Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15679
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Azevedo, Láyla Advincula Candido de | |
dc.date.accessioned | 2023-11-20T01:35:47Z | - |
dc.date.available | 2023-11-20T01:35:47Z | - |
dc.date.issued | 2022-04-28 | |
dc.identifier.citation | AZEVEDO, Láyla Advincula Candido de. Estudo da metodologia de data analytics aplicada em pesquisas sobre o fenômeno da evasão no ensino superior utilizando a estrutura da design science research. 2022. 97 f. Dissertação (Mestrado em Humanidades Digitais) - Instituto Interdisciplinar de Nova Iguaçu, Universidade Federal Rural do Rio de Janeiro, Nova Iguaçu, 2022. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/15679 | - |
dc.description.abstract | School dropout is a complex phenomenon that affects the socioeconomic performance of a country and for many decades has been the object of study by researchers from different areas around the world. Having an interdisciplinary character, it is observed that studies on the phenomenon of dropout have made use of quantitative analytical models, resorting in particular to the use of data analysis methodologies. Therefore, this dissertation, inserted in the field of Digital Humanities, aims to research Data Analytics approaches to support Higher Education Policies in undergraduate courses (bachelors and licentiates) in the face-to-face teaching modality, specifically aimed at the control and fight against school dropout. The research conducted addressed two fronts: (a) systematic literature review – where, as the name implies, search criteria are used systematically to collect, identify and select relevant scientific works from the literature relevant to the topic; and (b) creation of a methodology based on Design Science Research to develop the analysis of works in the literature. The proposed methodology is composed of four components: Framework, Theory, Modeling and Experimental Protocol. The protocol developed to guide the Systematic Review was satisfactory, returning 42 articles for analysis. In the Framing analysis, it was found that the most used Data Analytics task is the predictive one, and among these, there was a predominance in the use of individual techniques to the detriment of the ensembles methods, with the Decision Tree being one of the most used. Less than 50% of studies define the term dropout and 70% of them treat this phenomenon as a classification task. Regarding theorization, academic information is the most considered for the construction of models. Much of the work starts from the theory that academic performance is an important predictor of dropout. As for Modeling, it was evaluated that most studies use only one set of data, whose origin can be from information from the academic system (internal sources); institutional surveys, which comprise national, regional and academic databases or questionnaires used by the researchers themselves to acquire more specific information (external sources). In addition, a combination of information (demographic background, previous school performance/information and academic information/performance) was used to build the models. In the analysis of the Experimental Protocol, it was observed that the most used model adjustment method was cross-validation and the most used metric of interest was Accuracy, present in 26 studies. These results and analyzes led to the construction of a mental map, organizing the main proposals in the literature. The methodology proposed based on the DSR was fundamental for the analysis of the works, allowing the identification of Data Analytics approaches present in the investigated works in an orthogonal way to the components, contributing to future research to benefit from this methodology, especially regarding the creation of computational artifacts. The study also showed that it is possible to use the Data Analytics approach to deal with student dropout, eventually helping to mitigate the effects of this phenomenon in Higher Education. | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Humanidades Digitais | por |
