Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15832
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Landim, Ana Paula Miguel | |
dc.date.accessioned | 2023-12-18T17:06:31Z | - |
dc.date.available | 2023-12-18T17:06:31Z | - |
dc.date.issued | 2021-05-24 | |
dc.identifier.citation | LANDIM, Ana Paula Miguel. Aplicação de alta pressão hidrostática para melhoria do processo de hidrólise das proteínas do soro de leite utilizando diferentes proteases. 2021. 87 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15832 | - |
dc.description.abstract | O soro de leite é um coproduto da indústria de lácteos, com alto teor de proteínas de elevado valor nutricional e diferentes propriedades tecnológicas, usado em uma ampla variedade de produtos. No entanto, essas características podem ser melhoradas por processos enzimáticos, que também conseguem liberar peptídeos bioativos e reduzir a alergenicidade em relação à proteína nativa. Vários fatores podem influenciar na hidrólise, como a enzima selecionada, o pH da reação, o tempo de processo, o uso de tecnologias, dentre outros. A tecnologia de alta pressão hidrostática (APH) vem sendo associada a hidrólise devido às alterações que pode provocar na estrutura da proteína, resultando no aumento da exposição de pontos de clivagem e, consequentemente, uma hidrólise mais intensa e, possivelmente, hidrolisados com maior bioatividade e menor alergenicidade. Diante disso, o objetivo deste estudo foi avaliar o efeito da APH na hidrólise de um concentrado proteico do soro de leite (WPC) utilizando as proteases Novo Pro-D, ficina e pepsina. A Tese foi dividida em dois capítulos de resultados. O primeiro estudo (capítulo II) avaliou o efeito da aplicação da APH na hidrólise péptica do WPC. O uso da APH foi avaliada antes (pré-tratamento - PT) e durante os processos de hidrólise (assistida por hidrólise – HA) combinando as pressões de 100, 250 e 400 MPa e os tempos de 5, 20 e 35 min. A evolução da hidrólise nos diferentes tratamentos (hidrólise convencional, HA e PT) foram avaliadas por meio da redução do teor de proteínas solúveis, aumento do teor de aminoácidos aromáticos e perfil peptídico. Além disso, a capacidade antioxidante dos hidrolisados também foram avaliados utilizando-se os ensaios ORAC e ABTS. O uso da APH favoreceu a hidrólise da β-lactoglobulina em até 98%, mesmo sendo uma proteína resistente à hidrólise péptica. A maior redução de proteínas solúveis foi observada no tratamento de HA usando 100 MPa/35 min., em que exibiu redução de 35%, enquanto na CH e nos PTs a redução foi de cerca de 20% após 4h de reação. Quanto a bioatividade, o uso da APH contribuiu para obtenção de hidrolisados com maior capacidade antioxidante in vitro quando comparado ao obtido no processo convencional. Os resultados desse capítulo sugeriram que a HA por APH é uma estratégia eficiente para melhorar a hidrólise péptica, reduzir significativamente o tempo de processo e aumentar a atividade antioxidante dos hidrolisados. No capítulo III da Tese, foi investigado o uso das proteases Novo Pro-D® (NPD) e ficina (FC) como alternativa para a produção de hidrolisados. Como são proteases pouco estudadas na produção de hidrolisados, foi feito um estudo prévio avaliando as relações E:S de 7, 5, 3 e 1% para NPD e 10, 7 e 5% para FC. A melhor relação E:S foi de 1% para NPD e 7% para FC. Após, a hidrólise foi realizada nas proteínas pré-tratadas por APH, utilizando as mesmas condições de pressurização do capítulo II. O efeito do PT, bem como o uso das diferentes proteases foram avaliados pela caraterização química (teor de proteínas solúveis, aminoácidos aromáticos e