Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15792
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cappato, Leandro Pereira | |
dc.date.accessioned | 2023-12-18T17:05:10Z | - |
dc.date.available | 2023-12-18T17:05:10Z | - |
dc.date.issued | 2018-11-05 | |
dc.identifier.citation | CAPPATO, Leandro Pereira. Efeito da pasteurização por aquecimento ôhmico nas características químicas, físicas e reológicas em bebida láctea de acerola. 2018. 66 f..Tese(Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2018. | por |
dc.identifier.uri | http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15792 | - |
dc.description.abstract | O aquecimento ôhmico (AO) é uma tecnologia térmica emergente que consiste na passagem de corrente elétrica no próprio alimento, promovendo um rápido e homogêneo aquecimento, devido à conversão de energia elétrica em térmica. Em virtude da rápida taxa de aquecimento, o processo ôhmico apresenta vantagens em relação aos processos convencionais, como: a maior manutenção de compostos termossensíveis, compostos bioativos, redução da degradação da cor e de produtos da reação de Maillard (RPM’s), fatores importantes no processamento de produtos lácteos. Além do efeito térmico do AO, pode existir um efeito adicional não térmico (eletroporação) nas células microbianas, reduzindo a resistência térmica de microrganismos e possibilitando redução da intensidade térmica do processo. Assim, devido ao rápido e homogêneo aquecimento e a possível existência da eletroporação, o AO apresenta como uma tecnologia promissora de para o desenvolvimento de produtos lácteos. Neste sentido, o aquecimento ôhmico, sob diferentes condições de voltagem (45, 60 e 80 V à 60 Hz) e frequência (10, 100, 1000 Hz – 25 V), foi aplicado para pasteurizar bebida láctea de acerola em comparação ao processo convencional, sob mesmo perfil de temperatura (65°C/30 min), com o intuito de avaliar o efeito do AO sobre características físicas e químicas e reológicas da bebida láctea de acerola. Em geral os resultados foram afetados diretamente pelos parâmetros do tratamento. Baixas frequências (≤ 100 Hz) e baixas voltagens (< 45 V) resultaram em menores taxas de degradação do ácido ascórbico e da cor da bebida, contudo, em relação aos compostos bioativos, o AO à 1000 Hz resultou em maior manutenção dos compostos fenólicos e peptídeos bioativos. O AO pode promover aumento da viscosidade das bebidas, perfis lipídeos similares ao processamento convencional e menor formação de produtos da reação de Maillard no tratamento à 45 V – 60 Hz. No geral, o AO pode ser uma opção interessante para o processamento de bebidas lácteas de acerola | por |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Produtos lácteos | por |
dc.subject | tecnologia emergente | por |
dc.subject | aquecimento ôhmico | por |
dc.subject | dairy products | eng |
dc.subject | emerging technology | por |
dc.subject | ohmic heating | por |
dc.title | Efeito da pasteurização por aquecimento ôhmico nas características químicas, físicas e reológicas em bebida láctea de acerola | por |
dc.title.alternative | Effect of pasteurisation by ohmic heating on the chemical, physical and rheological characteristics of the acerola dairy beverage | eng |
dc.type | Tese | por |
dc.description.abstractOther | Ohmic heating (OH) is an emerging thermal technology that consists of the passage of electric current in the food itself, promoting a rapid and homogeneous heating, due to the conversion of electric energy into thermal. Due to the rapid heating rate, the ohmic process presents advantages over conventional processes, such as: the higher maintenance of thermosensitive compounds, bioactive compounds, reduction of color degradation and the Maillard reaction products (MRP’s), important factors in product processing dairy products. In addition to the thermal effect of OH, there may be an additional non-thermal effect (electroporation) in the microbial cells, reducing the thermal resistance of microorganisms and the thermal intensity of the process. Thus, due to the rapid and homogeneous heating and the possible existence of electroporation, the OH presents as a promising technology for the development of dairy products. In this sense, the ohmic heating under different voltage conditions (45, 60 and 80 V - 60 Hz) and frequency (10, 100, 1000 Hz - 25 V) was applied to pasteurize whey acerola-flavoured drink in comparison to the conventional process , under the same temperature profile (65 °C/30 min), in order to evaluate the OH effect on physical and chemical and rheological characteristics. In general the results were directly affected by the treatment parameters. Low frequencies (≤ 100 Hz) and low voltages (< 45 V) resulted in lower degradation of ascorbic acid and beverage color; however, in relation to bioactive compounds, OH at 1000 Hz resulted in greater maintenance of phenolic compounds and peptides bioactive. OH may promote increase in beverage viscosity, similar lipid profiles with conventional processing, and lower formation of Maillard reaction products (PRM's) in the treatment at 45 V - 60 Hz. In general, OH may be an interesting option for processing of whey acerola-flavoured drink | eng |
