Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15850
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bastos, Lívia Pinto Heckert | |
dc.date.accessioned | 2023-12-18T17:06:53Z | - |
dc.date.available | 2023-12-18T17:06:53Z | - |
dc.date.issued | 2019-09-10 | |
dc.identifier.citation | BASTOS, Lívia Pinto Heckert. Encapsulação do óleo essencial de pimenta preta (Piper nigrum L.) por coacervação complexa, utilizando proteínas e alginato de sódio como materiais de parede. 2019. 178 f]. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15850 | - |
dc.description.abstract | O óleo essencial (OE) de pimenta preta (Piper nigrum L.) é rico em compostos ativos como os terpenos, sendo sua aplicação como aditivo alimentar alvo de pesquisas, devido as suas atividades antimicrobianas e antioxidantes. Os terpenos, entretanto, são voláteis e quando expostos a certas condições (oxigênio, altas temperaturas, luz, baixos pHs, fluidos gastrointestinais) podem ter o seu potencial biológico reduzido e, nesse sentido, a microencapsulação é uma alternativa na proteção dos OE e seus componentes. Dentre os métodos de microencapsulação, a coacervação complexa apresenta vantagens como baixa concentração de materiais de parede, elevada eficiência de encapsulação, e uma variedade de biopolímeros que podem ser utilizados como materiais de parede. O objetivo deste trabalho foi caracterizar e avaliar a estabilidade do OE de pimenta preta (Piper nigrum L.) e de suas cápsulas formadas por diferentes biopolímeros pela técnica de coacervação complexa.Os biopolímeros e agentes reticulantes utilizados foram eficazes na proteção do OE apresentando elevada eficiência de encapsulação, preservando os principais terpenos no OE encapsulado. Adicionalmente, as cápsulas fabricadas com lactoferrina/alginato de sódio e β-lactoglobulina/alginato de sódio preservaram o OE quando expostos a condição oral e gástrica simuladas in vitro. Nas cápsulas produzidas pelo sistema β-lactoglobulina/alginato de sódio foi avaliada a liberação do óleo essencial em diferentes matrizes alimentícias simuladas, em matrizes alimentícias aquosas, ocorreu baixa liberação do OE, e sua liberação foi por difusão Fickian de acordo com modelo Rigger-Peppas. Os resultados obtidos sugerem que os materiais de parede utilizados foram eficientes e podem ser utilizados para encapsular novos ingredientes ativos. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | biopolímeros | por |
dc.subject | proteínas do soro do leite | por |
dc.subject | interação eletrostática | por |
dc.subject | terpenos | por |
dc.subject | eficiência de encapsulação | por |
dc.subject | estabilidade térmica | por |
dc.subject | biopolymers | eng |
dc.subject | whey proteins | eng |
dc.subject | electrostatic interaction | eng |
dc.subject | terpenes | eng |
dc.subject | encapsulation efficiency | eng |
dc.subject | thermal stability | eng |
dc.title | Encapsulação do óleo essencial de pimenta preta (Piper nigrum L.) por coacervação complexa, utilizando proteínas e alginato de sódio como materiais de parede | por |
dc.title.alternative | Encapsulation of the black pepper (Piper nigrum L.) essential oil by complex coacervation using proteins and sodium alginate as wall materials | eng |
dc.type | Tese | por |
