Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15851
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarcía, Yineth Ruíz
dc.date.accessioned2023-12-18T17:06:58Z-
dc.date.available2023-12-18T17:06:58Z-
dc.date.issued2019-05-10
dc.identifier.citationGARCÍA, Yineth Ruíz. Obtenção de um extrato concentrado a partir da casca de uva cv. Alicante Bouschet (Vitis vinifera L.): caracterização química, bioacessibilidade e aplicação como corante. 2019. 106 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica,2019.por
dc.identifier.urihttp://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15851-
dc.description.abstractA uva Alicante Bouschet (Vitis vinifera L.) é uma cultivar tintoreira com elevado teor de antocianinas na casca e na polpa, que tem sido usada para a produção de vinhos no semiárido do Brasil. Esta atividade gera muitos subprodutos ainda ricos em compostos fenólicos, principalmente antocianinas. O objetivo geral do presente trabalho foi a obtenção e caracterização de um extrato líquido concentrado a partir de casca de uva cv. Alicante Bouschet (Vitis vinifera L.) cultivada no semiárido do Brasil. Para isso, foram determinadas as condições da extração sólido-líquido mais adequadas para obter um extrato rico em compostos fenólicos com elevada capacidade antioxidante. O extrato líquido concentrado foi caracterizado quanto ao perfil de compostos fenólicos por CLAE-DAD, capacidade antioxidante pelos métodos ORAC e ABTS●+, cor instrumental por reflectância e atividade antimicrobiana in vitro usando a técnica de difusão em poços. A estabilidade das antocianinas monoméricas e da cor do extrato foi avaliada durante a estocagem a baixas temperaturas. A bioacessibilidade dos compostos fenólicos foi avaliada mediante mediante um modelo estático de digestão in vitro. A influência do extrato sobre a atividade metabólica e a modulação da microbiota intestinal humana foi estudada mediante um modelo estático de fermentação colônica in vitro. O extrato foi adicionado como corante em um preparado de frutas vermelhas adicionado a um sorvete. A estabilidade das antocianinas monoméricas e da cor destes produtos foram avaliadas após os processos de elaboração e durante a estocagem. Foi realizado um teste de aceitação sensorial dos sorvetes adicionados de preparado de frutas vermelhas com e sem adição do extrato líquido concentrado de casca de uva usando uma escala hedônica de 9 pontos. Os resultados indicaram que as condições mais adequadas para a extração foram: temperatura de 40 °C, concentração de etanol de 50% v/v e de ácido cítrico de 2% m/v. As antocianinas foram os compostos fenólicos majoritários no extrato, predominando a malvidina-3-O-(6-O-p-cumaroil)-glicosídeo e a malvidina-3-O-glicosídeo. A cor roxa avermelhada escura e opaca do extrato permaneceu estável sob congelamento a −18 °C até 45 dias de estocagem, porém pouco estável sob refrigeração a 5 °C (15 dias). O extrato de casca de uva inibiu o crescimento de todas as bactérias testadas, sendo mais efetivo contra Staphylococcus aureus. A bioacessibilidade de antocianinas monoméricas e flavanóis foi baixa (23% e 25%, respectivamente), após a digestão in vitro. Contudo, os ácidos fenólicos foram bioacessíveis (> 100%) após a digestão e após a fermentação colônica in vitro, resultando em uma elevada atividade antioxidante nestas fases. Apesar de que 24 horas de fermentação colônica in vitro não foram suficientes para estimular a multiplicação dos microrganismos da microbiota intestinal, a produção de ácidos graxos de cadeia curta sugere que o extrato de casca de uva favoreceu a atividade metabólica da microbiota e poderia ter um efeito prebiótico potencial na modulação da microbiota em longo prazo. O extrato líquido concentrado de casca de uva poderia ser usado como corante natural em preparados de frutas vermelhas para adição em sorvetes.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectextrato concentradopor
dc.subjectcasca de uvapor
dc.subjectAlicante Bouschetpor
dc.subjectbioacessibilidadepor
dc.subjectcorantepor
dc.subjectconcentrated extracteng
dc.subjectgrape skineng
dc.subjectbioaccessibilityeng
dc.subjectdyeeng
dc.titleObtenção de um extrato concentrado a partir da casca de uva cv. Alicante Bouschet (Vitis vinifera L.): caracterização química, bioacessibilidade e aplicação como corantepor
dc.title.alternativeA concentrated extract obtained from the cv. Alicante Bouschet (Vitis vinifera L.): chemical characterization, bioaccessibility and application as dyeeng
dc.typeTesepor
dc.description.abstractOtherThe Alicante Bouschet (Vitis vinifera L.) is a grape cultivar with high anthocyanin content in both pulp and skin, which has been used for the production of wines in the Brazilian semi-arid region. This activity generates many residues, still rich in phenolic compounds, mainly anthocyanins. The general objective of the present work was to obtain and characterize a concentrated liquid extract from cv. Alicante Bouschet (Vitis vinifera L.) cultivated in the semi-arid region of Brazil. To this, the most adequate solid-liquid extraction conditions were determined to obtain an extract rich in phenolic compounds with high antioxidant capacity. The concentrated liquid extract was characterized by the phenolic compounds profile by HPLC-DAD, antioxidant capacity by ABTS●+ and ORAC methods, instrumental color by reflectance and antimicrobial activity in vitro using the well diffusion test. The stability of the monomeric anthocyanins and extract color was evaluated during storage at low temperatures. The bioaccessibility of the phenolic compounds was evaluated using an in vitro digestion model. The influence of the extract on the metabolic activity and modulation of the human gut microbiota was studied using an in vitro colonic fermentation model. The extract was added as a dye in a red berries preparation that was added to an ice cream. The stability of the monomeric anthocyanins and of the color was evaluated after the elaboration processes and during the storage