dc.subject | Data Analytics | por |
dc.subject | Design Science Research | por |
dc.subject | Evasão | por |
dc.subject | Ensino Superior | por |
dc.subject | Digital Humanities | eng |
dc.subject | Data Analytics | eng |
dc.subject | Design Science Research | eng |
dc.subject | Droupout | eng |
dc.subject | Higher Education | eng |
dc.title | Estudo da metodologia de data analytics aplicada em pesquisas sobre o fenômeno da evasão no ensino superior utilizando a estrutura da design science research | por |
dc.title.alternative | Study of the data analytics methodology applied in research on the phenomenon of dropout in higher education using the structure design science research | eng |
dc.type | Dissertação | por |
dc.contributor.advisor1 | Lyra, Adria Ramos de | |
dc.contributor.advisor1ID | 076.984.207-01 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-6980-5841 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5312565962811745 | por |
dc.contributor.advisor-co1 | Mello, Carlos Eduardo Ribeiro de | |
dc.contributor.advisor-co1ID | 105.153.927-74 | por |
dc.contributor.advisor-co1ID | https://orcid.org/0000-0001-6980-5841 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/5312565962811745 | por |
dc.contributor.referee1 | Lyra, Adria Ramos de | |
dc.contributor.referee1ID | 076.984.207-01 | por |
dc.contributor.referee1ID | https://orcid.org/0000-0001-6980-5841 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/5312565962811745 | por |
dc.contributor.referee2 | Alvim, Leandro Guimaraes Marques | |
dc.contributor.referee2ID | https://orcid.org/0000-0002-1611-7559 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/3810771931191838 | por |
dc.contributor.referee3 | Moraes, Laura de Oliveira Fernandes | |
dc.contributor.referee3ID | 124.359.357-14 | por |
dc.contributor.referee3ID | https://orcid.org/0000-0003-0965-6703 | por |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/3138892444406479 | por |
dc.creator.ID | 084.805.687-63 | por |
dc.creator.ID | https://orcid.org/0000-0002-0706-7190 | por |
dc.creator.Lattes | http://lattes.cnpq.br/1746158311429958 | por |
dc.description.resumo | A evasão escolar é um fenômeno complexo que afeta o desempenho socioeconômico de um país e durante muitas décadas tem sido objeto de estudo de pesquisadores de diversas áreas por todo o mundo. Tendo um caráter interdisciplinar observa-se que estudos sobre o fenômeno da evasão têm se valido de modelos analíticos quantitativos, recorrendo em especial, ao uso de metodologias de análise de dados. Sendo assim, essa dissertação, inserida no campo das Humanidades Digitais, tem por objetivo pesquisar abordagens de Data Analytics para o apoio às Políticas de Ensino Superior em cursos de graduação (bacharelados e licenciaturas) na modalidade de ensino presencial, voltadas, especificamente, para o controle e combate à evasão escolar. A pesquisa conduzida abordou duas frentes: (a) revisão sistemática da literatura – onde, como o próprio nome diz, de forma sistemática, utiliza-se critérios de busca para coletar, identificar e selecionar trabalhos científicos relevantes da literatura pertinentes ao tema; e (b) criação de uma metodologia baseada na Design Science Research para desenvolver a análise dos trabalhos da literatura. A metodologia proposta é composta por quatro componentes: Enquadramento, Teoria, Modelagem e Protocolo Experimental. O protocolo elaborado para orientar a Revisão Sistemática foi satisfatório retornando 42 artigos para análise. Na análise do Enquadramento, verificou-se que a tarefa de Data Analytics mais utilizada é a preditiva, e dentre estas observou-se uma predominância na utilização de técnicas individuais em detrimento dos métodos ensembles, sendo a Árvore de Decisão uma das mais utilizadas. Menos de 50% dos estudos definem o termo evasão e 70% deles tratam esse fenômeno como uma tarefa de classificação. Com relação à Teorização, as informações acadêmicas são as mais consideradas para construção dos modelos. Boa parte dos trabalhos parte da teoria de que o desempenho acadêmico é um preditor importante para a evasão. Quanto à