dc.description.abstractOther | The black pepper (Piper nigrum L.) essential oil (EO) is a rich source of biologically active compounds (e.g.terpenes) and your applicability as a food additive has been the subject of several studies due to the antimicrobial and antioxidant activity of these compounds. Terpenes, however, are volatile and when exposed to certain conditions (high temperatures, light, low pH and gastrointestinal fluids) can reduce their biological potential and, in this sense, microencapsulation is an alternative way to the conserve EOs properties and their components. Among the microencapsulation methods, the complex coacervation method has advantages such as low concentrations of the wall materials, high encapsulation efficiency, and a variety of biopolymers that can be applied as wall materials. The aim of the present study was to characterize and evaluate the stability of black pepper EO encapsulated by complex coacervation using different biopolymers wall materials. The biopolymers and cross-linking agents used were effective in the protection of the EO, presented high encapsulation efficiency and preserved their main terpenes. Capsules formed by lactoferrin/sodium alginate and β-lactoglobulin/sodium alginate preserved the EO when exposed to simulated oral and gastric conditions in vitro. In simulated aqueous foods, the EO release was lower from β-lactoglobulin/sodium alginate microcapsules, and the EO release was by Fickian diffusion according to the Rigger-Peppas model. The obtained results suggest that the wall materials used were efficient and could be applied to encapsulate new active ingredients. | eng |
dc.contributor.advisor1 | Rojas, Edwin Elard Garcia | |
dc.contributor.advisor1ID | CPF: 014.548.996-54 | por |
dc.contributor.referee1 | Finotelli, Priscilla Vanessa | |
dc.contributor.referee2 | Sabino, Silvio José | |
dc.contributor.referee3 | Machado, Mariana Teixeira da Costa | |
dc.contributor.referee4 | Vicente, Juarez | |
dc.creator.ID | CPF: 122.476.067-09 | por |
dc.creator.Lattes | http://lattes.cnpq.br/1578379346432268 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | por |
dc.relation.references | Abrahamsson, B., Pal, A., Sjoberg, M., Carlsson, M., Laurell, E., Brasseur, J. G. (2005). A novel in vitro and numerical analysis of shear-induced drug release from extended release tablets in the fed stomach. Pharmaceutical Research, 22, 1215–1226. Ahmad, N., Fazal, H., Abbasi, B. H., Farooq, S., Ali, M., & Khan, M. A. (2012). Biological role of Piper nigrum L.(Black pepper): A review. Asian Pacific Journal of Tropical Biomedicine, 2(3), 1945-1953. Alizadeh-Sani, M., Khezerlou, A., &Ehsani, A. (2018).Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Industrial crops and products, 124, 300-315. Atay, E.,Fabra, M. J., Martínez-Sanz, M., Gomez-Mascaraque, L. G., Altan, A., & Lopez-Rubio, A. (2018). Development and characterization of chitosan/gelatin electrosprayedmicroparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocolloids, 77, 699-710. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008).Biological effects of essential oils – a review.Food and Chemical Toxicology, 46, 446–475. Bao, C., Jiang, P., Chai, J., Jiang, Y., Dan, L., Bao, W.Yuan, L. (2019). The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food research international, 120,130-140. Bastos, L. P. H., De Carvalho, C. W. P., & Garcia-Rojas, E. E. (2018). Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. International journal of biological macromolecules, 120, p.332-338. Bhattacharjee, N., Banerjee, S., &Dutta, S. K. (2014).Cloning, expression and mutational studies of a trypsin inhibitor that retains activity even after cyanogen bromide digestion. Protein expression and purification, 96, 26-31. Bokkhim, H., Bansal, N., Grøndahl, L., &Bhandari, B. (2015). Interactions between differentforms of bovine lactoferrin and sodium alginate affect the properties of their mixtures. Food Hydrocolloids, 48, 38–46. Bustos, C., O., R. Alberti, R.,V., S., Matiacevich, B., S. (2016). Edible antimicrobial films based on microencapsulated lemongrass oil.Journal of food science and technology, 53, 832-839. Chandran, J., Nayana, N., Roshini, N., &Nisha, P. (2017). Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger. Journal of food science and technology, 54(1), 144-152. Chanphai, P., &Tajmir-Riahi, H. A. (2017). Trypsin and trypsin inhibitor bind milk beta-lactoglobulin: Protein–protein interactions and morphology. International journal of biological macromolecules, 96, 754-758. Chater, P. I., Wilcox, M. D., Brownlee, I. A., & Pearson, J. P. (2015).Alginate as aprotease inhibitor in vitro and in a model gut system; selective inhibition of pepsin but not trypsin.Carbohydrate Polymers, 131, 142–151. Commission regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. 2011. 10/2011/EC. Cortés-Camargo, S., Acuña-Avila, P. E., Rodríguez-Huezo, M. E., Román-Guerrero, A., Varela-Guerrero, V. Pérez-Alonso, C. (2019). Effect of chia mucilage addition on oxidation and release kinetics of lemon essential oil microencapsulated using mesquite gum–Chia mucilage mixtures. Food research international, 116, 1010-1019. Da Cruz, M. C. R., Dagostin, J. L. A., Perussello, C. A., &Masson, M. L. (2019). Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation.Food hydrocolloids, 87, 71-82. Dash, S., Murthy, P. N., Nath, L.Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta PolPharm, 67(3), 217-23. Da Silva Stefani, F., de Campo, C., Paese, K., Guterres, S. S., Costa, T. M. H.Flôres, S. H. (2019). Nanoencapsulation of linseed oil with chia mucilage as structuring material: Characterization, stability and enrichment of orange juice. Food Research International, 120, 872-879. De Matos, E. F., Scopel, B. S., &Dettmer, A. (2018).Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate.Journal of Environmental Chemical Engineering, 6(2), 1989-1994. Dima, C., Pătraşcu, L., Cantaragiu, A., Alexe, P., &Dima, Ş. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrumsativum L. essential oil from chitosan/alginate/inulin microcapsules.Food chemistry, 195, 39-48. Dong, A., Matsuura, J., Allison, S. D., Chrisman, E., Manning, M. C., & Carpenter, J. F. (1996).Infrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B. Biochemistry, 35(5), 1450-1457. El-Houssiny, A. S., Ward, A. A., Mostafa, D. M., Abd-El-Messieh, S. L., Abdel-Nour, K. N., Darwish, M. M. Khalil, W. A. (2016). Drug–polymer interaction between glucosamine sulfate and alginate nanoparticles: FTIR, DSC and dielectric spectroscopy studies. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(2), 025014. Gaonkar, A. G; Vasisht, N; Khare, A. R; Sobel, R. Microencapsulation in the food industry: a practical implementation guide. San Diego: Elsevier, 2014. Ghasemi, S.,Jafari, S. M., Assadpour, E. Khomeiri, M. (2017).Production of pectin-whey protein nano-complexes as carriers of orange peel oil.Carbohydrate polymers, 177, 369-377. Girardi, N. S., García, D., Passone, M. A., Nesci, A.,Etcheverry, M. (2017).Microencapsulation of Lippiaturbinata essential oil and its impact on peanut seed quality preservation. International Biodeterioration & Biodegradation, 116, 227-233. Gunasekaran, S., Ko, S., & Xiao, L. (2007). Use of whey proteins for encapsulationand controlled delivery applications. Journal of Food Engineering, 83, 31-40. Hedstrom, L. (2002).Serine protease mechanism and specificity.Chemical Reviews,102(12),4501-4524. Huang, C.Y. Balakrishnan, G. Spiro, T. G.(2006).Protein secondary structurefrom deep-UV resonance Raman spectroscopy, Journal of Raman Spectroscopy 37, 277-282. Ilyasoglu, H., & El, S. N. (2014). Nanoencapsulation of EPA/DHA with sodium caseinate–gum arabic complex and its usage in the enrichment of fruit juice. LWT-Food Science and Technology, 56(2), 461-468. Jones, O. G., Decker, E. A., &McClements, D. J. (2010). Comparison of protein–polysaccharide nanoparticle fabrication methods: Impact of biopolymer complexation before or after particle formation. Journal of Colloid and Interface Science, 344(1), 