dc.contributor.advisor1 | Cruz, Adriano Gomes da | |
dc.contributor.advisor1ID | 04825865755 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2750728168418179 | por |
dc.contributor.referee1 | Cruz, Adriano Gomes da | |
dc.contributor.referee2 | Freitas, Mônica Queiroz de | |
dc.contributor.referee3 | Perdomo, Denise Rosane Azeredo | |
dc.contributor.referee4 | Araújo, Luciana Cardoso Nogueira | |
dc.contributor.referee5 | Esmerino, Erick Almeida | |
dc.creator.ID | 11661951784 | por |
dc.creator.Lattes | http://lattes.cnpq.br/0156315372588017 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | por |
dc.relation.references | Allali, H., Marchal, L., & Vorobiev, E. (2008). Blanching of Strawberries by Ohmic Heating: Effects on the Kinetics of Mass Transfer during Osmotic Dehydration. Food and Bioprocess Technology, 3, 406-414. Allali, H., Marchal, L., & Vorobiev, E. (2010). Blanching of strawberries by ohmic heating: effects on the kinetics of mass transfer during osmotic dehydration. Food and Bioprocess Technology, 3, 406-414. Anderson, J. A. (1986). The establishment of common language concerning adverse reactions to foods and food additives. J Allergy Clin Immunol, 78, 140-144. Ayadi, M., Bouvier, L., Chopard, F., Berthou, M., & Leuliet, J. (2003). Heat treatment improvement of dairy products via ohmic heating processes: Thermal and hyrodynamic effect on fouling. Ayadi, M., Leuliet, J., Chopard, F., Berthou, M., & Lebouche, M. (2004). Continuous ohmic heating unit under whey protein fouling. Innovative Food Science & Emerging Technologies, 5, 465-473. Ayadi, M. A., Leuliet, J. C., Chopard, F., Berthou, M., & Lebouché, M. (2005). Experimental study of hydrodynamics in a flat ohmic cell—impact on fouling by dairy products. Journal of Food Engineering, 70, 489-498. Bansal, B., & Chen, X. D. (2006a). A critical review of milk fouling in heat exchangers. Comprehensive reviews in food science and food safety, 5, 27-33. Bansal, B., & Chen, X. D. (2006b). Effect of temperature and power frequency on milk fouling in an ohmic heater. Food and bioproducts processing, 84, 286-291. Bylund, G. (2003). Dairy processing handbook: Tetra Pak Processing Systems AB. Cabrera-Chavez, F., & de la Barca, A. M. (2009). Bovine milk intolerance in celiac disease is related to IgA reactivity to alpha- and beta-caseins. Nutrition, 25, 715-716. Castro, A. J., Barbosa‐Cánovas, G. V., & Swanson, B. G. (1993). Microbial inactivation of foods by pulsed electric fields. Journal of Food Processing and Preservation, 17, 47-73. Castro, I., Teixeira, J. A., Salengke, S., Sastry, S. K., & Vicente, A. A. (2004). Ohmic heating of strawberry products: electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science & Emerging Technologies, 5, 27-36. Castro, W. F., Cruz, A., Bisinotto, M., Guerreiro, L., Faria, J., Bolini, H., Cunha, R., & Deliza, R. (2013). Development of probiotic dairy beverages: Rheological properties and application of mathematical models in sensory evaluation. Journal of dairy science, 96, 16-25. 22 Castro, W. F., Cruz, A. G., Rodrigues, D., Ghiselli, G., Oliveira, C. A. F., Faria, J. A. F., & Godoy, H. T. (2013). Short communication: Effects of different whey concentrations on physicochemical characteristics and viable counts of starter bacteria in dairy beverage supplemented with probiotics. Journal of dairy science, 96, 96-100. Chen, S., Li, L., Zhao, C., & Zheng, J. (2010). Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 51, 5283-5293. Cho, H. Y., Yousef, A. E., & Sastry, S. K. (1996). Growth kinetics of Lactobacillus acidophilus under ohmic heating. Biotechnology and Bioengineering, 49, 334-340. Claeys, W. L., Ludikhuyze, L. R., & Hendrickx, M. E. (2001). Formation kinetics of hydroxymethylfurfural, lactulose and furosine in milk heated under isothermal and non-isothermal conditions. Journal of dairy research, 68, 287-301. Crattelet, J., Ghnimi, S., Debreyne, P., Zaid, I., Boukabache, A., Esteve, D., Auret, L., & Fillaudeau, L. (2013). On-line local thermal pulse analysis sensor to monitor fouling and cleaning: Application to dairy product pasteurisation with an ohmic cell jet heater. Journal of Food Engineering, 119, 72-83. Darvishi, H., Khostaghaza, M. H., & Najafi, G. (2013). Ohmic heating of pomegranate juice: Electrical conductivity and pH change. Journal of the Saudi Society of Agricultural Sciences, 12, 101-108. Davis, C. M. (2009). Food Allergies: Clinical Manifestations, Diagnosis, and Management. Current Problems in Pediatric and Adolescent Health Care, 39, 236-254. De Alwis, A. d., & Fryer, P. (1990). The use of direct resistance heating in the food industry. Journal of Food Engineering, 11, 3-27. Duygu, B., & Ümit, G. (2015). Application of Ohmic Heating System in Meat Thawing. Procedia - Social and Behavioral Sciences, 195, 2822-2828. EAACI. (2014). European