Modelagem, avaliou-se que grande parte dos estudos utilizam apenas um conjunto de dados, cuja origem pode ser das informações do sistema acadêmico (fontes internas); pesquisas institucionais, que compõem bases de dados nacionais, regionais e acadêmicas ou de questionários utilizados pelos próprios pesquisadores para adquirir informações mais específicas (fontes externas). Além disso, utilizou-se uma combinação de informações (background demográfico, desempenho/informação escolar anterior e Informações/desempenho acadêmico) para a construção dos modelos. Na análise do Protocolo Experimental, observou-se que o método de ajuste de modelo mais utilizado foi a validação cruzada (cross-validation) e a métrica de interesse mais utilizada fora a Acurácia, presente em 26 estudos. Esses resultados e análises levaram a construção de um mapa mental, organizando as principais propostas da literatura. A metodologia proposta com base na DSR foi fundamental para a análise dos trabalhos, possibilitando a identificação das abordagens de Data Analytics presentes nos trabalhos investigados de forma ortogonal aos componentes, contribuindo para que futuras pesquisas se beneficiem desta metodologia, especialmente no que diz respeito à criação de artefatos computacionais. O estudo também evidenciou que é possível utilizar a abordagem de Data Analytics para lidar com a evasão de alunos, eventualmente contribuindo para mitigar os efeitos deste fenômeno no Ensino Superior. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto Multidisciplinar de Nova Iguaçu | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação Interdisciplinar em Humanidades Digitais | por |
dc.relation.references | ALBACO, S. et al. Influence of Mathmatics in The Desertion of Higher Education. Journal of Advances in Mathematics, vol 16. 2019. DOI https://doi.org/10.24297/jam.v16i0,8249 ALBAN, M.; MAURICIO, D. Predicting University Dropout through Data Mining: A Systematic Literature. Indian Journal of Science and Technology, Vol 12(4), DOI: 10.17485/ijst/2019/v12i4/139729, January 2019. ALJOHANI, O. A Comprehensive Review of the Major Studies and Theoretical Models of Student Retention in Higher Education. Higher Education Studies, Vol. 6, Nº 2. 2016. ALKHASAWNEH, R.; HARGRAVES, R. H. Developing a Hybrid Model to Predict Student First Year Retention in STEM Disciplines Using Machine Learning Techniques. Journal of STEM Education: Innovations and Research, v15 n3 p35-42 Oct-Dec 2014 ANDIFES. Diplomação, Retenção e Evasão nos cursos de Graduação em Instituições de Ensino Superior Públicas. 1996. Disponível em < http://www.andifes.org.br/diplomacao- retencao-e-evasao-nos-cursos-de-graduacao-em-instituicoes-de-ensino-superior-publicas/> Acesso em 18/09/19. ASSIS et al. Frequent pattern mining augmented by social network parameters for measuring graduation and dropout time factors: A case study on a production engineering course. Socio-Economic Planning Sciences, Volume 81, 2022, ISSN 0038-0121, https://doi.org/10.1016/j.seps.2021.101200. ASTIN, A. W. Student Involvement: A Developmental Theory for Higher Education. Journal of College Student Development. 1984. BEAN, J. P. Dropouts and Turnover: The Synthesis and Test of a Causal Model of Student Attrition. Research in Higher Education. Vol. 12, Nº 2. 1980. _________. Interaction Effects Based on Class Level in a Explanatory Model of College Student Dropout Syndrome. American Education Research Journal, Spring 1985, vol. 22, n.º 1, p. 35-64. BEAULAC, C.; ROSENTHAL, J.S. Predicting University Students’ Academic Success and Major Using Random Forests. Res High Educ 60, 1048–1064 (2019). https://doi.org/10.1007/s11162-019-09546-y BIOLCHINI, J.; MIAN, P. G. N.; TRAVASSOS, G. H. Systematic Review in Software Engineering. Technical Report. COPPE/UFRRJ. 2005. BOTELHO, L. L. R.; CUNHA, C. C. de A.; · MACEDO, M. O método da revisão integrativa nos estudos organizacionais. Gestão e Sociedade. Belo Horizonte, v.5, n. 11, p. 121-136 · maio-ago. 2011 · ISSN 1980-5756. Disponível em: Acesso em: 04/03/2021. 