perfil peptídico). Além disso, foram avaliadas a capacidade antioxidante in vitro usando o ensaio ORAC, a atividade anti-hipertensiva ex-vivo por meio do relaxamento vascular, e a alergenicidade in vitro pelo teste ELISA. A enzima NPD apresentou uma hidrólise mais acentuada das proteínas do soro de leite, gerando hidrolisados com redução de 98% de proteínas solúveis, maior capacidade antioxidante e menor imunorreatividade quando comparado a FC. No entanto, o pré-tratamento por APH conseguiu melhorar as características dos hidrolisados obtidos pela FC, e os tratamentos PT2 (400 MPa/5 min.) e PT4 (400 MPa/35 min) resultaram na redução de 68.81 e 85.29% de proteínas, respectivamente, enquanto na hidrólise convencional a redução foi de 56,9%. Além disso, os hidrolisados pré-tratados por APH também apresentaram maior capacidade antioxidante e menor alergenicidade em comparação aos obtidos na hidrólise convencional. Em relação à atividade anti-hipertensiva, o hidrolisado proveniente da hidrólise usando a FC causou relaxamento vascular muito mais pronunciado em anéis aórticos de ratos do que os hidrolisados de NPD. Portanto, ambas enzimas (NPD e FC) apresentaram elevado potencial para produção de hidrolisados, e o uso de alta pressão hidrostática como pré-tratamento pode ser uma alternativa promissora para produzir hidrolisados com características melhoradas. Em suma, os resultados alcançados sugerem que as características desejadas nos hidrolisados devem ser os norteadores para seleção das proteases. Além disso, a APH foi um processo importante para melhorar a hidrólise das proteínas do soro de leite e as características finais dos hidrolisados, porém a melhor estratégia de uso dependerá da protease selecionada. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | hidrolisados proteicos | por |
dc.subject | hidrólise enzimática | por |
dc.subject | capacidade antioxidante in vitro | por |
dc.subject | alergenicidade in vitro | por |
dc.subject | atividade anti-hipertensiva | por |
dc.subject | protein hydrolysates | eng |
dc.subject | enzymatic hydrolysis | eng |
dc.subject | in vitro antioxidant capacity | eng |
dc.subject | in vitro allergenicity | eng |
dc.subject | antihypertensive activity | eng |
dc.title | Aplicação de alta pressão hidrostática para melhoria do processo de hidrólise das proteínas do soro de leite utilizando diferentes proteases | por |
dc.title.alternative | Application of high hydrostatic pressure to improve the whey protein hydrolysis process using different proteases | eng |
dc.type | Tese | por |
dc.description.abstractOther | Whey is a co-product of the dairy industry, with a high content of high nutritional value proteins and different technological properties, being used in a wide variety of products. However, these characteristics can be improved by enzymatic processes, which are also able to release bioactive peptides and reduce allergy concerning the native protein. Several factors can influence hydrolysis, such as the selected enzyme, reaction pH, process time, use of technologies, among others. High hydrostatic pressure (HHP) technology has been associated with hydrolysis due to changes it can cause in the protein structure, resulting in increased exposure of cleavage points and, consequently, more intense hydrolysis and possibly hydrolysates with greater bioactivity and lower allergenicity. Given this, this study aimed to evaluate the effect of APH on the hydrolysis of a whey protein concentrate (WPC) using the proteases Novo Pro-D, ficin, and pepsin. The Thesis was divided into two chapters of results. The first study (chapter II) evaluated the