of these products. Sensory acceptance of ice creams added with red berries preparation with and without added liquid extract of grape skin was evaluated by using a 9-point hedonic scale. The conditions selected as the most adequate for the extraction were: temperature of 40 °C, 50% v/v ethanol and 2% m/v citric acid. Malvidin-3-O-(6-O-p-coumaroyl)-glucoside and malvidin-3-O-glucoside were the major anthocyanins. The purple-reddish dark and opaque color of the extract remained stable under freezing at -18 ° C for up to 45 days of storage but was less stable under refrigeration at 5 ° C (15 days). The grape skin extract inhibited the growth of all tested bacteria, being more effective against Staphylococcus aureus. The bioaccessibility of monomeric anthocyanins and flavanols was low (23% and 25%, respectively) after in vitro digestion. However, phenolic acids were highly bioaccessible (> 100%) after in vitro digestion and after colonic fermentation, resulting in high antioxidant activity in these phases. Although 24 h of in vitro colonic fermentation were not enough to stimulate the microbiota growth, the production of short chain fatty acids (SCFAs) in fermented extract indicate that the extract favored the metabolic activity of the intestinal microbiota. Therefore, the extract could have a potential prebiotic effect for the long-term modulation of the microbiota. The grape skin concentrated liquid extract could be used as a natural dye in red berries preparations and ice cream.eng
dc.contributor.advisor1Cabral, Lourdes Maria Correa
dc.contributor.advisor-co1Tonon, Renata Valerianopor
dc.contributor.referee1Tonon, Renata Valeriano
dc.contributor.referee2Freitas, Suely Teixeira
dc.contributor.referee3Fogaça, Fabíola Helena dos Santos
dc.contributor.referee4Machado, Mariana Teixeira da Costapor
dc.contributor.referee5Malta, Virgínia Martins dapor
dc.creator.Latteshttp://lattes.cnpq.br/0360258322325694por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesABEROUMAND, A. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World Journal of Dairy & Food Sciences, v. 6, n. 1, p. 71-78, 2011. ADORNO, M. A. T.; HIRASAWA, J. S.; VARESCHE, M. B. A. Development and validation of two methods to quantify volatile acids (C2-C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). American Journal of Analytical Chemistry, v. 5, n. 07, p. 406-414, 2014. ALMINGER, M.; AURA, A. M.; BOHN, T.; DUFOUR, C.; EL, S.; GOMES, A.; KARAKAYA, S.; MARTÍNEZ‐CUESTA, M.; MCDOUGALL, G.; REQUENA, T. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, v. 13, n. 4, p. 413-436, 2014. AMENDOLA, D.; DE FAVERI, D. M.; SPIGNO, G. Grape marc phenolics: extraction kinetics, quality and stability of extracts. Journal of Food Engineering, v. 97, n. 3, p. 384- 392, 2010. AMICO, V.; NAPOLI, E.; RENDA, A.; RUBERTO, G.; SPATAFORA, C.; TRINGALI, C. Constituents of grape pomace from the Sicilian cultivar Nerello Mascalese. Food Chemistry, v. 88, n. 4, p. 599-607, 2004. ANVISA, BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Portaria nº 379, de 26 de abril de 1999. Regulamento Técnico referente a Gelados Comestíveis, Preparados, Pós para o Preparo e Bases para Gelados Comestíveis. Diário Oficial da União. Brasília, 1999. AOAC (2000) Official Methods of Analysis (17th ed.). Association of Official Analytical Chemists. Washington, USA, 141 p. AOAC (2006). Official methods of analysis (14th ed.). Gaithersburg: Association of Official Analytical Chemists. AOAC (2010). Official methods of analysis (18th ed.). Gaithersburg: Association of Official Analytical Chemists. APELBLAT, A. Citric Acid Chemistry. In: Citric Acid: Springer, 2014. p. 213-266. ARBUCKLE, W. S. Ice cream. Springer, 2013. p.483. APOLINAR-VALIENTE, R.; ROMERO-CASCALES, I.; GÓMEZ-PLAZA, E.; LÓPEZROCA, J. M.; ROS-GARCÍA, J. M. Cell wall compounds of red grapes skins and their grape marcs from three different winemaking techniques. Food Chemistry, v. 187, p. 89-97, 2015. ARNOUS, A.; MEYER, A. S. Comparison of methods for compositional characterization of grape (Vitis vinifera L.) and apple (Malus domestica) skins. Food and Bioproducts Processing, v. 86, n. 2, p. 79-86, 2008. ARORA, T.; SHARMA, R.; FROST, G. Propionate. Anti-obesity and satiety enhancing factor? Appetite, v. 56, n. 2, p. 511-515, 2011. AZIZ, N.; FARAG, S.; MOUSA, L.; ABO-ZAID, M. Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios, v. 93, n. 374, p. 43-54, 1998. BARCIA, M. T.; PERTUZATTI, P. B.; RODRIGUES, D.; GÓMEZ-ALONSO, S.; HERMOSÍN-GUTIÉRREZ, I.; GODOY, H. T. Occurrence of low molecular weight phenolics in Vitis vinifera red grape cultivars and their winemaking by-products from São Paulo (Brazil). Food Research International, v. 62, p. 500-513, 2014. BEZERRA, M. A.; SANTELLI, R. E.; OLIVEIRA, E. P.; VILLAR, L. S.; ESCALEIRA, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, v. 76, n. 5, p. 965-977, 2008. BIMPILAS, A.; PANAGOPOULOU, M.; TSIMOGIANNIS, D.; OREOPOULOU, V. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chemistry, v. 197, p. 39-46, 2016. BLANCO-VEGA, D.; LÓPEZ-BELLIDO, F. J.; ALÍA-ROBLEDO, J. M.; HERMOSÍNGUTIÉRREZ, I. HPLC–DAD–ESI-MS/MS characterization of pyranoanthocyanins pigments formed in model wine. Journal of Agricultural and Food Chemistry, v. 59, n. 17, p. 9523- 9531, 2011. BOONCHU, T.; UTAMA-ANG, N. Optimization of extraction and microencapsulation of bioactive compounds from red grape (Vitis vinifera L.) pomace. Journal of Food Science and Technology, v. 52, n. 2, p. 783-792, 2015. BOUAYED, J.; HOFFMANN, L.; BOHN, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, v. 128, n. 1, p. 14-21, 2011. BOULTON, R. The copigmentation of anthocyanins and its role in the color of red wine: a critical review. American Journal of Enology and Viticulture, v. 52, n. 2, p. 67-87, 2001. BRAZINHA, C.; CADIMA, M.; CRESPO, J. G. Optimization of extraction of bioactive compounds from different types of grape pomace produced at wineries and distilleries. Journal of Food Science, v. 79, n. 6, p. E1142-9, 2014. BROUILLARD, R.; DELAPORTE, B.; DUBOIS, J. E. Chemistry of anthocyanin pigments. 