21-29. Koupantsis, T., Pavlidou, E.,Paraskevopoulou, A. (2014). Flavour encapsulation in milk proteins–CMC coacervate-type complexes. Food Hydrocolloids, 37, 134-142. Koupantsis, T., Pavlidou, E. Paraskevopoulou, A. (2016).Glycerol and tannic acid as applied in the preparation of milk proteins–CMC complex coavervates for flavour encapsulation. Food Hydrocolloids, 57, 62-71. Li, D., Wu, H., Huang, W., Guo, L. Dou, H. (2018). Microcapsule of Sweet Orange Essential Oil Encapsulated in Beta‐Cyclodextrin Improves the Release Behaviors In Vitro and In Vivo. European journal of lipid science and technology, 120(9), 1-11. Lv,Y., Yang, F., Li, X., Zhang, X. Abbas, S. (2014). Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocolloids, 35, 305-314. Manaf, M. A., Subuki, I., Jai, J., Raslan, R.Mustapa, A. N. (2018). Encapsulation of volatile citronella essential oil by coacervation: efficiency and release study. In IOP conference series: materials science and engineering, 358 (1), 1-7. Maderuelo, C., Zarzuelo, A. Lanao, J. M. (2011). Critical factors in the release of drugs from sustained release hydrophilic matrices. Journal of controlled release, 154(1), 2-19. McClements, D. J. (2015). Nanoparticle- and microparticle-based delivery systems (1st ed).Boca Raton: CRC Press. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T. O. R. S. T. E. N., Bourlieu, C., &Dufour, C. (2014).A standardised static in vitro digestion method suitable for food–an international consensus. Food&function, 5(6), 1113-1124. Montero, P., Calvo, M. M., Gómez-Guillén, M. C. Gómez-Estaca, J. (2016). Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: Characterization, stability, and bioaccessibility. LWT-Food Science and Technology, 70, 229-236. Nesterenko, A., Alric, I., Violleau, F., Silvestre, F. Durrieu, V. (2014).The effect of vegetable protein modifications on the microencapsulation process.Food Hydrocolloids, 41, 95-102. Nicolai, T., Britten, M., & Schmitt, C. (2011).β-Lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocolloids, 25(8), 1945-1962. Papillo, V. A., Arlorio, M., Locatelli, M., Fuso, L., Pellegrini, N. Fogliano, V. (2019).In vitro evaluation of gastro-intestinal digestion and colonic biotransformation of curcuminoids considering different formulations and food matrices. Journal of Functional Foods, 59, 156-163. Peng, C., Zhao, S. Q., Zhang, J., Huang, G. Y., Chen, L. Y., & Zhao, F. Y. (2014). Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapisalba) seed essential oil by complex coacervation. Food chemistry, 165, 560-568. Powers,J.C.,Harley,A.D.,&Myers,D.V.(1977). Subsite specificity of porcinepepsin.Advances in Experimental Medicine and Biology,95,141–157. Raksa, A., Sawaddee, P., Raksa, P. Aldred, A. K. (2017). Microencapsulation, chemical characterization, and antibacterial activity of Citrus hystrix DC (Kaffir Lime) peel essential oil. MonatsheftefürChemie-Chemical Monthly,148(7), 1229-1234. Rezaeinia, H., Ghorani, B., Emadzadeh, B. Tucker, N. (2019). Electrohydrodynamic atomization of Balangu (Lallemantiaroyleana) seed gum for the fast-release of Menthalongifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. FoodHydrocolloids, 93, 374-385. Ritger, P. L., &Peppas, N. A. (1987).A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of controlled release, 5(1), 23-36. Rojas-Moreno, S., Osorio-Revilla, G., Gallardo-Velázquez, T., Cárdenas-Bailón, F., &Meza-Márquez, G. (2018).Effect of the cross-linking agent and drying method on encapsulation efficiency of orange essential oil by complex coacervation using whey protein isolate with different polysaccharides. Journal of microencapsulation, 35(2), 165-180. Saha, K. C., Seal, H. P., & Noor, M. A. (2013). Isolation and characterization of piperine from the fruits of black pepper (Piper nigrum). Journal of the