effect of the application of HHP on the peptic hydrolysis of WPC. The use of HHP was evaluated before (pre-treatment - PT) and during the hydrolysis processes (assisted hydrolysis - AH). In the different treatments, the combination of pressures of 100, 250, and 400 MPa and times of 5, 15, and 35 min were used. The evolution of hydrolysis in the different treatments (conventional hydrolysis, HA, and PT) was evaluated by reducing the soluble protein content, increasing the aromatic amino acid content and the peptide profile. Furthermore, the antioxidant capacity of the different hydrolysates was also evaluated using the ORAC and ABTS assays. The use of APH favored the hydrolysis of β-lactoglobulin by up to 98%, even though it is a protein resistant to peptic hydrolysis. In the HA treatment at 100 MPa/35 min., it exhibited a 35% reduction in soluble proteins, while in CH and PTs the reduction was about 20% after 4h of reaction. As for bioactivity, the use of HHP contributed to obtaining hydrolysates with greater antioxidant capacity in vitro than that obtained in the conventional process. The results of this chapter suggested that HA by HHP is an efficient strategy to improve peptic hydrolysis, significantly reduce processing time and increase the antioxidant activity of hydrolysates. In chapter III of the Thesis, the use of the proteases Novo Pro-D® (NPD) and ficin (FC) as an alternative for the production of hydrolysates was investigated. As they are few studied proteases in the production of hydrolysates, a previous study was carried out evaluating the E:S ratios of 7, 5, 3, and 1% for NPD and 10, 7, and 5% for FC. The best E:S ratio was 1% for NPD and 7% for FC. fter choosing the best E:S ratio, hydrolysis was performed on the HHP-pretreated proteins, using the same pressurization conditions described above. The effect of PT, as well as the use of different proteases, were evaluated by chemical characterization (the content of soluble proteins, aromatic amino acids, and peptide profile). In addition, the antioxidant capacity in vitro using the ORAC assay, the antihypertensive activity ex vivo using vascular relaxation, and the allergenicity in vitro using the ELISA assay. The NPD enzyme showed more pronounced hydrolysis of whey proteins, generating hydrolysates with a 98% reduction in soluble proteins, greater antioxidant capacity, and lower immunoreactivity when compared to FC. However, the pre-treatment by APH was able to improve the characteristics of the hydrolysates obtained by FC, and the treatments that were used 400 MPa/5 min. and 400 MPa/35 min. resulted in a reduction of 68.81 and 85.29% of proteins, respectively, while in conventional hydrolysis the reduction was 56.9%. In addition, the hydrolysates pre-treated by APH also showed higher antioxidant capacity and lower allergenicity compared to those obtained from conventional hydrolysis. Regarding antihypertensive activity, the hydrolyzate from hydrolysis using FC caused vascular relaxation much more pronounced in rat aortic rings than the NPD hydrolysates. Both enzymes (NPD and FC) showed high potential for hydrolyzate production, and the use of high hydrostatic pressure as a pre-treatment, may be a promising alternative to produce hydrolyzates with improved characteristics. In short, the results achieved suggest that the desired characteristics in the hydrolysates should be the guidelines for selecting the proteases. In addition, APH was an important process to improve the hydrolysis of whey proteins and the final characteristics of the hydrolysates, but the best use strategy will depend on the selected protease. | eng |