academy of allergy and clinical immunology. InFood al-lergy and anaphylaxis guidelines (p. 276). Zurich: A. Muraro and G. Roberts. Esmerino, E. A., Paixão, J. A., Cruz, A. G., Garitta, L., Hough, G., & Bolini, H. M. A. (2015). Survival analysis: A consumer-friendly method to estimate the optimum sucrose level in probiotic petit suisse. Journal of dairy science, 98, 7544-7551. Farrell, H. M., Jr., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicks, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F., & Swaisgood, H. E. (2004). Nomenclature of the proteins of cows' milk--sixth revision. J Dairy Sci, 87, 1641-1674. Fillaudeau, L., Winterton, P., Leuliet, J., Tissier, J., Maury, V., Semet, F., Debreyne, P., Berthou, M., & Chopard, F. (2006a). Heat treatment of whole milk by the direct joule effect—experimental and numerical approaches to fouling mechanisms. Journal of dairy science, 89, 4475-4489. 23 Fillaudeau, L., Winterton, P., Leuliet, J. C., Tissier, J. P., Maury, V., Semet, F., Debreyne, P., Berthou, M., & Chopard, F. (2006b). Heat Treatment of Whole Milk by the Direct Joule Effect—Experimental and Numerical Approaches to Fouling Mechanisms. Journal of dairy science, 89, 4475-4489. Flint, S. H., Brooks, J. D., & Bremer, P. J. (2000). Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci. Journal of Food Engineering, 43, 235-242. Fryer, P., De Alwis, A., Koury, E., Stapley, A., & Zhang, L. (1993). Ohmic processing of solid-liquid mixtures: heat generation and convection effects. Journal of Food Engineering, 18, 101-125. Gaze, L. V., Costa, M. P., Monteiro, M. L. G., Lavorato, J. A. A., Conte Júnior, C. A., Raices, R. S. L., Cruz, A. G., & Freitas, M. Q. (2015). Dulce de Leche, a typical product of Latin America: Characterisation by physicochemical, optical and instrumental methods. Food Chemistry, 169, 471-477. González-Córdova, A. F., & Vallejo-Cordoba, B. (2003). Detection and Prediction of Hydrolytic Rancidity in Milk by Multiple Regression Analysis of Short-Chain Free Fatty Acids Determined by Solid Phase Microextraction Gas Chromatography and Quantitative Flavor Intensity Assessment. Journal of agricultural and food chemistry, 51, 7127-7131. Goullieux, A., & Pain, J.-P. (2005). Ohmic Heating,. In Emerging Technologies for Food Processing (pp. 469-505). London: Academic Press. Guida, V., Ferrari, G., Pataro, G., Chambery, A., Di Maro, A., & Parente, A. (2013). The effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. LWT - Food Science and Technology, 53, 569-579. Huang, H.-W., Hsu, C.-P., Yang, B. B., & Wang, C.-Y. (2014). Potential Utility of High-Pressure Processing to Address the Risk of Food Allergen Concerns. Comprehensive Reviews in Food Science and Food Safety, 13, 78-90. Icier, F., & Ilicali, C. (2005). Temperature dependent electrical conductivities of fruit purees during ohmic heating. Food Research International, 38, 1135-1142. Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K.-H., Knorr, D., Vogel, R. F., Bandick, N., Kulling, S., Heinz, V., & Steinberg, P. (2016). Opinion on the use of ohmic heating for the treatment of foods. Trends in Food Science & Technology, 55, 84-97. Kaur, N., & Singh, A. (2015). Ohmic Heating: Concept and Applications-A Review. Critical reviews in food science and nutrition, 00-00. Khalaf, W. G., & Sastry, S. K. (1996). Effect of fluid viscosity on the ohmic heating rate of solid-liquid mixtures. Journal of Food Engineering, 27, 145-158. Kim, S.-S., & Kang, D.-H. (2015a). Comparative Effects of Ohmic and Conventional Heating for Inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and 24 Listeria monocytogenes in Skim Milk and Cream. Journal of Food Protection, 78, 1208-1214. Kim, S.-S., & Kang, D.-H. (2015b). Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogenes. Journal of applied microbiology, 119, 475-486. Knirsch, M. C., Alves dos Santos, C., Martins de Oliveira Soares Vicente, A. A., & Vessoni Penna, T. C. (2010). Ohmic heating – a review. Trends in Food Science & Technology, 21, 436-441. Lebovka, N. I., Praporscic, I., Ghnimi, S., & Vorobiev, E. (2005). Does Electroporation Occur During the Ohmic Heating of Food? Journal of Food Science, 70, E308-E311. Leizerson, S., & Shimoni, E. (2005). Stability and sensory shelf life of orange juice pasteurized by continuous ohmic heating. Journal of agricultural and food chemistry, 53, 4012-4018. Loghavi, L., Sastry, S., & Yousef, A. (2007). Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnology and Bioengineering, 98, 872-881. Loghavi, L., Sastry, S. K., & Yousef, A. E. (2008). Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus. Biotechnology progress, 24, 148-153. Loghavi, L., Sastry, S. K., & Yousef, A. E. (2009). Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnology progress, 25, 85-94. Mahdi, Y., Mouheb, A., & Oufer, L. (2009). A dynamic model for milk fouling in a plate heat exchanger. Applied Mathematical Modelling, 33, 648-662. Mercali, G. D., Schwartz, S., Marczak, L. D. F., Tessaro, I. C., & Sastry, S. (2014). Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: Effect of electric field frequency. Journal of Food Engineering, 123, 1-7. Meyer, B., Al‐Diab, D., Vollmer, G., & Pischetsrieder, M. (2011). Mapping the glycoxidation product Nε‐carboxymethyllysine in the milk proteome. Proteomics, 11, 420-428. Miciński, J., Kowalski, I. M., Zwierzchowski, G., Szarek, J., Pierożyński, B., & Zabłocka, E. (2013). Characteristics of cow's milk proteins including allergenic properties and methods for its reduction. Polish Annals of Medicine, 20, 69-76. Morais, E. C., Morais, A. R., Cruz, A. G., & Bolini, H. M. A. (2014). Development of chocolate dairy dessert with addition of prebiotics and replacement of sucrose with different high-intensity sweeteners. Journal of dairy science, 97, 2600-2609. 25 Murinda, S., Nguyen, L., Nam, H., Almeida, R., Headrick, S., & Oliver, S. (2004). Detection of sorbitol-negative and sorbitol-positive Shiga toxin-producing Escherichia coli, Listeria monocytogenes, Campylobacter jejuni, and Salmonella spp. in dairy farm environmental samples. Foodborne Pathogens & Disease, 1, 97-104. Nowak-Wegrzyn, A., & Fiocchi, A. (2009). Rare, medium, or well done? The effect of heating and food matrix on food protein allergenicity. Curr Opin Allergy Clin Immunol, 9, 234-237. Oldfield, D. J., Singh, H., & Taylor, M. W. (2005). Kinetics of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration. Journal of dairy research, 72, 369-378. Palaniappan, S., & Sastry, S. K. (1991). Electrical conductivities of selected solid foods during ohmic heating1. Journal of Food Process Engineering, 14, 221-236. Park, I.-K., & Kang, D.-H. (2013). Effect of electropermeabilization by ohmic heating for inactivation of Escherichia coli O157: H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes in buffered peptone water and apple juice. Applied and environmental microbiology, 79, 7122-7129. Park, Y. W., & Nam, M. S. (2015). Bioactive Peptides in Milk and Dairy Products: A Review. Korean Journal for Food Science of Animal Resources, 35, 831-840. Pellegrino, L., De Noni, I., & Resmini, P. (1995). Coupling of lactulose and furosine indices for quality evaluation of sterilized milk. International Dairy Journal, 5, 647-659. Pereira, R., Martins, R. C., & Vicente, A. (2008). Goat milk free fatty acid characterization during conventional and ohmic heating pasteurization. Journal of dairy science, 91, 2925-2937. Pereira, R., Rodrigues, R. M., Ramos, Ó. L., Malcata, F. X., Teixeira, J. A., & Vicente, A. A. (2015). Production of Whey Protein-Based Aggregates Under Ohmic Heating. Food and Bioprocess Technology, 1-12. Pereira, R. N., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., & Vicente, A. A. (2010). Effects of Electric Fields on Protein Unfolding and Aggregation: Influence on Edible Films Formation. Biomacromolecules, 11, 2912-2918. Roux, S., Courel, M., Ait-Ameur, L., Birlouez-Aragon, I., & Pain, J.-P. (2009). Kinetics of Maillard reactions in model infant formula during UHT treatment using a static batch ohmic heater. Dairy Science and Technology, 89, 349-362. Roux, S., Courel, M., Birlouez-Aragon, I., Municino, F., Massa, M., & Pain, J.-P. (2016). Comparative thermal impact of two UHT technologies, continuous ohmic heating and direct steam injection, on the nutritional properties of liquid infant formula. Journal of Food Engineering, 179, 36-43. 26 Ruan, R., Ye, X., Chen, P., Doona, C. J., & Taub, I. (2001). 13 - Ohmic heating A2 - Richardson, Philip. In Thermal Technologies in Food Processing (pp. 241-265): Woodhead Publishing. Ryang, J., Kim, N., Lee, B., Kim, C., Lee, S., Hwang, I., & Rhee, M. (2016). Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow‐type electrodes. Journal of applied microbiology, 120, 175-184. Sakr, M., & Liu, S. (2014). A comprehensive review on applications of ohmic heating (OH). Renewable and Sustainable Energy Reviews, 39, 262-269. Sarang, S., Sastry, S. K., & Knipe, L. (2008). Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 87, 351-356. Sastry, S., Heskitt, B., Sarang, S., Somavat, R., & Ayotte, K. (2014). Why Ohmic Heating? Advantages, Applications, Technology, and Limitations. In Ohmic Heating in Food Processing (pp. 7-14): CRC Press. Sastry, S. K. (1992). A Model For Heating Of Liquid-Particle Mixtures In A Continuous Flow Ohmic Heater1. Journal of Food Process Engineering, 15, 263-278. Sastry, S. K., & Barach, J. T. (2000). Ohmic and inductive heating. Journal of Food Science, 65, 42-46. Sastry, S. K., & Palaniappan, S. (1992). Influence of particle orientation on the effective electrical resistance and ohmic heating rate of a liquid-particle mixture1. Journal of Food Process Engineering, 15, 213-227. Schamberger, G. P., & Labuza, T. P. (2006). Evaluation of Front‐face Fluorescence for Assessing Thermal Processing of Milk. Journal of Food Science, 71, C69-C74. Shandilya, U. K., Kapila, R., Haq, R. M., Kapila, S., & Kansal, V. K. (2013). Effect of thermal processing of cow and buffalo milk on the allergenic response to caseins and whey proteins in mice. Journal of the Science of Food and Agriculture, 93, 2287-2292. Shivmurti, S., Harshit, P., Rinkita, P., & Smit, P. (2014). Comparison of chemical properties of milk when conventionally and ohmically heated. International Food Research Journal, 21. Stancl, J., & Zitny, R. (2010). Milk fouling at direct ohmic heating. Journal of Food Engineering, 99, 437-444. Sudhir, K. S. (2004). Advances in Ohmic Heating and Moderate Electric Field (MEF) Processing. In Novel Food Processing Technologies (pp. 491-499): CRC Press. Sun, H., Kawamura, S., Himoto, J.