84 CABRERA, A. F.; NORA, A; CASTAÑEDA, M. B. The role of finances in the persistence process: a structural model. Research in HigherEducation, 33(5), pp. 571-593. http://dx.doi.org/10.1007/ BF00973759, 1992. CASANOVA, J. R. et al. Factors that determine the persistence dropout of university students. Psicothema. Vol. 30. no 4, p. 408-414, 2018. CASTRO, A. K. S. S.; TEIXEIRA, M. A. P. Evasão universitária: modelos teóricos internacionais e panorama das pesquisas no Brasil. Psicologia Argumento. Curitiba, v. 32, n. 79, p. 9-17, Supl. 1-2014. CHARITOPOULOS, A.; RANGOUSSI, M.; KOULOURIOTIS, D. On the Use of Soft Computing Methods in Educational Data Mining and Learning Analytics Research: a Review of Years 2010–2018. International Journal of Artificial Intelligence in Education. 2020. https://doi.org/10.1007/s40593-020-00200-8 COSTA, O. S.; GOUVEIA, L. B. Modelos de Retenção de Estudantes: abordagens e perspectivas. REAd – Porto Alegre – Vol. 24 – No3 – Setembro/Dezembro 2018 – p. 155 – 182. DELEN, D. A comparative analysis of machine learning techniques for student retention management. Decision Support Systems. Volume 49, Issue 4, 2010, Pages 498-506, ISSN 0167-9236, https://doi.org/10.1016/j.dss.2010.06.003. DRESCH, A.; LACERDA, D. P.; ANTUNES J. J. A. V. Design Science Research. Método de Pesquisa para Avanço da Ciência e Tecnologia. Bookman, 2015 ENGLE, J.; TINTO, V. Moving Beyond Access College Sucess for Low-Income, First- Generation Students. The Pell Institute. 2008. ENRAGAL, A.; HADDARA, M. Design Science Resarch: Evaluation in the Lens of Big Data Analytics. Systems, 2019. FREITAS JUNIOR et al. Big Data e Gestão do Conhecimento: definições e direcionamentos de pesquisa. Revista Alcance. – Eletrônica – vol. 23 – n. 4 – out./dez. 2016 HAN, J., KAMBER, M. AND PEI, J. Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2011. HEVNER, A. et al. Design Science in Information Systems Research. MIS Quarterly. Vol. 28, n. 1/March, 2004. 85 HIRAVE, T. et al. Data Analytics Research Agenda: E-Learning & Its Integration With Other Platforms. Fourth International Conference on Computing Communication Control and Automation. 2018. IAM-ON, N.; BOONGOEN, T. Improved student dropout prediction in Thai University using ensemble of mixed-type data clusterings. International Journal of Machine Learning and Cybernetics. 8. 10.1007/s13042-015-0341-x, 2015. KALLES, D; PIERRAKEAS, C. Using Genetic Algorithms and Decision Trees for a posteriori Analysis and Evaluation of Tutoring Practices based on Student Failure Models. In: Maglogiannis, I., Karpouzis, K., Bramer, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2006. IFIP International Federation for Information Processing, vol 204. Springer, Boston, MA . https://doi.org/10.1007/0-387-34224-9_2 KITCHENHAM, B.; CHARLES, S. Guidelines for performing Systematic Reviews in Software Engineering. Version 2.3. Technical Report, Keele University and University of Durham, 2007. LACAVE, C.; MOLINA-DÍAZ, A; CRUZ-LEMUS, J. Learning Analytics to identify dropout factors of Computer Science studies through Bayesian networks. Behaviour & Information Technology. 1-15. 10.1080/0144929X.2018.1485053. 2018. LEON, F. L. L.; MENEZES-FILHO, N. A. REPROVAÇÃO, AVANÇO E EVASÃO ESCOLAR NO BRASIL. Pesquisa e Planejamento Econômico - PPE, v.32, n.3, dez 2002 LIMA, F. S.; ZAGO, N. EVASÃO NO ENSINO SUPERIOR: TENDÊNCIAS E RESULTADOS DE PESQUISA. XI ANPED SUL. Curitiba, 2016. Disponível em < Introdução: Justificativa, delimitação e relevância do problema (pessoal acadêmica e social): Justificativa acerca da relevância pessoal (trajetória e história de vida na formação e profissional de forma metodologicamente argumentada e problematizada (mi (ufpr.br)> Acesso em 21/05/2021. LIZ-DOMÍNGUEZ, M. et al. Systematic Literature Review of Predictive Analysis Tools in Higher Education. Applied Science. 2019. LOZANO, J. M.; VIEITES, A. R.; CALABUIG, P. B. Aplicación de árboles de clasificación a la detección precoz de abandono en los estudios universitarios de administración y dirección de empresas. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA. 18. 177-201. 10.24309/recta. 