dc.contributor.advisor1 | Rosenthal, Amauri | |
dc.contributor.advisor1ID | 025.072.978-40 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1329532290735502 | por |
dc.contributor.advisor-co1 | Silva, Caroline Mellinger | |
dc.contributor.advisor-co1ID | 026.909.329-03 | por |
dc.contributor.referee1 | Rosenthal, Amauri | |
dc.contributor.referee2 | Sato, Ana Carla Kawazoe | |
dc.contributor.referee3 | Masson, Lourdes Maria Pessoa | |
dc.contributor.referee4 | Tiburski, Julia Hauck | |
dc.contributor.referee5 | Barbosa Junior, Jose Lucena | |
dc.creator.ID | 108.345.256-82 | por |
dc.creator.Lattes | http://lattes.cnpq.br/0739682403541448 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | por |
dc.relation.references | ABADÍA-GARCÍA, L. et al. Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable proteases. Innovative Food Science and Emerging Technologies, 2016. v. 37, p. 84–90. Disponível em: <https://pubs.acs.org/doi/10.1021/jf103771x>. Acesso em: 30 jun. 2018. doi: 10.1016/j.ifset.2016.08.010. ABD EL-SALAM, M. H.; EL-SHIBINY, S. Preparation, properties, and uses of enzymatic milk protein hydrolysates. Critical Reviews in Food Science and Nutrition, 2017. v. 57, p. 1119–1132. Disponível em: <http://dx.doi.org/10.1080/10408398.2014.899200%0ADisc laimer:>. Acesso em: 25 mai 2021. doi: 10.1080/10408398.2014.899200. ABD EL-SALAM, M. H.; EL-SHIBINY, S. Reduction of Milk Protein Antigenicity by Enzymatic Hydrolysis and Fermentation. A Review. Food Reviews International, 2019. p. 276–295. Disponível em: <https://doi.org/10.1080/87559129.2019. 1701010>. Acesso em: 19 jan 2021. doi: 10.1080/10408398.2014.899200. AHMED, J. et al. Effect of high‐pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legume Science, 19 dez. 2019. v. 1, p. 1–13. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1002/leg 3.10>. Acessso em: 12 dez. 2020. doi: 10.1002/leg3.10. AL-RUWAIH, N. et al. High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. Food Science and Technology, 2019. v. 100, p. 231–236. Disponível em: <https://doi.org/10.1016/j.lwt.2018.10.074>. Acesso em: 15 dez. 2020. doi: 10.1016/j.lwt.2018.10.074. ALUKO, R. E. Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science, 2015. v. 4, p. 44–50. Disponível em: <http://dx.doi.org/10.1016 j.cofs.2015.05.002>. Acesso em: 13 dez. 2020. BELLOQUE, J. et al. Unfolding and refolding of β-lactoglobulin subjected to high hydrostatic pressure at different pH values and temperatures and its influence on proteolysis. Journal of Agricultural and Food Chemistry, 2007. v. 55, n. 13, p. 5282–5288. Disponível em: <https://pubs.acs.org/doi/10.1021/jf070170w>. Acesso em: 5 jun. 2020. BØGH, K. L. et al. Characterization of the immunogenicity and allergenicity of two Cow’s milk Hydrolysates - A study in brown norway rats. Scandinavian Journal of Immunology, 2015. v. 81, n. 5, p. 274–283. Disponível em: <https://pubmed.ncbi. nlm.nih.gov/25619117/>. Acesso em: 5 jun. 2020. doi:10.1111/sji.12271. BONOMI, F. et al. Reduction of immunoreactivity of bovine β-lactoglobulin upon combined physical and proteolytic treatment. Journal of Dairy Research, 2003. v. 70, n. 1, p. 51–59. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/12617393/>. Acesso em: 5 dez. 2020. BOUKIL, A. et al. Ultrafiltration performance and recovery of bioactive peptides after fractionation of tryptic hydrolysate generated from pressure-treated β−lactoglobulin. Journal of Membrane Science, 2018. v. 556, p. 42–53. Disponível em: <https://doi.org/10.1016/ j.memsci.2018.03.079>. Acesso em: 13 dez. 2020. doi: 10.1016/j.memsci.2018.03.079. CHAO, D. et al. Effect of pressure or temperature pretreatment of isolated pea protein on properties of the enzymatic hydrolysates. Food Research International, 2013. v. 54, n. 2, p. 1528–1534. Disponível em: <http://dx.doi.org/10.1016/j.foodres.2013.09.020>. Acesso em: 14 dez. 2020. doi: 10.1016/j.foodres.2013.09.020. CHEISON, S. C.; KULOZIK, U. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review. Critical Reviews in Food Science and Nutrition, 2017. v. 57, n. 2, p. 418–453. Disponível em: <https://pubmed.ncbi.nlm.nih.go v/25976220/>. Acesso em: 26 set. 2019. doi: 10.1080/10408398.2014.959115. CHICÓN, R. et al. Proteolytic pattern, antigenicity, and serum immunoglobulin e binding of β-lactoglobulin hydrolysates obtained by pepsin and high-pressure treatments. Journal of Dairy Science, 2008. v. 91, p. 928–938. Dísponivel em: <https://www.sciencedirect.com/science /article/pii/S0022030208713481> Acesso em: 22 nov. 2020. doi:10.3168/jds.2007-0657. CHICÓN, R. et al. Food Hydrocolloids Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocolloid, 2009. v. 23, p. 593–599. Dispornível em: <https://www.sciencedirect.com/science/article/abs/pii/S0268005X 08000635> Acesso em: 25 jan. 2021. doi: 10.1016/j.foodhyd.2008.04.001 CHIZOBA EKEZIE, F. G. et al., Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends in Food Science and Technology, 2018. v. 74, p. 12–25. Disponível em: https://doi.org/10.1016/j.tifs.2018.01.007 Acesso em: 18 jan. 2021. doi: 10.1016/j.tifs.2018.01.007. CORROCHANO, A. R. et al. Comparison of antioxidant activities of bovine whey proteins before and after simulated gastrointestinal digestion. Journal of Dairy Science, 2019. v. 102., p. 526-535. Disponível em: <https://www.sciencedirect.com/science/article/pii/S00220302183 09950>. Acesso em: 25 fev. 2021. doi: 10.1016/j.jff.2018.08.043. ELIAS, R. J. et al. Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 2008. v. 48, p. 430–441. Disponível em: <http://dx.doi.org/10.1080/1 0408390701425615>. Acesso em: 15 jan. 2020. doi: 10.1080/10408390701425615. FRANCK, M. et al. High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptides with antioxidant activity. Food Research International, 2019. v. 115, p. 467–473. Disponível em: <https://pubmed.ncbi. nlm.nih.gov/30599966/>. Acesso em: 11 nov. 2019. doi: 10.1016/j.foodres.2018.10.034. GARCIA-MORA, P. et al. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chemistry, 2015. v. 171, p. 224–232. Disponível em: <https://www. sciencedirect.com/science/article/abs/pii/S0308814614013417>. Acesso em: 3 out. 2018. GARCIA-MORA, P. et al. High-pressure-assisted enzymatic release of peptides and phenolics increases angiotensin converting enzyme I inhibitory and antioxidant activities of pinto bean hydrolysates. Journal of Agricultural and Food Chemistry, 2016. v. 64, n. 8, p. 1730–1740. Disponível em: <https://pubs.acs.org/doi/abs/10.1021/acs.jafc.5b06080>. Acesso em: 3 nov. 2020. doi: 10.1021/acs.jafc.5b06080. GOMES, C. et al. Current genetic engineering strategies for the production of antihypertensive ACEI peptides. Biotechnology and Bioengineering, 2020. v. 117, n. 8, p. 2610–2628. Dísponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27373>. Acesso em: 24 fev. 2021. doi: 10.1002/bit.27373 GRANATO, D. et al. Functional foods: product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology, 2020. v. 11, p. 1–26. Disponível em: <https://doi.org/10.1146/annurev-food-032519- 051708>. Acesso em: 15 fev. 2021. GUAN, H. et al. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chemistry, 2018. v. 245. Disponível em: <https://www.sciencedirect.com/science/article/abs /pii/S0308814617314164>. Acesso em: 25 nov. 2020. doi: 10.1016/j.foodchem.2017.08.081. HOPPE, A. et al. Effect of high pressure treatment on egg white protein digestibility and peptide products. Innovative Food Science and Emerging Technologies, 2013. v. 17, p. 54–62. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2012.11.003>. Acesso em: 15 jan. 2021. ISKANDAR, M. M. et al. High hydrostatic pressure pretreatment of whey protein isolates improves their digestibility and antioxidant capacity. Foods, 2015. v. 4, p. 184–207. Disponível em: <http://wwwmdpi.com/2304-8158/4/2/184/>. Acesso em: 15 jan. 2021. KASERA, R. et al. Enzymatic hydrolysis: A method in alleviating legume allergenicity. Food and Chemical Toxicology, 2015. v. 76, p. 54–60. Disponível em: < http://dx.doi.org/10.101 6/j.fct.2014.11.023>. Acesso em: 20 jan. 2021. doi: 10.1016/j.fct.2014.11.023. KOBORI, H. et al. Intratubular renin-angiotensin system: from physiology to the pahobiology of hypertension and kidney disease. Pharmacological Reviews, 2007. v. 59, p. 251–287. Disponível em: <https://doi.org/10.1124/pr.59.3.3>. Acesso em: 20 fev. 2021. KORHONEN, H. Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 2009. v. 1, n. 2, p. 177–187. Disponível em: <http://dx.doi.org/10.1016/j.jff. 2009.01.007>. Acesso em: 15 jan. 2021. doi: 10.1016/j.jff.2009.01.007 LAFARGA, T.; HAYES, M. Bioactive protein hydrolysates in the functional food ingredient industry: Overcoming current challenges. Food Reviews International, 2017. v. 33, n. 3, p. 217–246. Disponível em: < http://dx.doi.org/10.1080/87559129.2016.1175013>. Acesso em: 24 jan. 2021. doi: 10.1080/87559129.2016.1175013 LANDIM, A. P. M. et al. Effect of high hydrostatic pressure on the antioxidant capacity and peptic hydrolysis of whey proteins. Ciência Rural, 2021. v. 51, n. 4. Disponível em: <http://doi.org/10.1590/0103-8478cr20200560>. Acesso em: 15 mar. 2021. LÓPEZ-EXPÓSITO, I. et al. In vivo methods for testing allergenicity show that high hydrostatic pressure hydrolysates of β-lactoglobulin are immunologically inert. Journal of Dairy Science, 2012. v. 95, n. 2, p. 541–548. Disponívelem: < https://pubmed.ncbi.nlm.nih.go v/22281318/>. Acesso em: 25 nov. 2019. doi: 10.3168/jds.2011-4646 LÓPEZ-EXPÓSITO, I. et al. Changes in the ovalbumin proteolysis profile by high pressure and its effect on IgG and IgE binding. Journal of agricultural and Food Chemistry, 2008. v. 56, p. 11809–11816. Disponívelem:< https://pubs.acs.org/doi/10.1021/jf8023613>. Acesso em: 25 jan. 2018. doi: 10.1021/jf8023613. LOZANO-OJALVO, D. et al. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates. Innovative Food Science and Emerging Technologies, 2017. v. 43, n. February, p. 154–162. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2017.07.032>. Acesso em: 12 dez. 2018. doi: 10.1016/j.ifset.2017.07.032. MAJUMDER, K.; WU, J. Molecular targets of antihypertensive peptides: Understanding the mechanisms of action based on the pathophysiology of hypertension. International Journal of Molecular Sciences, 2015. v. 16, n. 1, p. 256–283. Disponívelem:< https://pubmed.ncbi.nlm.nih.gov/25547491/> Acesso em: doi: 10.3390/ijms16010256 MARCINIAK, A. et al. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science and Technology, 2018. v. 80, p. 187–198. Disponível em: <https://www.sciencedirect.com/science /article/abs/pii/S0924224418301122>. Acesso em: 11 nov. 2019. doi: 10.1016/j.tifs.2018.08.013. MENG, X. et al. Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin. Food Chemistry, 2017. v. 219, p. 290–296. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2016.09.153>. Acesso em: 15 fev. 2021. doi: 10.1016/j.foodchem.2016.09.153. MORALES-CAMACHO, J. I. et al. Insertions of antihypertensive peptides and their applications in pharmacy and functional foods. Applied Microbiology and Biotechnology, 2019. v. 103, n. 6, p. 2493–2505. Disponívelem: <http://dx.doi.org/10.1007/s00253-019-09633-1> Acesso em: 25 fev. 2021. doi: 10.1007/s00253-019-09633-1. NASRI, M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. 1. ed.[S.l.]: Elsevier Inc., 2017. V. 81. NAZIR, M. A. et al. Preparation and identification of angiotensin I-converting enzyme inhibitory peptides from sweet potato protein by enzymatic hydrolysis under high hydrostatic pressure. International Journal of Food Science and Technology, 2020. v. 55, n. 2, p. 482–489. Disponívelem: <https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/ijfs.14291>. Acesso em: 24 fev. 2021. doi: 10.1111/ijfs.14291 PEÑAS, E. et al. High pressure can reduce the antigenicity of bovine whey protein hydrolysates. International Dairy Journal, 2006a. v. 16, p. 969–975. Disponível em: <https://www.scienc edirect.com/science/article/abs/pii/S0958694605002293>. Acesso em: 21 out. 2018. PEÑAS, E. et al. Assessment of the residual immunoreactivity of soybean whey hydrolysates obtained by combined enzymatic proteolysis and high pressure. European Food Research and Technology, 2006b. v. 222, p. 286–290. Disponível: < https://link.springer.com/article /10. 1007%2Fs00217-005-0108-9> Acesso em: 25 fev. 2019. doi: 10.1007/s00217-005-0108-9. PERREAULT, V. et al. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chemistry, 2017. v. 221, p. 1805–1812. Dispinível em: <http://dx.doi.org/10.1016 /j.foodchem.2016.10.100>. Acesso em: 15 nov. 2019. doi: 10.1016/j.foodchem.2016.10.100. POTTIER, L. et al. Applications of high pressure for healthier foods. Current Opinion in Food Science, 2017. v. 16, p. 21–27. Disponível em: <http://dx.doi.org/10.1016/j.cofs.2017.06.009>. PREMKUMAR, J. et al. A critical review on food protein derived antihypertensive peptides. Drug Invention Today, 2019. v. 12, n. 3, p. 474–479. QUIRÓS, A. et al. The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin. Food Chemistry, 2007. v. 104, p. 1734–1739. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0308814606008351 >. Acesso em: 25 out. 2018.doi: 10.1016/j.foodchem.2006.10.050. RAHAMAN, T. et al. Effect of processing on conformational changes of food proteins related to allergenicity. Trends in Food Science and Technology, 2016. v. 49, p. 24–34. Disponível em: <http://dx.doi.org/10.1016/j.tifs.2016.01.001>. Acesso em: 25 fev. 2020. RUTHERFURD, S. M. Methodology for determining degree of hydrolysis of proteins in hydrolysates: A Review. Journal of AOAC International, 2010. v. 93, n. 5, p. 1515–1522. SINGH, A.; RAMASWAMY, H. S. Effect of high-pressure treatment on trypsin hydrolysis and antioxidant activity of egg white proteins. International Journal of Food Science and Technology, 2014. v. 49, n. 1, p. 269–279. Disponível em: < https://ifst.onlinelibrary. wiley.com/doi/10.1111/ijfs.12443> Acesso em: 25 fev. 2019. doi: 10.1111/ijfs.12443. SOMKUTI, J.; SMELLER, L. High pressure effects on allergen food proteins. Biophysical Chemistry, 2013. v. 183, p. 19–29. Disponível em: <http://dx.doi.org/10.1016/j.bpc.2 013.06.009>. Acesso em: 23 dez. 2020. doi: 10.1016/j.bpc.2013.06.009. TADESSE, S. A.; EMIRE, S. A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon, 2020. v. 6, n. 8. Disponível em: <https://doi.org/10.1016/j.heliyon.2020.e04765>. Acesso em: 15 fev. 2021. doi: 10.1016/j.heliyon.2020.e04765 TAVARES, T. G. et al. Manufacture of bioactive peptide-rich concentrates from Whey : Characterization of pilot process. Journa of Food Engineerin, 2012. v. 110, p. 547–552. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0260877412 000295>. Acesso em: 3 out. 2018. UDENIGWE, C. C.; MOHAN, A. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. Journal of Functional Foods, 2014. v. 8, n. 1, p. 45–52. Disponível em: <http://dx.doi.org/10.1016/j.jff.2014.03.002>. Acesso em: 25 jan. 2019. VILLA, C. et al. Bovine milk allergens: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2018. v. 17, p. 137–164. Disponível em:< https://doi.org/ 10.1111/1541-4337.12318>. Acesso em: 16 fev. 2021. doi: 10.1111/1541-4337.12318. YADAV, D. N. et al. Development of protein fortified mango based ready-to-serve beverage. Journal of Food Science and Technology, 2016. v. 53, n. 10, p. 3844–3852. Disponível em: < https://www.sciencedirect.com/science/article/abs/pii/S073497501530015X> Acesso em: 25 jan. 2018. doi: 10.1016/j.biotechadv.2015.07.002. YAMAMOTO, K. Food processing by high hydrostatic pressure. Bioscience, Biotechnology and Biochemistry, 2017. v. 81 p. 672–679. Disponível em: <http://dx.doi.org/10.1080/ 09168451.2017.1281723>. Acesso em: 25 nov. 2020. doi: 10.1080/09168451.2017.1281723. ZEECE, M. et al. Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin. Innovative Food Science and Emerging Technologies, 2008. v. 9, n. 1, p. 62–69. Disponível em: <https://doi.org/10.1016/j.ifset.2007.05.004>.Acesso em: 25 jan. 2019. ZHANG, M.; MU, T. H. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 2017. v. 43, p. 92–101. Disponível em: <http://dx.doi .org/10.1016/j.ifset.2017.08.001>. Acesso em: 18 fev. 2018. doi: 10.1016/j.ifset.2017.08.001 ZHANG, T. et al. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chemistry, 2012. v. 135, n. 3, p. 904–912. Disponível em: <https://pubmed.ncbi. nlm.nih.gov/22953804/>. Acesso em: 30 out. 2018. doi: 10.1016/j.foodchem.2012.05.097. ZHAO, R. J. et al. Ultra-high-pressure processing improves proteolysis and release of bioactive peptides with activation activities on alcohol metabolic enzymes in vitro from mushroom foot protein. Food Chemistry, 2017. v. 231, p. 25–32. Disponível em: <https://doi.org/10.1016 /j.foodchem.2017.03.058>. Acesso em: 25 jan. 2019. doi: 10.1016/j.foodchem.2017.03.058. ZHOU, H. et al. Effects of Enzymatic Hydrolysis Assisted by High Hydrostatic Pressure Processing on the Hydrolysis and Allergenicity of Proteins from Ginkgo Seeds. Food and Bioprocess Technology, 2016. v. 9, p. 839–848. Disponível em: < https://link.springer.com/ article/10.1007/s11947-016-1676-3>. Acesso em: 25 jan. 2019. ZHOU, Z.; CHENG, C.; LI, Y. Structure-based design and optimization of antihypertensive peptides to obtain high inhibitory potency against both renin and angiotensin I-converting enzyme. SAR and QSAR in Environmental Research, 2015. v. 26, p. 1001–1016. Disponível em: <http://dx.doi.org/10.1080/1062936X.2015.1104725>. Acesso em: 25 jan.2021. | por |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/72504/2021%20-%20Ana%20Paula%20Miguel%20Landim.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6412 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-03-10T16:13:08Z No. of bitstreams: 1 2021 - Ana Paula Miguel Landim.pdf: 3832215 bytes, checksum: 3c668ae902317cba713e767cef46fefc (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-03-10T16:13:08Z (GMT). No. of bitstreams: 1 2021 - Ana Paula Miguel Landim.pdf: 3832215 bytes, checksum: 3c668ae902317cba713e767cef46fefc (MD5) Previous issue date: 2021-05-24 | eng |
Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021 - Ana Paula Miguel Landim.pdf | 3.74 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.