman, M. (2014). Microwave heating inactivates shiga toxin (Stx2) in reconstituted fat-free milk and adversely affects the nutritional value of cell culture medium. Journal of Agricultural and Food Chemistry, 62, 3301–3305. 198. Rasooly, R., Hernlem, B., He, X., & Friedman, M. (2014). Microwave heating inactivates shiga toxin (Stx2) in reconstituted fat-free milk and adversely affects the nutritional value of cell culture medium. Journal of Agricultural and Food Chemistry, 62, 3301–3305. 199. Raza, N., & Kim, K. H. (2018). Quantification techniques for important environmental contaminants in milk and dairy products. TrAC - Trends in Analytical Chemistry, 98, 79–94. 200. Raza, N., & Kim, K.-H. (2018). Quantification techniques for important environmental contaminants in milk and dairy products. TrAC Trends in Analytical Chemistry, 98, 79-94. 201. Rial, S. A., Karelis, A. D., Bergeron, K.-F., & Mounier, C. (2016). Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals. Nutrients, 8, 281. 202. Risman P O (1991) Terminology and notation of microwave power and electromagnetic energy. Journal of Microwave Power and Electromagnetic Energy 26 1–4. 203. Rodrigues, J. F., dos Santos Filho, M. T. C., de Oliveira, L. E. A., Siman, I. B., de Fátima Barcelos, A., Ramos, G. L. P. A., ... & e Oliveira, R. A. A. (2021). Effect of the COVID-19 pandemic on food habits and perceptions: A study with Brazilians. Trends in Food Science & Technology, 116, 992-1001. 204. Rodríguez-Alcalá, L. M., Alonso, L., & Fontecha, J. (2014). Stability of fatty acid composition after thermal, high pressure, and microwave processing of cow milk as affected by polyunsaturated fatty acid concentration. Journal of Dairy Science, 97, 7307–7315. 205. Rodríguez-Alcalá, L. M., Castro-Gómez, M. P., Pimentel, Lígia L., & Fontecha, J. (2017). Milk fat components with potential anticancer activity—a review. Bioscience Reports, 37, BSR20170705. 206. Rodriguez-Amaya, D. B. (2001). A Guide to Carotenoid Analysis in Food. Washington: Internacional Life Sciences Institute Press. Sengar, G., Sharma, H. K., & Kumar, N. (2015). Effect of Microwave heating on physico-chemical and thermal behavior of blended fat. International Food Research Journal, 22, 295–303. 207. Rozenberg, S., Body, J. J., Bruy`ere, O., Bergmann, P., Brandi, M. L., Cooper, C., Reginster, J. Y. (2016). Effects of dairy products consumption on health: Benefits and beliefs: A commentary from the belgian bone club and the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases. Calcified Tissue International, 98, 1–17. 208. Rozenberg, S., Body, J. J., Bruyère, O., Bergmann, P., Brandi, M. L., Cooper, C., . . . Reginster, J. Y. (2016). Effects of dairy products consumption on health: Benefits and beliefs: A commentary from the belgian bone club and the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases. Calcified Tissue International, 98, 1–17. 209. Ruiz-De Anda, D., Ventura-Lara, M. G., Rodríguez-Hernández, G., & Ozuna, C. (2019). The impact of power ultrasound application on physicochemical, antioxidant, and microbiological properties of fresh orange and celery juice blend. Journal of Food Measurement and Characterization, 13(4), 3140-3148. 210. Ruozi, G. (1989). A method of pasteurizing or sterilizing foodstuffs utilizing microwaves, and an oven for the implementation of such a method. Patent. EP 0347623 A1. 211. Ruozi, G. (1991). Method of pasteurizing or sterilizing foodstuffs utilizing microwaves. Patent. US5066503. 212. Ruozi, G. (1998). Plant for pasteurizing or sterilising solid or liquid food products using microwaves. Patent. US5750966 A. 213. Ryynänen, S. (1995). The electromagnetic properties of food materials: A review of the basic principles. Journal of Food Engineering, 26, 409–429. 214. Sabra, A., Bellanti, J. A., Rais, J. M., Castro, H. J., Mendez de Inocencio, J., & Sabra, S. (2003). IgE and non-IgE food allergy. Annals of Allergy, Asthma & Immunology, 90, 71–76. 215. Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2016). A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices. Food Science and Technology International, 22(4), 288-301. 