-i., Itoh, K., Wada, T., & Kimura, T. (2008). Effects of ohmic heating on microbial counts and denaturation of proteins in milk. Food science and technology research, 14, 117-123. 27 Sun, H., Masuda, F., Kawamura, S., Himoto, J.-I., Asano, K., & Kimura, T. (2011). Effect Of Electric Current Of Ohmic Heating On Nonthermal Injury To Streptococcus Thermophilus In Milk. Journal of Food Process Engineering, 34, 878-892. Tucker, G. (2014). Commercially Successful Applications. In Ohmic Heating in Food Processing (pp. 331-338): CRC Press. USA-FDA. (2000). In Kinetics of microbial inactivation for alternative food processing technologieseOhmic and inductive heating. D. o. H. a. h. Services Van Asselt, A., Vissers, M., Smit, F., & De Jong, P. (2005). In-line control of fouling. In Proceedings of Heat Exchanger Fouling and Cleaning-Challenges and Opportunities, Engineering Conferences International, Kloster Irsee, Germany. Varghese, K. S., Pandey, M. C., Radhakrishna, K., & Bawa, A. S. (2012). Technology, applications and modelling of ohmic heating: a review. Journal of Food Science and Technology, 51, 2304-2317. Varghese, K. S., Pandey, M. C., Radhakrishna, K., & Bawa, A. S. (2014). Technology, applications and modelling of ohmic heating: a review. Journal of Food Science and Technology, 51, 2304-2317. Visser, J., & Jeurnink, T. J. (1997). Fouling of heat exchangers in the dairy industry. Experimental Thermal and Fluid Science, 14, 407-424. YOON, S., YUNG, C., LEE, K., & LEE, C. H. (2002). Leakage of Cellular Materials from Saccharomyces cerevisiae by Ohmic. J. Microbiol. Biotechnol, 12, 183-188. Zareifard, M., Ramaswamy, H., Marcotte, M., & Karimi, Y. (2014a). The Electrical Conductivity of Foods. In Ohmic Heating in Food Processing (pp. 37-52): CRC Press. Zareifard, M., Ramaswamy, H., Marcotte, M., & Karimi, Y. (2014b). Factors Influencing Electrical Conductivity. In Ohmic Heating in Food Processing (pp. 53-66): CRC Press. Zell, M., Lyng, J. G., Morgan, D. J., & Cronin, D. A. (2009). Development of rapid response thermocouple probes for use in a batch ohmic heating system. Journal of Food Engineering, 93, 344-347. Zhang, H. (2009). Electrical properties of foods. In Food Engineering (Vol. 1, pp. 115-125): EOLSS Publications. Akhavan, T., Luhovyy, B. L., Panahi, S., Kubant, R., Brown, P. H., & Anderson, G. H. (2014). Mechanism of action of pre-meal consumption of whey protein on glycemic control in young adults. Journal Nutritional Biochemistry, 25, 36-43. AOAC (2005) . Official methods of analysis, eighteenth ed., AOAC International, Gaithersburg, MD, USA. Assiry, A., Sastry, S. K., & Samaranayake, C. (2003). Degradation kinetics of ascorbic acid during OH with stainless steel electrodes. Journal of Applied Electrochemistry, 33(2), 187-196. Assiry, A. M., Sastry, S. K., & Samaranayake, C. P. (2006). Influence of temperature, electrical conductivity, power and pH on ascorbic acid degradation kinetics during OH using stainless steel electrodes. Bioelectrochemistry, 68(1), 7-13. Bharate, S. S., & Bharate, S. B. (2014). Non-enzymatic browning in citrus juice: chemical markers, their detection and ways to improve product quality. Journal of Food Science and Technology, 51(10), 2271-2288. Bigelow, W. (1921). The logarithmic nature of thermal death time curves. The Journal of Infectious Diseases, 528-536. Brasil. 2005. Instrução Normativa no. 16. de 23 de agosto de 2005. Aprova o Regulamento Técnico de Identidade e Qualidade de Bebida Láctea. Diário Oficial da República Federativa do Brasil. Brasília. Brazil. Caetano, P. K., Daiuto, É. R., & Vieites, R. L. (2012). Característica físico-química e sensorial de geleia elaborada com polpa e suco de acerola. Brazilian Journal of Food Technology, 15, 191-197. Capitani, C. D., Pacheco, M. T. B., Gumerato, H. F., Vitali, A., & Schmidt, F. L. (2005). Recuperação de proteínas do soro de leite por meio de coacervação com polissacarídeo. Pesquisa Agropecuária Brasileira, 40, 1123-1128. Cappato, L.P., Ferreira, M.V.S., Guimaraes, J.T., Portela, J.B., Costa, A.L.R., Freitas, M.Q., Cunha, R.L., Oliveira, C.A.F., Mercali, G.D., Marzack, L.D.F., & Cruz, A.G., (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science & Technology, 62, 104-112. Castro, I., Teixeira, J. A., Salengke, S., Sastry, S. K., & Vicente, A. A. (2004). OH of strawberry products: electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science & Emerging Technologies, 5(1), 27-36. Castro, W. F., Cruz, A. G., Bisinotto, M. S., Guerreiro, L. M., Faria, J. A., Bolini, H. M., Cunha, R. L., & Deliza, R. (2013). Development of probiotic dairy beverages: rheological 42 properties and application of mathematical models in sensory evaluation. J Dairy Sci, 96(1), 16-25. Chakrabortya, I., & Athmaselvi, K. (2014). Changes in physicochemical properties of guava juice during OH. J Ready Eat Food, 1(4), 152-157. De Freitas, C. A. S., Maia, G. A., da Costa, J. M. C., de Figueiredo, R. W., & de Sousa, P. H. M. (2014). Acerola: produção, composição, aspectos nutricionais e produtos. Current Agricultural Science and Technology, 12(4). Freudenberg, A., Petzke, K. J., & Klaus, S. (2013). Dietary L-leucine and L-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity. Amino Acids, 44(2), 519-528. Fustier, P., St-Germain, F., Lamarche, F., & Mondor, M. (2011). Non-enzymatic browning and ascorbic acid degradation of orange juice subjected to electroreduction and electro-oxidation treatments. Innovative Food Science & Emerging Technologies, 12(4), 491-498. Icier, F., & Tavman, S. (2006). OH behaviour and rheological properties of ice cream mixes. International Journal of Food Properties, 9(4), 679-689. Jiang, L., Zheng, H., & Lu, H. (2014). Use of Linear and Weibull Functions to Model Ascorbic Acid Degradation in Chinese Winter Jujube during Postharvest Storage in Light and Dark Conditions. Journal of Food Processing and Preservation, 38(3), 856-863. Kaur, N., & Singh, A. K. (2016). OH: Concept and Applications-A Review. Crit Rev Food Sci Nutr, 56(14), 2338-2351. Kerasioti, E., Stagos, D., Jamurtas, A., Kiskini, A., Koutedakis, Y., Goutzourelas, N., Pournaras, S., Tsatsakis, A. M., & Kouretas, D. (2013). Anti-inflammatory effects of a special carbohydrate-whey protein cake after exhaustive cycling in humans. Food and chemical toxicology, 61, 42-46. Knirsch, M. C., Alves dos Santos, C., Martins de Oliveira Soares Vicente, A. A., & Vessoni Penna, T. C. (2010). OH – a review. Trends in Food Science & Technology, 21(9), 436-441. Lima, M., Heskitt, B. F., Burianek, L. L., Nokes, S. E., & Sastry, S. K. (1999). Ascorbic Acid Degradation Kinetics During Conventional And Ohmic Hieating1. Journal of Food Processing and Preservation, 23(5), 421-443. Lima, V. L. A. G., Mélo, E. A., Maciel, M. I. S., Prazeres, F. G., Musser, R. S., & Lima, D. E. S. (2005). Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chemistry, 90(4), 565-568. Mercali, G. D., Jaeschke, D. P., Tessaro, I. C., & Marczak, L. D. F. (2012). Study of vitamin C degradation in acerola pulp during ohmic and conventional heat treatment. LWT - Food Science and Technology, 47(1), 91-95. 43 Mercali, G. D., Jaeschke, D. P., Tessaro, I. C., & Marczak, L. D. F. (2013). Degradation kinetics of anthocyanins in acerola pulp: Comparison between ohmic and conventional heat treatment. Food Chemistry, 136(2), 853-857. Mercali, G. D., Schwartz, S., Marczak, L. D., Tessaro, I. C., & Sastry, S. (2014). Effect of the electric field frequency on ascorbic acid degradation during thermal treatment by OH. J Agric Food Chem, 62(25), 5865-5870. Mercali, G. D., Schwartz, S., Marczak, L. D. F., Tessaro, I. C., & Sastry, S. (2014). Ascorbic acid degradation and color changes in acerola pulp during OH: Effect of electric field frequency. Journal of Food Engineering, 123, 1-7. Patel, S. (2015). Functional food relevance of whey protein: A review of recent findings and scopes ahead. Journal of Functional Foods, 19, Part A, 308-319. Penna, A. L. B., Sivieri, K., & Oliveira, M. N. (2001). Relation between quality and rheological properties of lactic beverages. Journal of Food Engineering, 49(1), 7-13. Rufián-Henares, J. A., & Pastoriza, S. (2016). Browning: Non-enzymatic browning. In Encyclopedia of Food and Health, (pp. 515-521). Oxford: Academic Press. Sant'Anna, V., Gurak, P. D., Ferreira Marczak, L. D., & Tessaro, I. C. (2013). Tracking bioactive compounds with colour changes in foods – A review. Dyes and Pigments, 98(3), 601-608. Sastry, S., Heskitt, B., Sarang, S., Somavat, R., & Ayotte, K. (2014). Why OH? Advantages, Applications, Technology, and Limitations. In OH in Food Processing, (pp. 7-14): CRC Press. Sindayikengera, S., & Xia, W.-s. (2006). Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. Journal of Zhejiang University. Science. B, 7(2), 90-98. Singh, A., Rattan, N., Narayanapurapu, P., & Ramaswamy, H. (2014). Applications of OH to Milk and Dairy Products. In OH in Food Processing, (pp. 309-320): CRC Press. Svanborg, S., Johansen, A.