Bangladesh Agricultural University, 11, 11-16. Schmitt, C. Turgeon, S. L. (2011). Protein/polysaccharide complexes and coacervatesin food systems.Advances in Colloid and Interface Science 167, 63-70. Strugala,V.,Kennington,E.J.,Campbell,R.J.,Skjak-Braek, G.Dettmar, P.W. (2005). Inhibition of pepsin activity by alginates in vitro and the effect of epimerization. International Journal of Pharmaceutics, 304 (1–2), 40–50. Sunderland, A. M., Dettmar, P. W. Pearson, J. P. (2000). Alginates inhibit pepsin activity in vitro; a justification for their use in gastro-oesophageal reflux disease (GORD). Gastroenterology, 118(4), A21. Timilsena, Y. P. Wang, B. Adhikari, R. Adhikari, B. (2016). Preparation and characterization of chiaseed protein isolate–chia seed gum complex coacervates, Food hydrocolloids, 52, 554-563. Timilsena, Y. P., Adhikari, R., Barrow, C. J.Adhikari, B. (2017).Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates.Food hydrocolloids, 66, 71-81. Tomé, D. Debabbi, H. (1998).Physiological effects of milk proteincomponents. International Dairy Journal, 8, 383–392. Wang, L., Yang, S., Cao, J., Zhao, S., & Wang, W. (2016). Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex.Chemical and Pharmaceutical Bulletin, 64(1), 21-26. Wang, B., Blanch, E., Barrow, C. J., &Adhikari, B. (2017). Preparation and study of digestion behavior of lactoferrin-sodium alginate complex coacervates.Journal of functional foods, 37, 97-106. Voliš, M., Pajiš-Lijakoviš, I., Djordjeviš, V., Kneževiš-Jugoviš, Z., Pešinar, I., Stevanoviš-Dajiš, Z.Bugarski, B. (2018).Alginate/soy protein system for essential oil encapsulation with intestinal delivery.Carbohydratepolymers, 200, 15-24. Xiao, Z., Liu, W., Zhu, G., Zhou, R. Niu, Y. (2014). Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour and fragrance journal, 29 (3), 166-172. Xu, H., Lu, Y., Zhang, T., Liu, K., Liu, L., He, Z., Wu, X. (2019).Characterization of binding interactions of anthraquinones and bovine β-lactoglobulin. Food chemistry, 281, 28-35. Yao, K., Chen, W., Song, F., McClements, D. J. Hu, K. (2018). Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcuminbioaccessibility and antioxidant capacity under simulated gastrointestinal conditions.Food hydrocolloids,79, 262-272. Ye, Q., Georges, N. Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in food science & technology, 78, 167-179. Yuan, Y., Li, M. F., Chen, W. S., Zeng, Q. Z., Su, D. X., Tian, B., & He, S. (2018). Microencapsulation of shiitake (Lentinulaedodes) essential oil by complex coacervation: formation, rheological property, oxidative stability and odour attenuation effect. International Journal of Food Science & Technology, 53(7), 1681-1688. Zhang, K., Zhang, H., Hu, X., Bao, S. Huang, H. (2012).Synthesis and release studies of microalgal oil-containing microcapsules prepared by complex coacervation.Colloids and surfaces B: Biointerfaces, 89, 61-66. Zhang, Z., Zhang, R.McClements, D. J. (2016). Encapsulation of β-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocolloids,61, 1-10. | por |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/67882/2019%20-%20L%c3%advia%20Pinto%20Heckert%20Bastos.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5319 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-01-15T23:54:17Z No. of bitstreams: 1 2019 - Lívia Pinto Heckert Bastos.pdf: 2797395 bytes, checksum: ce97274f9550ecd8b91fe22fcc5c1604 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-01-15T23:54:18Z (GMT). No. of bitstreams: 1 2019 - Lívia Pinto Heckert Bastos.pdf: 2797395 bytes, checksum: ce97274f9550ecd8b91fe22fcc5c1604 (MD5) Previous issue date: 2019-09-10 | eng |
Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019 - Lívia Pinto Heckert Bastos.pdf | 2.73 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.