216. Sairem Company Website. (2015). SAIREM SAS. Retrieved from http://www.sairem.com/the-tunnels-53.html 217. Sakkas, L., Moutafi, A., Moschopoulou, E., & Moatsou, G. (2014). Assessment of heat treatment of various types of milk. Food Chemistry, 159, 293–301. 218. Salazar-González, C., Martín-González, M. F. S., López-Malo, A., & Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food and Bioprocess Technology, 5, 31–46. 219. Salazar-González, C., Martín-González, M. F. S., López-Malo, A., & Sosa-Morales, M. E. (2012). Recent Studies Related to Microwave Processing of Fluid Foods. Food and Bioprocess Technology, 5(1), 31-46. 220. Sánchez, A., & Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1), 29-46. 221. Saraiva A, Carrascosa C, Raheem D, Ramos F and Raposo A (2020) Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. International Journal of Environmental Research and Public Health 17 6285. 222. Sattar, S., Ahmad, T., Nisa, M.-u., Imran, M., Holmes, M., Maycock, J., Nadeem, M., & Khan, M. K. (2019). Microwave processing impact on physicochemical and bioactive attributes of optimized peach functional beverage. Journal of Food Processing and Preservation, 43(7), e13952. 223. Sebeková, K., & Somoza, V. (2007). Dietary advanced glycation end products (AGEs) and their health effects – PRO. Molecular Nutrition & Food Research, 51, 1079–1084. 224. Semma, M. (2002). Trans fatty acids: Properties, benefits, and risks. Journal of health science, 48, 7–13. 225. Sengar, G., Sharma, H. K., & Kumar, N. (2015). Effect of Microwave heating on physico-chemical and thermal behavior of blended fat. International Food Research Journal, 22, 295–303. 226. Serraino, A., Florio, D., Giacometti, F., Piva, S., Mion, D., & Zanoni, R. G. (2013). Presence of Campylobacter and Arcobacter species in in-line milk filters of farms authorized to produce and sell raw milk and of a water buffalo dairy farm in Italy. Journal of Dairy Science, 96, 2801–2807. 227. Sieber, R., Eberhard, P., & Gallmann, P. U. (1996). Heat treatment of milk in domestic microwave ovens. International Dairy Journal, 6, 231–246. 228. Silva, J. M., Klososki, S. J., Silva, R., Raices, R. S. L., Silva, M. C., Freitas, M. Q., … Pimentel, T. C. (2020). Passion fruit-flavored ice cream processed with water-soluble extract of rice by-product: What is the impact of the addition of different prebiotic components? LWT, 109472. 229. Song, W. J., & Kang, D. H. (2016). Influence of water activity on inactivation of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in peanut butter by microwave heating. Food Microbiology, 60, 104–111. 230. Song, W.-J., & Kang, D.-H. (2016). Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating. Food Microbiology, 53, 48–52. 231. Sosa-Morales M E, Valerio-Junco L, L´opez-Malo A and García H S (2010) Dielectric properties of foods: Reported data in the 21st Century and their potential applications. LWT-Food Science and Technology 43 1169–1179. 232. Sosa-Morales, M. E., Méndez-Obregón, M., & Lopez-Malo, A. (2010). Microwave thermal treatment for an ostrich meat ready-to-serve dinner. In: American Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010, vol. 7 (pp. 5917–5926). 233. Sosa-Morales, M. E., Tiwari, G., Wang, S., Tang, J., Garcia, H. S., & Lopez-Malo, A. (2009). Dielectric heating as a potential post-harvest treatment of disinfesting mangoes, Part I: Relation between dielectric properties and ripening. Biosystems Engineering, 103, 297–303. 234. Sosa-Morales, M. E., Valerio-Junco, L., López-Malo, A., & García, H. S. (2010). Dielectric properties of foods: Reported data in the 21st Century and their potential applications. LWT - Food Science and Technology, 43, 1169–1179. 235. Stanley, R. A., & Petersen, P. (2017). Microwave-assisted pasteurization and sterilization: Commercial perspective. In M. Regier, K. Knoerzer, & H. Schubert (Eds.), The microwave processing of foods (pp. 200–219). United Kingdom: Elsevier. 236. Sucheta Wasimuddin, Misra N N and Yadav S K (2020) Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids 102 105592. 237. Sung, H.-J., & Kang, D.