3. Relaxation amplitudes in pH-jump experiments. Journal of the American Chemical Society, v. 100, n. 19, p. 6202-6205, 1978. CACACE, J. E.; MAZZA, G. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. Journal of Food Science, v. 68, n. 1, p. 240-248, 2006. CACACE, J.; MAZZA, G. Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, v. 59, n. 4, p. 379-389, 2003. CALDAS, T. W.; MAZZA, K. E. L.; TELES, A. S. C.; MATTOS, G. N.; BRÍGIDA, A. I. S.; CONTE-JUNIOR, C. A.; BORGUINI, R. G.; GODOY, R. L. O.; CABRAL, L. M. C.; TONON, R. V. Phenolic compounds recovery from grape skin using conventional and nonconventional extraction methods. Industrial Crops and Products, v. 111, n. Supplement C, p. 86-91, 2018. CARVALHO, A. G. D. S. Estudo da inclusão de antocianinas de extrato da polpa de juçara (" Euterpe edulis" Martius) em partículas produzidas por spray drying e gelificação iônica. 2017. 172f. Tese (Doutorado em Engenharia de Alimentos), Universidade Estadual de Campinas, Campinas, SP, 2017. CAMARGO, U.; PEREIRA, G.; GUERRA, C. Wine grape cultivars adaptation and selection for Tropical regions. II International Symposium on Tropical Wines 910, 2010. p.121-129. CANDIOTI, L. V.; DE ZAN, M. M.; CÁMARA, M. S.; GOICOECHEA, H. C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, v. 124, p. 123-138, 2014. CASTANEDA-OVANDO, A.; DE LOURDES PACHECO-HERNÁNDEZ, M.; PÁEZHERNÁNDEZ, M. E.; RODRÍGUEZ, J. A.; GALÁN-VIDAL, C. A. Chemical studies of anthocyanins: A review. Food Chemistry, v. 113, n. 4, p. 859-871, 2009. CASTILLO-MUÑOZ, N.; FERNÁNDEZ GONZÁLEZ, M.; GÓMEZ-ALONSO, S.; GARCÍA-ROMERO, E.; HERMOSÍN-GUTIÉRREZ, I. Red-Color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. Journal of Agricultural and Food Chemistry, v. 57, n. 17, p. 7883-91, 2009. CASTRO-LÓPEZ, C.; VENTURA-SOBREVILLA, J. M.; GONZÁLEZ-HERNÁNDEZ, M. D.; ROJAS, R.; ASCACIO-VALDÉS, J. A.; AGUILAR, C. N.; MARTÍNEZ-ÁVILA, G. C. G. Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Food Chemistry, v. 237, p. 1139-1148, 2017. CELEP, E.; CHAREHSAZ, M.; AKYÜZ, S.; ACAR, E. T.; YESILADA, E. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines. Food Research International, v. 78, p. 209-215, 2015. CERRUTI, P.; SANTAGATA, G.; D’AYALA, G. G.; AMBROGI, V.; CARFAGNA, C.; MALINCONICO, M.; PERSICO, P. Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polymer Degradation and Stability, v. 96, n. 5, p. 839-846, 2011. CHANDRASEKARA, A.; SHAHIDI, F. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, v. 4, n. 1, p. 226-237, 2012. CHAPMAN, S. Guidelines on approaches to the replacement of Tartrazine, Allura Red, Ponceau 4R, Quinoline Yellow, Sunset Yellow and Carmoisine in food and beverages. STANDARDS, F.(ed.). Scotland: Crown, 2011. CHEN, L.; JIANG, B.; ZHONG, C.; GUO, J.; ZHANG, L.; MU, T.; ZHANG, Q.; BI, X. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis, v. 39, n. 3, p. 471- 481, 2018. CHOU, P.-H.; MATSUI, S.; MISAKI, K.; MATSUDA, T. Isolation and identification of xenobiotic aryl hydrocarbon receptor ligands in dyeing wastewater. Environmental Science & Technology, v. 41, n. 2, p. 652-657, 2007. CHRIS SOMERS, T.; EVANS, M. E. Grape pigment phenomena: Interpretation of major colour losses during vinification. Journal of the Science of Food and Agriculture, v. 30, n. 6, p. 623-633, 1979. CLYDESDALE, F. M.; AHMED, E. Colorimetry—methodology and applications. Critical Reviews in Food Science & Nutrition, v. 10, n. 3, p. 243-301, 1978. COELHO, A. G. Estudo da degradação térmica de antocianinas de extratos de uva (Vitis vinifera L. 'Brasil') e jabuticaba (Myrciaria cauliflora). 2011. 98 f. Dissertação (Mestrado em Química) - Programa de Pós-Graduação de Química, Instituto de Química - Universidade Estadual de Campinas, Campinas, São Paulo. 2011. COELHO, E. M.; DA SILVA PADILHA, C. V.; MISKINIS, G. A.; DE SÁ, A. G. B.; PEREIRA, G. E.; DE AZEVÊDO, L. C.; DOS SANTOS LIMA, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. Journal of Food Composition and Analysis, v. 66, p. 160-167, 2018. COIMBRA DE SÁ, N.; SALVADOR SILVA, E. M.; SILVA BANDEIRA, A. D. A cultura da uva e do vinho no Vale do São Francisco. RDE - Revista de Desenvolvimento Econômico, Ano XVII - Edição especial - Salvador, BA, p. 461 – 491, 2015. CORREA-BETANZO, J.; ALLEN-VERCOE, E.; MCDONALD, J.; SCHROETER, K.; CORREDIG, M.; PALIYATH, G. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, v. 165, p. 522-531, 2014. CORRÊA, R. C.; HAMINIUK, C. W.; BARROS, L.; DIAS, M. I.; CALHELHA, R. C.; KATO, C. G.; CORREA, V. G.; PERALTA, R. M.; FERREIRA, I. C. Stability and biological activity of Merlot (Vitis vinifera) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, v. 36, p. 410-417, 2017. COSTA, E.; DA SILVA, J. F.; COSME, F.; JORDÃO, A. M. Adaptability of some French red grape varieties cultivated at two different Portuguese terroirs: Comparative analysis with two Portuguese red grape varieties using physicochemical and phenolic parameters. Food Research International, v. 78, p. 302-312, 2015. CUEVA, C.; GIL-SÁNCHEZ, I.; AYUDA-DURÁN, B.; GONZÁLEZ-MANZANO, S.; GONZÁLEZ-PARAMÁS, A.; SANTOS-BUELGA, C.; BARTOLOMÉ, B.; MORENOARRIBAS, M. An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules, v. 22, n. 1, p. 99, 2017. CUEVA, C.; SÁNCHEZ-PATÁN, F.; MONAGAS, M.; WALTON, G. E.; GIBSON, G. R.; MARTÍN-ÁLVAREZ, P. J.; BARTOLOMÉ, B.; MORENO-ARRIBAS, M. V. In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS microbiology ecology, v. 83, n. 3, p. 792- 805, 2013. ĆUJIĆ, N.; ŠAVIKIN, K.; JANKOVIĆ, T.; PLJEVLJAKUŠIĆ, D.; ZDUNIĆ, G.; IBRIĆ, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry, v. 194, p. 135-142, 2016. DARDEAU, R. Vinho fino brasileiro. Rio de Janeiro: Mauad X, 1ra Edição, 2015. DE LA CERDA‐CARRASCO, A.; LÓPEZ‐SOLÍS, R.; NUÑEZ‐KALASIC, H.; PEÑANEIRA, Á.; OBREQUE‐SLIER, E. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). Journal of the Science of Food and Agriculture, v. 95, n. 7, p. 1521-1527, 2015. DE MELLO, L.; DA SILVA, G. Disponibilidade e características de resíduos provenientes da agroindústria de processamento de uva do Rio Grande do Sul. Embrapa Uva e Vinho- Comunicado Técnico, 155, 6 p., 2014. DHEKNEY, S. A. Grapes. In: Encyclopedia of Food and Health. Oxford: Academic Press, 2016. p. 261-265. ĐILAS, S.; ČANADANOVIĆ-BRUNET, J.; ĆETKOVIĆ, G. By-products of fruits processing as a source of phytochemicals. Chemical Industry and Chemical Engineering Quarterly, v. 15, n. 4, p. 191-202, 2009. DOS SANTOS CRUXEN, C. E.; HOFFMANN, J. F.; ZANDONÁ, G. P.; FIORENTINI, Â. M.; ROMBALDI, C. V.; CHAVES, F. C. Probiotic butiá (Butia odorata) ice cream: Development, characterization, stability of bioactive compounds, and viability of Bifidobacterium lactis during storage. LWT, v. 75, p. 379-385, 2017. DROSOU, C.; KYRIAKOPOULOU, K.; BIMPILAS, A.; TSIMOGIANNIS, D.; KROKIDA, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Industrial Crops and Products, v. 75, p. 141-149, 2015. DUEÑAS, M.; GONZÁLEZ-MANZANO, S.; GONZÁLEZ-PARAMÁS, A.; SANTOSBUELGA, C. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. Journal of Pharmaceutical and Biomedical Analysis, v. 51, n. 2, p. 443-449, 2010. DUEÑAS, M.; CUEVA, C.; MUÑOZ-GONZÁLEZ, I.; JIMÉNEZ-GIRÓN, A.; SÁNCHEZPATÁN, F.; SANTOS-BUELGA, C.; MORENO-ARRIBAS, M.; BARTOLOMÉ, B. Studies on modulation of gut microbiota by wine polyphenols: from isolated cultures to omic approaches. Antioxidants, v. 4, n. 1, p. 1-21, 2015. DUTCOSKY, S. D. Análise sensorial de alimentos. In: (Ed.). Análise sensorial de alimentos, 2011. ES-SAFI, N.-E.; CHEYNIER, V.; MOUTOUNET, M. Study of the reactions between (+)- catechin and furfural derivatives in the presence or absence of anthocyanins and their implication in food color change. Journal of Agricultural and Food Chemistry, v. 48, n. 12, p. 5946-5954, 2000. ES-SAFI, N.-E.; CHEYNIER, V.; MOUTOUNET, M. Interactions between cyanidin 3-Oglucoside and furfural derivatives and their impact on food color changes. Journal of Agricultural and Food Chemistry, v. 50, n. 20, p. 5586-5595, 2002. FAILLA, M. L.; CHITCHUMRONCHOKCHAI, C. In vitro models as tools for screening the relative bioavailabilities of provitamin A carotenoids in foods. Harvest Plus Technical Monographs Series 3. Washington DC: International Food Policy Research Institute, 2005. FALGINELLA, L.; DI GASPERO, G.; CASTELLARIN, S. D. Expression of flavonoid genes in the red grape berry of ‘Alicante Bouschet’varies with the histological distribution of anthocyanins and their chemical composition. Planta, v. 236, n. 4, p. 1037-1051, 2012. FAVRE, G.; HERMOSÍN-GUTIÉRREZ, I.; PICCARDO, D.; GÓMEZ-ALONSO, S.; GONZÁLEZ-NEVES, G. Selectivity of pigments extraction from grapes and their partial retention in the pomace during red-winemaking. Food Chemistry, v. 277, p. 391-397, 2019. FEKETEA, G.; TSABOURI, S. Common food colorants and allergic reactions in children: Myth or reality? Food Chemistry, v. 230, p. 578-588, 2017. FERREIRA, V.; FERNANDES, F.; CARRASCO, D.; HERNANDEZ, M. G.; PINTOCARNIDE, O.; ARROYO-GARCÍA, R.; ANDRADE, P.; VALENTÃO, P.; FALCO, V.; CASTRO, I. Spontaneous variation regarding grape berry skin color: A comprehensive study of berry development by means of biochemical and molecular markers. Food Research International, v. 97, p. 149-161, 2017. FIGUEIREDO-GONZÁLEZ, M.; MARTÍNEZ-CARBALLO, E.; CANCHO-GRANDE, B.; SANTIAGO, J. L.; MARTÍNEZ, M. C.; SIMAL-GÁNDARA, J. Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between their biosynthesis pathways. Food Chemistry, v. 130, n. 1, p. 9-19, 2012. FIGUEIREDO-GONZÁLEZ, M.; CANCHO-GRANDE, B.; SIMAL-GÁNDARA, J. Garnacha Tintorera-based sweet wines: Chromatic properties and global phenolic composition by means of UV–Vis spectrophotometry. Food Chemistry, v. 140, n. 1-2, p. 217-224, 2013. FIGUEIREDO-GONZÁLEZ, M.; REGUEIRO, J.; CANCHO-GRANDE, B.; SIMALGÁNDARA, J. Garnacha Tintorera-based sweet wines: Detailed phenolic composition by HPLC/DAD–ESI/MS analysis. Food Chemistry, v. 143, n. Supplement C, p. 282-292, 2014. FLESCHHUT, J.; KRATZER, F.; RECHKEMMER, G.; KULLING, S. E. Stability and biotransformation of various dietary anthocyanins in vitro. European Journal of Nutrition, v. 45, n. 1, p. 7-18, 2006. FONTANA, A. R.; ANTONIOLLI, A.; BOTTINI, R. N. Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. Journal of Agricultural and Food Chemistry, v. 61, n. 38, p. 8987-9003, 2013. FOURNIER-LEVEL, A.; HUGUENEY, P.; VERRIÈS, C.; THIS, P.; AGEORGES, A. Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biology, v. 11, n. 1, p. 179, 2011. GARCÍA-BENEYTEZ, E.; REVILLA, E.; CABELLO, F. Anthocyanin pattern of several red grape cultivars and wines made from them. European Food Research and Technology, v. 215, n. 1, p. 32-37, 2002. GAUCHE, C.; MALAGOLI, E. D. S.; BORDIGNON LUIZ, M. T. Effect of pH on the copigmentation of anthocyanins from Cabernet Sauvignon grape extracts with organic acids. Scientia Agricola, v. 67, n. 1, p. 41-46, 2010. GEORGÉ, S.; BRAT, P.; ALTER, P.; AMIOT, M. J. Rapid determination of polyphenols and vitamin C in plant-derived products. Journal of Agricultural and Food Chemistry, v. 53, n. 5, p. 1370-1373, 2005. GIÃO, M. S.; GOMES, S.; MADUREIRA, A. R.; FARIA, A.; PESTANA, D.; CALHAU, C.; PINTADO, M. E.; AZEVEDO, I.; MALCATA, F. X. Effect of in vitro digestion upon the antioxidant capacity of aqueous extracts of Agrimonia eupatoria, Rubus idaeus, Salvia sp. and Satureja montana. Food Chemistry, v. 131, n. 3, p. 761-767, 2012. GIL-SÁNCHEZ, I.; CUEVA, C.; SANZ-BUENHOMBRE, M.; GUADARRAMA, A.; MORENO-ARRIBAS, M. V.; BARTOLOMÉ, B. Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. Journal of Food Composition and Analysis, v. 68, p. 41-52, 2018. GIL‐SÁNCHEZ, I.; AYUDA‐DURÁN, B.; GONZÁLEZ‐MANZANO, S.; SANTOSBUELGA, C.; CUEVA, C.; MARTÍN‐CABREJAS, M. A.; SANZ‐BUENHOMBRE, M.; GUADARRAMA, A.; MORENO‐ARRIBAS, M. V.; BARTOLOMÉ, B. Chemical characterization and in vitro colonic fermentation of grape pomace extracts. Journal of the Science of Food and Agriculture, v. 97, n. 10, p. 3433-3444, 2017. GIUSTI, M. M.; WROLSTAD, R. E. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, 2001. GIUSTI, M. M.; WROLSTAD, R. E. Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, v. 14, n. 3, p. 217-225, 2003. GOFF, H. D.; HARTEL, R. W. Ice cream. Springer. Science & Business Media, 2013. GONÇALVES, G. A.; SOARES, A. A.; CORREA, R. C. G.; BARROS, L.; HAMINIUK, C. W. I.; PERALTA, R. M.; FERREIRA, I. C. F. R.; BRACHT, A. Merlot grape pomace hydroalcoholic extract improves the oxidative and inflammatory states of rats with adjuvantinduced arthritis. Journal of Functional Foods, v. 33, p. 408-418, 2017. GOUVÊA, A. C. M. S.; ARAUJO, M. C. P. D.; SCHULZ, D. F.; PACHECO, S.; GODOY, R. L. D. O.; CABRAL, L. M. C. Anthocyanins standards (cyanidin-3-O-glucoside and cyanidin- 3-O-rutinoside) isolation from freeze-dried açaí (Euterpe oleraceae Mart.) by HPLC. Food Science and Technology, v. 32, n. 1, p. 43-46, 2012. GRANZOTTO, A.; ZATTA, P. Resveratrol and Alzheimer’s disease: message in a bottle on red wine and cognition. Frontiers in Aging Neuroscience, v. 6, p. 95, 2014. GUERGOLETTO, K. B.; COSTABILE, A.; FLORES, G.; GARCIA, S.; GIBSON, G. R. In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota. Food Chemistry, v. 196, p. 251-258, 2016. GUTIÉRREZ, T. J.; HERNIOU-JULIEN, C.; ÁLVAREZ, K.; ALVAREZ, V. A. Structural properties and in vitro digestibility of edible and pH-sensitive films made from guinea arrowroot starch and wastes from wine manufacture. Carbohydrate Polymers, v. 184, p. 135- 143, 2018. HAN, F. L.; XU, Y. Effect of the structure of seven anthocyanins on self-association and colour in an aqueous alcohol solution. South African Journal of Enology and Viticulture, v. 36, n. 1, p. 105-116, 2015. HARRIS, L.; DAESCHEL, M.; STILES, M.; KLAENHAMMER, T. Antimicrobial Activity of Lactic Acid Bacteria Against Listeria monocytogenes. Journal of Food Protection, v. 52, n. 6, p. 384-387, 1989. HARTMANN, A.; PATZ, C.-D.; ANDLAUER, W.; DIETRICH, H.; LUDWIG, M. Influence of processing on quality parameters of strawberries. Journal of Agricultural and Food Chemistry, v. 56, n. 20, p. 9484-9489, 2008. HE, F.; LIANG, N.-N.; MU, L.; PAN, Q.-H.; WANG, J.; REEVES, M. J.; DUAN, C.-Q. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules, v. 17, n. 2, p. 1571-1601, 2012. HERNÁNDEZ-HERRERO, J.; FRUTOS, M. Colour and antioxidant capacity stability in grape, strawberry and plum peel model juices at different pHs and temperatures. Food Chemistry, v. 154, p. 199-204, 2014. HIDALGO, M.; ORUNA-CONCHA, M. J.; KOLIDA, S.; WALTON, G. E.; KALLITHRAKA, S.; SPENCER, J. P.; DE PASCUAL-TERESA, S. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry, v. 60, n. 15, p. 3882-3890, 2012. HOGAN, S.; CANNING, C.; SUN, S.; SUN, X.; ZHOU, K. Effects of grape pomace antioxidant extract on oxidative stress and inflammation in diet induced obese mice. Journal of Agricultural and Food Chemistry, v. 58, n. 21, p. 11250-11256, 2010. HOSSEINI, E.; GROOTAERT, C.; VERSTRAETE, W.; VAN DE WIELE, T. Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews, v. 69, n. 5, p. 245-258, 2011. IBRAHIM, S. A. Lactic Acid Bacteria: Lactobacillus spp.: Other Species. 2016. JIMÉNEZ-GIRÓN, A.; MUÑOZ-GONZÁLEZ, I.; MARTÍNLVAREZ, P. J.; MORENOARRIBAS, M. V.; BARTOLOMÉ, B. Towards the fecal metabolome derived from moderate red wine intake. Metabolites, v. 4, n. 4, p. 1101-1118, 2014. JUBILEU, B. D. S.; SATO, A. J.; ROBERTO, S. R. Phenological and productive characterization out of season of Cabernet Sauvignon and Alicante (Vitis vinifera L.) grapevines in the north of Paraná. Revista Brasileira de Fruticultura, v. 32, n. 2, p. 451-462, 2010. KAMILOGLU, S.; PASLI, A. A.; OZCELIK, B.; VAN CAMP, J.; CAPANOGLU, E. Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chemistry, v. 186, p. 74-82, 2015. KAMMERER, D.; CLAUS, A.; CARLE, R.; SCHIEBER, A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. Journal of Agricultural and Food Chemistry, v. 52, n. 14, p. 4360-4367, 2004. KAMMERER, D. R.; KAMMERER, J.; VALET, R.; CARLE, R. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Research International, v. 65, p. 2-12, 2014. KARAMAN, S.; TOKER, Ö. S.; YÜKSEL, F.; ÇAM, M.; KAYACIER, A.; DOGAN, M. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. Journal of Dairy Science, v. 97, n. 1, p. 97-110, 2014. KATALINIĆ, V.; MOŽINA, S. S.; SKROZA, D.; GENERALIĆ, I.; ABRAMOVIČ, H.; MILOŠ, M.; LJUBENKOV, I.; PISKERNIK, S.; PEZO, I.; TERPINC, P. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chemistry, v. 119, n. 2, p. 715-723, 2010. KıRCA, A.; ÖZKAN, M.; CEMEROGˇLU, B. Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chemistry, v. 97, n. 4, p. 598-605, 2006. KOCABEY, N.; YILMAZTEKIN, M.; HAYALOGLU, A. A. Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan. Journal of Food Science and Technology, v. 53, n. 9, p. 3557-3565, 2016. KUCK, L. S.; WESOLOWSKI, J. L.; NOREÑA, C. P. Z. Effect of temperature and relative humidity on stability following simulated gastro-intestinal digestion of microcapsules of Bordo grape skin phenolic extract produced with different carrier agents. Food Chemistry, v. 230, p. 257-264, 2017. KUMAR, V.; CHATLI, M. K.; WAGH, R. V.; MEHTA, N.; KUMAR, P. Effect of the combination of natural antioxidants and packaging methods on quality of pork patties during storage. Journal of Food Science and Technology, v. 52, n. 10, p. 6230-6241, 2015. KY, I.; LORRAIN, B.; KOLBAS, N.; CROZIER, A.; TEISSEDRE, P.-L. Wine by-products: phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules, v. 19, n. 1, p. 482-506, 2014. LANDETE, J. Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Research International, v. 44, n. 5, p. 1150-1160, 2011. LI, D.; WANG, P.; LUO, Y.; ZHAO, M.; CHEN, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition, v. 57, n. 8, p. 1729-1741, 2017. LIANG, L.; WU, X.; ZHAO, T.; ZHAO, J.; LI, F.; ZOU, Y.; MAO, G.; YANG, L. In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Research International, v. 46, n. 1, p. 76-82, 2012. LIANG, Z.; SANG, M.; FAN, P.; WU, B.; WANG, L.; YANG, S.; LI, S. CIELAB coordinates in response to berry skin anthocyanins and their composition in Vitis. Journal of Food Science, v. 76, n. 3, p. C490-C497, 2011. LILA, M. A.; RIBNICKY, D. M.; ROJO, L. E.; ROJAS-SILVA, P.; OREN, A.; HAVENAAR, R.; JANLE, E. M.; RASKIN, I.; YOUSEF, G. G.; GRACE, M. H. Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenolics. Journal of Agricultural and Food Chemistry, v. 60, n. 23, p. 5763-5771, 2011. LIMBO, S.; PIERGIOVANNI, L. Shelf life of minimally processed potatoes: Part 1. Effects of high oxygen partial pressures in combination with ascorbic and citric acids on enzymatic browning. Postharvest biology and technology, v. 39, n. 3, p. 254-264, 2006. LINGUA, M. S.; FABANI, M. P.; WUNDERLIN, D. A.; BARONI, M. V. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chemistry, v. 208, p. 228-238, 2016a. LINGUA, M. S.; FABANI, M. P.; WUNDERLIN, D. A.; BARONI, M. V. In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. Journal of Functional Foods, v. 20, p. 332-345, 2016b. LINGUA, M. S.; WUNDERLIN, D. A.; BARONI, M. V. Effect of simulated digestion on the phenolic components of red grapes and their corresponding wines. Journal of Functional Foods, v. 44, p. 86-94, 2018. LOUIS, P.; FLINT, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, v. 294, n. 1, p. 1-8, 2009. LUCENA, A. P. S.; NASCIMENTO, R. J. B.; MACIEL, J. A. C.; TAVARES, J. X.; BARBOSA-FILHO, J. M.; OLIVEIRA, E. J. Antioxidant activity and phenolics content of selected Brazilian wines. Journal of Food Composition and Analysis, v. 23, n. 1, p. 30-36, 2010. MACFARLANE, G. T. The colonic flora, fermentation and large bowel digestive function. In: S. F. Phillips, J. H. Pemberton, and R. G. Shorter (ed.), The large intestine: physiology, pathophysiology and disease. Raven Press, New York, N.Y., p. 51-92, 1991. MALIEN-AUBERT, C.; DANGLES, O.; AMIOT, M. J. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intraand intermolecular copigmentation. Journal of Agricultural and Food Chemistry, v. 49, n. 1, p. 170-176, 2001. MARKAKIS, P. Anthocyanins as Food Colors. Elsevier, 2012. MARSHALL, R. T.; GOFF, H. D.; HARTEL, R. W. Ice cream. Springer, 2012. MARTÍN-CARRÓN, N.; GONI, I. Prior exposure of cecal microflora to grape pomaces does not inhibit in vitro fermentation of pectin. Journal of Agricultural and Food Chemistry, v. 46, n. 3, p. 1064-1070, 1998. MCDOUGALL, G. J.; DOBSON, P.; SMITH, P.; BLAKE, A.; STEWART, D. Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. Journal of Agricultural and Food Chemistry, v. 53, n. 15, p. 5896-5904, 2005. MCDOUGALL, G. J.; FYFFE, S.; DOBSON, P.; STEWART, D. Anthocyanins from red cabbage – stability to simulated gastrointestinal digestion. Phytochemistry, v. 68, n. 9, p. 1285-1294, 2007. MENDES, J. A. S.; PROZIL, S. O.; EVTUGUIN, D. V.; LOPES, L. P. C. Towards comprehensive utilization of winemaking residues: Characterization of grape skins from red grape pomaces of variety Touriga Nacional. Industrial Crops and Products, v. 43, p. 25-32, 2013. MILLER, T. L.; WOLIN, M. J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology, v. 62, n. 5, p. 1589- 1592, 1996. MOLONEY, M.; ROBBINS, R. J.; COLLINS, T. M.; KONDO, T.; YOSHIDA, K.; DANGLES, O. Red cabbage anthocyanins: The influence of d-glucose acylation by hydroxycinnamic acids on their structural transformations in acidic to mildly alkaline conditions and on the resulting color. Dyes and Pigments, 2018. MOSELE, J.; MACIÀ, A.; MOTILVA, M.-J. Metabolic and microbial modulation of the large intestine ecosystem by non-absorbed diet phenolic compounds: a review. Molecules, v. 20, n. 9, p. 17429-17468, 2015. MUKAKA, M. M. A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, v. 24, n. 3, p. 69-71, 2012. MUÑOZ-GONZÁLEZ, I.; JIMÉNEZ-GIRÓN, A.; MARTÍN-ÁLVAREZ, P. J.; BARTOLOMÉ, B.; MORENO-ARRIBAS, M. V. Profiling of Microbial-Derived Phenolic Metabolites in Human Feces after Moderate Red Wine Intake. Journal of Agricultural and Food Chemistry, v. 61, n. 39, p. 9470-9479, 2013. NASCIMENTO, L. D. S.; SANTIAGO, M. D. A.; OLIVEIRA, E.; BORGUINI, R.; BRAGA, E.; MARTINS, V.; PACHECO, S.; SOUZA, M.; GODOY, R. D. O. Characterization of Bioactive Compounds in Eugenia brasiliensis, Lam.(Grumixama). Nutrition and Food Technology, v. 3, n. 3, pp. 1–7, 2017. NASSIRI‐ASL, M.; HOSSEINZADEH, H. Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive constituents: an update. Phytotherapy Research, v. 30, n. 9, p. 1392-1403, 2016. NOHYNEK, L. J.; ALAKOMI, H.-L.; KÄHKÖNEN, M. P.; HEINONEN, M.; HELANDER, I. M.; OKSMAN-CALDENTEY, K.-M.; PUUPPONEN-PIMIÄ, R. H. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer, v. 54, n. 1, p. 18-32, 2006. NYANGALE, E. P.; FARMER, S.; KELLER, D.; CHERNOFF, D.; GIBSON, G. R. Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of Bacillus coagulans GBI-30, 6086. Anaerobe, v. 30, p. 75-81, 2014. OIV. Statistical Report on World Vitiviniculture. International Organization of Vine and Wine. 2017. Disponível em: ˂ http://www.oiv.int/public/medias/5479/oiv-en-bilan-2017.pdf >. Accesso em 01 julho de 2017. OLIVEIRA, D. A.; SALVADOR, A. A.; SMÂNIA JR, A.; SMÂNIA, E. F.; MARASCHIN, M.; FERREIRA, S. R. Antimicrobial activity and composition profile of grape (Vitis vinifera L.) pomace extracts obtained by supercritical fluids. Journal of Biotechnology, v. 164, n. 3, p. 423-432, 2013. OOMEN, A.; ROMPELBERG, C.; BRUIL, M.; DOBBE, C.; PEREBOOM, D.; SIPS, A. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, v. 44, n. 3, p. 0281-0287, 2003. OZDAL, T.; SELA, D. A.; XIAO, J.; BOYACIOGLU, D.; CHEN, F.; CAPANOGLU, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, v. 8, n. 2, p. 78, 2016. PADILHA, A. C. T.; BIASOTO, L. C.; CORRÊA, M. D. S.; LIMA, G. E.; PEREIRA. Phenolic compounds profile and antioxidant activity of commercial tropical red wines (Vitis vinifera L.) from São Francisco Valley, Brazil. Journal of Food Biochemistry, p. 1-9, 2016. PAPADOPOULOU, C.; SOULTI, K.; ROUSSIS, I. G. Potential antimicrobial activity of red and white wine phenolic extracts against strains of Staphylococcus aureus, Escherichia coli and Candida albicans. Food Technology and Biotechnology, v. 43, n. 1, p. 41-46, 2005. PATHARE, P. B.; OPARA, U. L.; AL-SAID, F. A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, v. 6, n. 1, p. 36- 60, 2013. PATRAS, A.; BRUNTON, N. P.; O'DONNELL, C.; TIWARI, B. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology, v. 21, n. 1, p. 3-11, 2010. PATRAS, A.; BRUNTON, N. P.; TIWARI, B.; BUTLER, F. Stability and degradation kinetics of bioactive compounds and colour in strawberry jam during storage. Food and Bioprocess Technology, v. 4, n. 7, p. 1245-1252, 2011. PEIXOTO, F. M.; FERNANDES, I.; GOUVÊA, A. C. M.; SANTIAGO, M. C.; BORGUINI, R. G.; MATEUS, N.; FREITAS, V.; GODOY, R. L.; FERREIRA, I. M. Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. Journal of Functional Foods, v. 24, p. 373-381, 2016. PEREIRA, G. E.; PADILHA, C. V. S.; BIASOTO, A. C. T.; CANUTO, K. M.; NASCIMENTO, A. M.; SOUZA, J. F. Le poids des consommateurs sur évolution des vins: l’exemple de la Vallée du São Francisco, Brésil. In: PÉRARD, J., PERROT, M. (ORG.) (Ed.). Vin et civilisation. Les étapes de l’humanisation. 1st. Dijon: Centre Georges Chevrier, v.9, p. 301–310, 2016. PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, v. 39, n. 7, p. 791-800, 2006. PEREZ-LOCAS, C.; YAYLAYAN, V. The Maillard reaction and food quality deterioration. In: (Ed.). Chemical deterioration and physical instability of food and beverages: Elsevier, 2010. p.70-94. PÉREZ-VICENTE, A.; GIL-IZQUIERDO, A.; GARCÍA-VIGUERA, C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. Journal of Agricultural and Food Chemistry, v. 50, n. 8, p. 2308-2312, 2002. PINELO, M.; RUBILAR, M.; JEREZ, M.; SINEIRO, J.; NÚÑEZ, M. J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, v. 53, n. 6, p. 2111-2117, 2005. PIWOWARSKI, J. P.; GRANICA, S.; KISS, A. K. Influence of Gut Microbiota-Derived Ellagitanninsʼ Metabolites Urolithins on Pro-Inflammatory Activities of Human Neutrophils. Planta Medica, v. 80, n. 11, p. 887-895, 2014. PODSĘDEK, A.; REDZYNIA, M.; KLEWICKA, E.; KOZIOŁKIEWICZ, M. Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. BioMed Research International, v. 2014, 2014. PROTAS, J. D. S.; CAMARGO, U. A. Vitivinicultura brasileira: panorama setorial em 2010. Embrapa Uva e Vinho-Livro técnico, 110 p., Brasília, DF: SEBRAE; Bento Gonçalves: IBRAVIN: Embrapa Uva e Vinho, 2011. QUAVE, C. L.; ESTÉVEZ-CARMONA, M.; COMPADRE, C. M.; HOBBY, G.; HENDRICKSON, H.; BEENKEN, K. E.; SMELTZER, M. S. Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLOS One, v. 7, n. 1, p. e28737, 2012. RE, R.; PELLEGRINI, N.; PROTEGGENTE, A.; PANNALA, A.; YANG, M.; RICE-EVANS, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, v. 26, n. 9, p. 1231-1237, 1999. REICHARDT, N.; DUNCAN, S. H.; YOUNG, P.; BELENGUER, A.; MCWILLIAM LEITCH, C.; SCOTT, K. P.; FLINT, H. J.; LOUIS, P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The Isme Journal, v. 8, p. 1323, 2014. REVILLA, E.; GARCIA-BENEYTEZ, E.; CABELLO, F.; MARTı́N-ORTEGA, G.; RYAN, J.-M. A. Value of high-performance liquid chromatographic analysis of anthocyanins in the differentiation of red grape cultivars and red wines made from them. Journal of Chromatography a, v. 915, n. 1-2, p. 53-60, 2001. REVILLA, E.; LOSADA, M. M.; GUTIÉRREZ, E. Phenolic Composition and Color of Single Cultivar Young Red Wines Made with Mencia and Alicante-Bouschet Grapes in AOC Valdeorras (Galicia, NW Spain). Beverages, v. 2, n. 3, p. 18, 2016. RIBEIRO, T. P.; ALVES, R. E.; GONÇALVES, A. L. D. S.; SOUZA, A. P. C. Chemical characterization of winemaking byproducts from grape varieties cultivated in Vale do São Francisco, Brazil. Food Science and Technology, v. 38, n. 4, 2018. RIBEREAU-GAYON, P.; GLORIES, Y.; MAUJEAN, A.; DUBOURDIEU, D. The chemistry of wine stabilization and treatments. In: Handbook of Enology, vol 2, 2nd Ed., Wiley, New York, 2006. RICHARDSON, A. J.; MCKAIN, N.; WALLACE, R. J. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids. BMC microbiology, v. 13, n. 1, p. 6, 2013. RILEY, T. Clostridium: Gas gangrene; tetanus; food poisoning; pseudomembranous colitis. In: (Ed.). Medical Microbiology: Elsevier, 2012. p. 245-255. ROCKENBACH, I. I.; GONZAGA, L. V.; RIZELIO, V. M.; GONÇALVES, A. E. D. S. S.; GENOVESE, M. I.; FETT, R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Research International, v. 44, n. 4, p. 897-901, 2011. ROCKENBACH, I. I.; RODRIGUES, E.; GONZAGA, L. V.; CALIARI, V.; GENOVESE, M. I.; GONÇALVES, A. E. D. S. S.; FETT, R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, v. 127, n. 1, p. 174-179, 2011. RUÍZ-GARCÍA, Y.; BERES, C.; CHÁVEZ, D. W. H.; SOUZA, E. F.; TONON, R. V.; CABRAL, L. M. C. Influence of processing conditions on bioactive compound extraction from Vitis vinifera L. var. Alicante Bouschet grape skin. Journal of Food Science and Technology, v. 56, n. 2, p. 1066-1072, 2019. RUSSELL, W. R.; HOYLES, L.; FLINT, H. J.; DUMAS, M.-E. Colonic bacterial metabolites and human health. Current Opinion in Microbiology, v. 16, n. 3, p. 246-254, 2013. SAGDIC, O.; OZTURK, I.; KISI, O. Modeling antimicrobial effect of different grape pomace and extracts on S. aureus and E. coli in vegetable soup using artificial neural network and fuzzy logic system. Expert Systems with Applications, v. 39, n. 8, p. 6792-6798, 2012. SALAZAR, N.; GUEIMONDE, M.; HERNÁNDEZ-BARRANCO, A. M.; RUASMADIEDO, P.; CLARA, G. Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Applied and Environmental Microbiology, v. 74, n. 15, p. 4737-4745, 2008. SANT’ANNA, V.; BRANDELLI, A.; MARCZAK, L. D. F.; TESSARO, I. C. Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Separation and Purification Technology, v. 100, p. 82-87, 2012. SANT'ANNA, V.; GURAK, P. D.; MARCZAK, L. D. F.; TESSARO, I. C. Tracking bioactive compounds with colour changes in foods–A review. Dyes and Pigments, v. 98, n. 3, p. 601- 608, 2013. SANTIAGO, M. D. A.; GOUVÊA, A.; GODOY, R. D. O.; OIANO NETO, J.; PACHECO, S. Adaptação de um método por cromatografia líquida de alta eficiência para análise de antocianinas em suco de açaí (Euterpe oleraceae Mart.). Embrapa Agroindústria de Alimentos-Comunicado Técnico, 2010. SCHULZ, M.; SERAGLIO, S. K. T.; DELLA BETTA, F.; NEHRING, P.; VALESE, A. C.; DAGUER, H.; GONZAGA, L. V.; COSTA, A. C. O.; FETT, R. Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Research International, 2019. SCHWARTZ, S.; VON ELBEE, J.; GIUSTI, M. Corantes. In: Química de Alimentos de Fennema: Artmed (Ed.), Porto Alegre, 2010. p. 445-498. SINGLETON, V. L.; ROSSI, J. A. Colorimetry of Total Phenolics with Phosphomolybdic- Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, v. 16, n. 3, p. 144-158, 1965. SMERIGLIO, A.; BARRECA, D.; BELLOCCO, E.; TROMBETTA, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytotherapy Research, v. 30, n. 8, p. 1265-1286, 2016. SOARES, J. M.; LEÃO, P. D. S. A vitivinicultura no Semiárido brasileiro. Petrolina: Embrapa Semi-Árido, 2009. SPIGNO, G.; TRAMELLI, L.; DE FAVERI, D. M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, v. 81, n. 1, p. 200-208, 2007. SPIGNO, G.; MARINONI, L.; GARRIDO, G. D. State of the art in grape processing byproducts. In: Handbook of Grape Processing By-Products: Elsevier (Ed.), 2017. p. 1-27. SRINIVAS, K.; KING, J.; MONRAD, J.; HOWARD, L.; ZHANG, D. Pressurized solvent extraction of flavonoids from grape pomace utilizing organic acid additives. Italian Journal of Food Science, v. 23, n. 1, p. 90-105, 2011. STINTZING, F. C.; STINTZING, A. S.; CARLE, R.; FREI, B.; WROLSTAD, R. E. Color and antioxidant properties of cyanidin-based anthocyanin pigments. Journal of Agricultural and Food Chemistry, v. 50, n. 21, p. 6172-6181, 2002. TAGLIAZUCCHI, D.; VERZELLONI, E.; BERTOLINI, D.; CONTE, A. In vitro bioaccessibility and antioxidant activity of grape polyphenols. Food Chemistry, v. 120, n. 2, p. 599-606, 2010. TANG, K.; LIU, T.; HAN, Y.; XU, Y.; LI, J. The importance of monomeric anthocyanins in the definition of wine colour properties. South African Journal of Enology and Viticulture, v. 38, n. 1, p. 1-10, 2017. TEIXEIRA-NETO, A. A.; SHIGUIHARA, A. L.; IZUMI, C. M.; BIZETO, M. A.; LEROUX, F.; TEMPERINI, M. L. A.; CONSTANTINO, V. R. L. A hybrid material assembled by anthocyanins from açaí fruit intercalated between niobium lamellar oxide. Dalton Transactions, n. 21, p. 4136-4145, 2009. TESAKI, S.; TANABE, S.; MORIYAMA, M.; FUKUSHI, E.; KAWABATA, J.; WATANABE, M. Isolation and identification of an antibacterial compound from grape and its application to foods. Journal of the Agricultural Chemical Society of Japan (Japan), 1999. TOLHURST, G.; HEFFRON, H.; LAM, Y. S.; PARKER, H. E.; HABIB, A. M.; DIAKOGIANNAKI, E.; CAMERON, J.; GROSSE, J.; REIMANN, F.; GRIBBLE, F. M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes, v. 61, n. 2, p. 364-371, 2012. TORCHIO, F.; SEGADE, S. R.; GERBI, V.; CAGNASSO, E.; ROLLE, L. Changes in chromatic characteristics and phenolic composition during winemaking and shelf-life of two types of red sweet sparkling wines. Food Research International, v. 44, n. 3, p. 729-738, 2011. TOURNOUR, H. H.; SEGUNDO, M. A.; MAGALHÃES, L. M.; BARREIROS, L.; QUEIROZ, J.; CUNHA, L. M. Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. Industrial Crops and Products, v. 74, n. Supplement C, p. 397- 406, 2015. TRIKAS, E. D.; MELIDOU, M.; PAPI, R. M.; ZACHARIADIS, G. A.; KYRIAKIDIS, D. A. Extraction, separation and identification of anthocyanins from red wine by-product and their biological activities. Journal of Functional Foods, v. 25, p. 548-558, 2016. TURKER, N.; AKSAY, S.; EKIZ, H. İ. Effect of storage temperature on the stability of anthocyanins of a fermented black carrot (Daucus carota var. L.) beverage: shalgam. Journal of Agricultural and Food Chemistry, v. 52, n. 12, p. 3807-3813, 2004. TÜRKYıLMAZ, M.; YEMIŞ, O.; ÖZKAN, M. Clarification and pasteurisation effects on monomeric anthocyanins and percent polymeric colour of black carrot (Daucus carota L.) juice. Food Chemistry, v. 134, n. 2, p. 1052-1058, 2012. TZOUNIS, X.; VULEVIC, J.; KUHNLE, G. G.; GEORGE, T.; LEONCZAK, J.; GIBSON, G. R.; KWIK-URIBE, C.; SPENCER, J. P. Flavanol monomer-induced changes to the human faecal microflora. British Journal of Nutrition, v. 99, n. 4, p. 782-792, 2008. VINCE, A. J.; BURRIDGE, S. M. Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose. Journal of Medical Microbiology, v. 13, n. 2, p. 177-191, 1980. VITAL, A. C. P.; SANTOS, N. W.; MATUMOTO‐PINTRO, P. T.; DA SILVA SCAPIM, M. R.; MADRONA, G. S. Ice cream supplemented with grape juice residue as a source of antioxidants. International Journal of Dairy Technology, v. 71, n. 1, p. 183-189, 2018. VOSS, D. H. Relating colorimeter measurement of plant color to the Royal Horticultural Society Colour Chart. HortScience, v. 27, n. 12, p. 1256-1260, 1992. WANG, J.; WANG, J.; YE, J.; VANGA, S. K.; RAGHAVAN, V. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control, v. 96, p. 128-136, 2019. WANG, W. D.; XU, S. Y. Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, v. 82, n. 3, p. 271-275, 2007. WANG, Z.; ZHANG, M.; WU, Q. Effects of temperature, pH, and sunlight exposure on the color stability of strawberry juice during processing and storage. LWT-Food Science and Technology, v. 60, n. 2, p. 1174-1178, 2015a. WANG, Z.; ZHANG, M.; WU, Q. Effects of temperature, pH, and sunlight exposure on the color stability of strawberry juice duringpor
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68607/2019%20-%20Yineth%20Ru%c3%adz%20Garc%c3%ada.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5483
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-03-27T16:58:55Z No. of bitstreams: 1 2019 - Yineth Ruíz García.pdfeng
dc.originais.provenanceMade available in DSpace on 2022-03-27T16:58:56Z (GMT). No. of bitstreams: 1 2019 - Yineth Ruíz García.pdf Previous issue date: 2010-03-05eng
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Yineth Ruíz García.pdf5.3 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.