-G., Abrahamsen, R. K., & Skeie, S. B. (2015). The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk. Journal of Dairy Science, 98(9), 5829-5840. Zareifard, M. R., Ramaswamy, H. S., Marcotte, M., & Karimi, Y. (2014). Factors influencing electrical conductivity. OH in Food Processing, 53. Zheng, H., & Lu, H. (2011). Use of kinetic, Weibull and PLSR models to predict the retention of ascorbic acid, total phenols and antioxidant activity during storage of pasteurized pineapple juice. LWT - Food Science and Technology, 44(5), 1273-1281 Arihara, K., Zhou, L., & Ohata, M. (2017). Bioactive properties of maillard reaction products generated from food protein-derived peptides. Advanced Food Nutrition Research, 81, 161–185 Bastos, D. M., Monaro, É., Siguemoto, É., & Séfora, M. (2012). Maillard reaction products in processed food: Pros and cons. Food industrial processes-methods and equipment. InTech. Batista, A. L. D., Silva, R., Cappato, L. P., Ferreira, M. V. S., Nascimento, K. O., Schmiele, M., et al. (2017). Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. Journal of Functional Foods, 38, 242–250. Bosi, M. G., Bernabé, B. M., Della Lucia, S. M., & Roberto, C. D. (2013). Bebida com adição de soro de leite e fibra alimentar prebiótica. Pesquisa Agropecuária Brasileira, 48, 339–341. Boulanger, R., & Crouzet, J. (2001). Identification of the aroma components of acerola (Malphigia glabra L.): Free and bound flavour compounds. Food Chemistry, 74, 209–216. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28, 25–30. Cadwallader, K. R., & Singh, T. K. (2009). Flavours and off-flavours in milk and dairy products. In P. McSweeney, & P. F. Fox (Eds.). Advanced dairy chemistry: Volume 3: Lactose, water, salts and minor constituents (pp. 631–690). New York, NY: Springer New York. Cappato, L. P., Ferreira, M. V. S., Guimaraes, J. T., Portela, J. B., Costa, A. L. R., Freitas, M. Q., et al. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science & Technology, 62, 104–112. Cappato, L. P., Ferreira, M. V. S., Pires, R. P., Cavalcanti, R. N., Bissagio, R. C., Freitas, M. Q., et al. (2018). Whey acerola-flavoured drink submitted to Ohmic Heating: Bioactive compounds, thermal behavior, water mobility by TD-NMR, fatty acid profile and volatile compounds. Food Chemistry, 245, 22–28. Castro, I., Macedo, B., Teixeira, J. A., & Vicente, A. A. (2004). The effect of electric field on important food-processing enzymes: Comparison of inactivation kinetics under conventional and ohmic heating. Journal of Food Science, 69, C696–C701. Condurso, C., Verzera, A., Romeo, V., Ziino, M., & Conte, F. (2008). Solid-phase microextraction and gas chromatography mass spectrometry analysis of dairy product volatiles for the determination of shelf-life. International Dairy Journal, 18, 819–825. Costa, N. R., Cappato, L. P., Ferreira, M. V. S., Pires, R. P. S., Moraes, J., Esmerino, E. A., et al. (2018). Ohmic Heating: A potential technology for sweet whey processing. Food Research International, 106, 771–779. 63 Garaffo, M. A., Vassallo-Agius, R., Nengas, Y., Lembo, E., Rando, R., Maisano, R., Dugo, G., & Giuffrida, D. (2011). Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus L.) and their salted product“ Bottarga”. Food and Nutrition Sciences, 2, 736. Hijova, E., & Chmelarova, A. (2007). Short chain fatty acids and colonic health. Bratislavské lekárske listy, 108, 354. Herrera, M. L., & Hartel, R. W. (2000). Effect of processing conditions on crystallization kinetics of a milk fat model system. Journal of the American Oil Chemists' Society, 77, 1177–1188. Huda-Faujan, N., Abdulamir, A. S., Fatimah, A. B., Anas, O. M., Shuhaimi, M., Yazid, A. M., et al. (2010). The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. The Open Biochemistry Journal, 4, 53–58. Içier, F., & Baysal, T. (2004). Dielectrical properties of food materials: Factors affecting and industrial uses. Critical Reviews in Food Science and Nutrition. 44, 465–471. Jaeger, H., Janositz, A., & Knorr, D. (2010). The Maillard reaction and its control during food processing. The potential of emerging technologies. Pathology Biology, 58, 207–213. Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K.-H., Knorr, D., et al. (2016). Opinion on the use of ohmic heating for the treatment of foods. Trends in Food Science & Technology, 55, 84–97. Janiaski, D. R., Pimentel, T. C., Cruz, A. G., & Prudencio, S. H. (2016). Strawberry-flavored yogurts and whey beverages: What is the sensory profile of the ideal product? Journal Dairy Science, 99, 5273–5283. Kavaz Yuksel, A. (2015). the effects of blackthorn (Prunus spinosa L.) addition on certain quality characteristics of ice cream. Journal of Food Quality, 38, 413–421. Loypimai, P., Moonggarm, A., & Chottanom, P. (2009). Effects of ohmic heating on lipase activity, bioactive compounds and antioxidant activity of rice bran. Australian Journal Basic Applied Science, 3, 3642–3652. Ma, W., Wu, J. H., Wang, Q., Lemaitre, R. N., Mukamal, K. J., Djousse, L., et al. (2015). Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: The Cardiovascular Health Study. American Journal of Clinical Nutrition, 101, 153–163. Mercali, G. D., Schwartz, S., Marczak, L. D., Tessaro, I. C., & Sastry, S. (2014). Effect of the electric field frequency on ascorbic acid degradation during thermal treatment by ohmic heating. Journal of Agricultural and Food Chemistry, 62, 5865–5870. 64 Nagao, K., & Yanagita, T. (2010). Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacological Research, 61, 208–212. Pereira, R. N., Martins, R. C., & Vicente, A. A. (2008). Goat milk free fatty acid characterization during conventional and ohmic heating pasteurization. Journal of Dairy Science, 91, 2925–2937. Pereira, R. N., Rodrigues, R. M., Ramos, Ó. L., Malcata, F. X., Teixeira, J. A., & Vicente, A. A. (2016). Production of whey protein-based aggregates under ohmic heating. Food and Bioprocess Technology, 9, 576–587. Pereira, R. N., Souza, B. W., Cerqueira, M. A., Teixeira, J. A., & Vicente, A. A. (2010). Effects of electric fields on protein unfolding and aggregation: Influence on edible films formation. Biomacromolecules, 11, 2912–2918. Pereira, R. N., Teixeira, J. A., Vicente, A. A., Cappato, L. P., da Silva Ferreira, M. V., da Silva Rocha, R., et al. (2018). Ohmic heating for the dairy industry: A potential technology to develop probiotic dairy foods in association with modifications of whey protein structure. Current Opinion in Food Science, 22, 95–101. Piepoli, M. F., Hoes, A. W., Agewall, S., Albus, C., Brotons, C., Catapano, A. L., et al. (2016). 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). European Heart Journal, 37, 2315–2381. Pino, J. A., & Marbot, R. (2001). Volatile flavor constituents of acerola (Malpighia emarginata DC.) fruit. Journal of Agricultural Food Chemistry, 49, 5880–5882. Ramchandran, L., & Shah, N. P. (2010). Characterization of functional, biochemical and textural properties of synbiotic low-fat yogurts during refrigerated storage. LWT-Food Science and Technology, 43, 819–827. Rodrigues, R. M., Martins, A. J., Ramos, O. L., Malcata, F. X., Teixeira, J. A., Vicente, A. A., et al. (2015). Influence of moderate electric fields on gelation of whey protein isolate. Food Hydrocolloids, 43, 329–339. Sales-Campos, H., Reis de Souza, P., Crema Peghini, B., Santana da Silva, J., & Ribeiro Cardoso, C. (2013). An overview of the modulatory effects of oleic acid in health and disease. Mini Reviews in Medicinal Chemistry, 13, 201–210. Samaranayake, C. P., & Sastry, S. K. (2014). Electrochemical reactions during ohmicheating and moderate electric field processing. Ohmic heating in food processing (pp. 119). CRC Press. 65 Samaranayake, C. P., & Sastry, S. K. (2016a). Effect of moderate electric fields on inactivation kinetics of pectin methylesterase in tomatoes: The roles of electric field strength and temperature. Journal of Food Engineering, 186, 17–26. Samaranayake, C. P., & Sastry, S. K. (2016b). Effects of controlled-frequency moderate electric fields on pectin methylesterase and polygalacturonase activities in tomato homogenate. Food Chemistry, 199, 265–272. Samaranayake, C. P., & Sastry, S. K. (2018). In-situ activity of α-amylase in the presence of controlled-frequency moderate electric fields. LWT-Food Science and Technology, 90, 448–454. Sastry, S., Heskitt, B., Sarang, S., Somavat, R., & Ayotte, K. (2014). Why Ohmic Heating? Advantages, applications, technology, and limitations. Ohmic heating in food processing (pp. 7–14). CRC Press. Schafer, H. J. (2001). Chapter 4: Comparison between electrochemical reactions and chemical oxidations and reductions. Organic Electrochemistry (pp. 207–221). (fourth ed.). New York: Marcel Dekker Inc. Schwingshackl, L., Strasser, B., & Hoffmann, G. (2011). Effects of monounsaturated fatty acids on cardiovascular risk factors: A systematic review and meta-analysis. Annual Nutrition and Metabolism, 59, 176–186. Swain, T., & Hillis, W. (1959). The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10, 63–68. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. Van Den Dool, H., & Dec. Kratz, P. (1963). A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. Journal of Chromatography A, 11, 463–471. Vendramini, A. L., & Trugo, L. C. (2000). Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chemistry, 71, 195–198. Vianna, G. A., Silva, E. K., Cavalcanti, R. N., Martins, C. P. C., Andrade, L. G. Z. S., Moraes, J., Cruz, A. G. (2018). Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chemistry, 239, 697–703. Yadav, J. S. S., Yan, S., Pilli, S., Kumar, L., Tyagi, R. D., & Surampalli, R. Y. (2015). Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances, 33, 756–774. | por |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/65873/2018%20-%20Leandro%20Pereira%20Cappato.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/4831 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-07-06T13:46:08Z No. of bitstreams: 1 2018 - Leandro Pereira Cappato.pdf: 1818500 bytes, checksum: 6eb7d07dca85da41364d485f1e5ecbb3 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2021-07-06T13:46:08Z (GMT). No. of bitstreams: 1 2018 - Leandro Pereira Cappato.pdf: 1818500 bytes, checksum: 6eb7d07dca85da41364d485f1e5ecbb3 (MD5) Previous issue date: 2018-11-05 | eng |
Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018 - Leandro Pereira Cappato.pdf | Leandro Pereira Cappato | 1.78 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.