-H. (2014). Effect of a 915 MHz microwave system on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in salsa. LWT - Food Science and Technology, 59, 754–759. 238. Tang, J. (2005). Dielectric properties of foods. In H. Schubert & M. Regier (Eds.), The microwave processing of foods (pp. 22–40). Cambridge: Woodhead Publishing Limited. 239. Tang, J., Hao, F., & Lau, M. (2002). Microwave heating in food processing. In X. H. Yang & J. Tang (Eds.), Advances in bioprocessing engineering (pp. 1–44). New York: World Scientific. 240. Tang, J., Liu, F., Patfiak, K., & Eves, E. E. (2006). Apparatus and method for heating objects with microwaves. Patent US7119313 (B2). 241. Tang, Y., Lu, L., & Zhao, W. (2011). Comparative effects of microwave and water bath on the packing films of milk. International Journal of Food Engineering, 7(5), 1–13. 242. Tao Y, Yan B, Fan D, Zhang N, Ma S, Wang L, Wu Y, Wang M, Zhao J and Zhang H (2020) Structural changes of starch subjected to microwave heating: A review from the perspective of dielectric properties. Trends in Food Science & Technology 99 593–607. 243. Tessier, F. J., Gadonna-Widehem, P., & Laguerre, J. C. (2006). The fluorimetric FAST method, a simple tool for the optimization of microwave pasteurization of milk. Molecular Nutrition & Food Research, 50, 793–798. 244. Tonolo, F., Folda, A., Cesaro, L., Scalcon, V., Marin, O., Ferro, S., Bindoli, A., & Rigobello, M. P. (2020). Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. Journal of Functional Foods, 64, Article 103696. 245. Tonolo, F., Folda, A., Cesaro, L., Scalcon, V., Marin, O., Ferro, S., Bindoli, A., & Rigobello, M. P. (2020). Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. Journal of Functional Foods, 64, 103696. 246. Toscano, R. M. Q. (2006). Segurança alimentar e comportamento do consumidor em Portugal (Master's thesis, Universidade de Évora). 247. Tremonte, P., Tipaldi, L., Succi, M., Pannella, G., Falasca, L., Capilongo, V., . . . Sorrentino, E. (2014). Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality. Journal of Dairy Science, 97, 3314–3320. 248. Tremonte, P., Tipaldi, L., Succi, M., Pannella, G., Falasca, L., Capilongo, V., Sorrentino, E. (2014). Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality. Journal of Dairy Science, 97, 3314–3320. 249. Tresserra-Rimbau A, Castro-Barquero S, Vitelli-Storelli F et al. (2019) Associations between dietary polyphenols and type 2 diabetes in a cross-sectional analysis of the PREDIMED-Plus trial: Role of body mass index and sex. Antioxidants 8 537. 250. Tu, Z.-C., Zhang, L., Wang, H., Huang, X.-Q., Zhang, L., & Yang, K. (2014). Structure and antioxidant activity of milk model systems after microwave heating. Food Science and Technology Research, 20, 345–355. 251. Turner, S. (2013). Saizeriya Australia ready meal line. Video Retrieved from https://www.youtube.com/watch?v5HN_PoEeO4S8 252. United States Food and Drug Administration (US FDA). (2020). Kinetics of microbial inactivation for alternative food processing technologiesdmicrowave and radio frequency processing. Retrieved from https://www.fda.gov/radiation-emitting-products/home-business-and-entertainment-products/microwave-ovens. Accessed 2 October, 2021. 253. Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials: A review. Food and Bioprocess Technology, 3, 161–171. 254. Valero, A., Cejudo, M., & García-Gimeno, R. M. (2014). Inactivation kinetics for Salmonella Enteritidis in potato omelet using microwave heating treatments. Food Control, 43, 175–182. 255. Venkatesh, M. S., & Raghavan, G. S. V. (2004). An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering, 88, 1–18. 256. Vicente, A., & Castro, I. A. (2008). Novel thermal processing technologies. In G. Tewari & V. K. Juneja (Eds.), Advances in thermal and non-thermal food preservation (pp. 99–130). Iowa: Blackwell Publishing. 257. Villamiel, M., López-Fandiño, R., Corzo, N., Martínez-Castro, I., & Olano, A. (1996). Effects of continuous-flow microwave treatment on chemical and microbiological characteristics of milk. Z- Lebensmittel Unters Forsch, 202, 15–18. 258. Wang, W., & Guohua, Chen (2005). Heat and mass transfer model of dielectric-material-assisted microwave freeze-drying of skim milk with hygroscopic effect. Chemical Engineering Science, 60, 6542–6550 259. Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 57, 257–268. 260. Wang, Z., Jiang, Y., Liu, N., Ren, L., Zhu, Y., An, Y. et al. (2012). Advanced glycation end-product Nepsilon-carboxymethyl-lysine accelerates progression of atherosclerotic calcification in diabetes. Atherosclerosis, 221, 387–396. 261. Weber H, Poeggel K, Eakin H, Fischer D, Lang D J, Von Wehrden H and Wiek A (2020) What are the ingredients for food systems change towards sustainability?—Insights from the literature. Environmental Research Letters 15 113001. 262. Wei, X., Song, M., Chen, C., Tong, H., Liang, G., & Gmitter, F. G., Jr (2018). Juice volatile composition differences between Valencia orange and its mutant Rohde Red Valencia are associated with carotenoid profile differences. Food Chemistry, 245, 223–232. 263. Whey acerola-flavoured drink submitted Ohmic Heating: Bioactive compounds, antioxidant capacity, thermal behavior, water mobility, fatty acid profile and volatile compounds. Food Chemistry, 263, 81–88. 264. WHO-FAO (2021) Fruits and Vegetables. Essential for Healthy Lives. United States of America: WHO-FAO. URL https://www.fao.org/3/cb2395en/online/src/html/fruit-and-vegetables.html. Accessed in 24 Oct 2021. 265. Yam, K. L., & Lai, C. C. (2006). Microwable frozen food or meals. In Y. H. Hui & F. Sherkat (Eds.), Handbook of food science, technology and engineering (pp. 111–118). Boca Ratón: CRC Press. 266. Yang, B., Shi, Y., Xia, X., Xi, M., Wang, X., Ji, B., & Meng, J. (2012). Inactivation of foodborne pathogens in raw milk using high hydrostatic pressure. Food Control, 28, 273–278. 267. Yang, H. W., & Gunasekaran, S. (2004). Comparison of temperature distribution in model food cylinders based on Maxwell’s equations and Lambert’s law during pulsed microwave heating. Journal of Food Engineering, 64, 445–453. 268. Yasuhiro, O., Junichi, U., Yoshiki, M., & Keiji, K. (2017). Milk beverage in sealed container. Patent. JP2017225400 (A). 269. Yun B, Maburutse B E, Kang M, Park M R, Park D J, Kim Y and Oh S (2020) Short communication: Dietary bovine milk–derived exosomes improve bone health in an osteoporosis-induced mouse model. Journal of Dairy Science 103 7752–7760. 270. Zheng Y and Sun T (2021) A method to derive the dielectric loss factor of minerals from microwave heating rate tests. Measurement 171 108788. 271. Zhu, J., Kuznetsov, A. V., & Sandeep, K. P. (2007). Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters). International Journal of Thermal Sciences, 46, 328–341. 272. Zhu, X., Guo, W., & Jia, Y. (2014). Temperature-dependent dielectric properties of raw cow’s and goat’s milk from 10 to 4,500 MHz relevant to radio-frequency and microwave pasteurization process. Food and Bioprocess Technology, 7, 1830–1839. 273. Zhu, X., Guo, W., &Wu, X. (2012). Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 109, 258–266. 274. Zulueta, A., Barba, F. J., Esteve, M. J., & Frígola, A. (2013). Changes in Quality and Nutritional Parameters During Refrigerated Storage of an Orange Juice-Milk Beverage Treated by Equivalent Thermal and Non-thermal Processes for Mild Pasteurization. Food and Bioprocess Technology, 6, 2018–2030. 275. Zvaigzne, G., & Kārkliņa, D. (2013). Health promoting chemical components of orange juice. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences (Vol. 67, pp. 329-333): Versita.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69195/2021%20-%20Carolina%20Pinto%20de%20Carvalho%20Martins.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5624
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-05-06T19:09:27Z No. of bitstreams: 1 2021 - Carolina Pinto de Carvalho Martins.pdf: 2950341 bytes, checksum: daf5144507a5ab4b5873d176208a42cf (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-05-06T19:09:27Z (GMT). No. of bitstreams: 1 2021 - Carolina Pinto de Carvalho Martins.pdf: 2950341 bytes, checksum: daf5144507a5ab4b5873d176208a42cf (MD5) Previous issue date: 2021-12-22eng
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Carolina Pinto de Carvalho Martins.pdf2.88 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.