2017. MANHÃES, L. M. B; CRUZ, S. M. S. Predição do Desempenho Acadêmico de Alunos da Graduação Utilizando Mineração de Dados. XIX Simpósio de Pesquisa Operacional e Logística da Marinha. Rio de Janeiro, RJ, Brasil – 06 a 08 de novembro de 2019. 86 MINISTÉRIO DA EDUCAÇÃO. Censo da Educação Superior 2019: Divulgação de Resultados. Instituto Nacional de Estudos e Pesquisas Anísio Teixeira (INEP). Brasília - DF, 2020. NEIVA, F. W.; SILVA, R. L. S. Revisão da Literatura em Ciência da Computação – Um Guia Prático. UFJF. MG, 2016. POULSEN, C. J. B.; BANDEIRA, D. L. Um Estudo Exploratório dos Regimes Acadêmicos Adotados por Instituições Privadas de Ensino Superior no Brasil. XXXVIII Encontro ANPAD, Rio de Janeiro, 2014. PROVOST, F.; FAWCETT, T. Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. (1st ed.). O’Reilly Media, Inc, 2013. RASTROLLO-GUERRERO, J.; GÓMEZ-PULIDO, J. A.; DURÁN-DOMÍNGUEZ, A. Analyzing and Predicting Students’ Performance by Means of Machine Learning: A Review. Applied Science. 2020. ROVIRA, S.; PUERTAS, E.; Igual, L. Data-driven System to Predict Academic Grades and Dropout. Plos - PloS one, 2017. RUSSELL, S., NORVIG, P. Artificial Intelligence - A Modern Approach. 2009. 3ªed. Disponível em https://cs.calvin.edu/courses/cs/344/kvlinden/resources/AIMA-3rd-edition.pdf. Acesso em 28/05/2021. SPADY, W. G. Dropouts from Higher Education: An Interdisciplinary Review and Synthesis. Interchange, 1970. 1, 64-85. SPADY, W. G. Dropouts from Higher Education: Toward an Empirical Model. Interchange, 2, 68-62. 1971. SALGANIK, M. J. Bit by Bit. Princeton University. 2018. ISBN 978-0-691-15864-8. SARRA, A.; FONTANELLA, L.; DI ZIO, S. Identifying Students at Risk of Academic Failure Within the Educational Data Mining Framework. Soc Indic Res 146, 41–60 (2019). https://doi.org/10.1007/s11205-018-1901-8 SILVA, G. P. Análise da evasão no ensino superior: uma proposta de diagnóstico de seus determinantes, 2013. SOUZA, N. A.; MONTEIRO, A. J. Os docentes da Universidade Federal do Ceará e a utilização de alguns dos recursos do sistema integrado de gestão de atividades acadêmica (SIGAA). Ensaio: aval. pol. públ. Educ., Rio de Janeiro, v. 23, n. 88, p. 611-630, jul./set. 2015. Disponível em O SIGAA na formação discente: Estudo de caso nos cursos da UFRR (nucleodoconhecimento.com.br) 87 STALLIVIERI, L. O SISTEMA DE ENSINO SUPERIOR DO BRASIL CARACTERÍSTICAS, TENDÊNCIAS E PERSPECTIVAS. Universidade Caxias do Sul. In book: Educación superior em América Latina y el Caribe: Sus estudiantes hoy (pp.79-100), 2007. Disponível em ,(PDF) O SISTEMA DE ENSINO SUPERIOR DO BRASIL CARACTERÍSTICAS, TENDÊNCIAS E PERSPECTIVAS (researchgate.net)> Acesso em 20/05/2021. TINTO, V. Dropout from Higher Education: A Theoretical Synthesis of Recent Research, Review of Education Research, vol. 45, nº 1. P. 89-125, 1975. ULRICHI, P. et al. Data Analytics Systems and SME type - a Design Science Approach. Procedia Computer Science. Volume 126, 2018, Pages 1162-1170. VILORIA, A. et al. Integration of Data Technology for Analyzing University Dropout. Procedia Computer Science, Volume 155, Pages 569-574, ISSN 1877-0509, 2019. https://doi.org/10.1016/j.procs.2019.08.079. ZOLTOWSKI, A. P. C. et al. Qualidade Metodológica das Revisões Sistemáticas em Periódicos de Psicologia Brasileiros. Psicologia: Teoria e Pesquisa. Jan-Mar 2014, vol. 30, n. 1. pp. 97-104. Trabalhos Revisados ACERO, A.; ACHURY, J.; MORALES PIÑERO, J. University Dropout: A Prediction Model for an Engineering Program in Bogotá, Colombia, 2019. AGUILAR-GONZALEZ, S.; PALAFOX L. Prediction of Student Attrition Using Machine Learning. In: Martínez-Villaseñor L., Batyrshin I., Marín-Hernández A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science, vol 11835. Springer, 2019. https://doi.org/10.1007/978-3-030-33749-0_18 AL-SUDANI, S.; PALANIAPPAN, R. Predicting students’ final degree classification using an extended profile. Educ Inf Technol 24, 2357–2369. 2019. https://doi.org/10.1007/s10639-019-09873-8 ALVAREZ, N. L.; CALLEJAS, Z.; GRIOL, D. Predicting Computer Engineering Students' Dropout in Cuban Higher Education with Pre-Enrollment and Early Performance Data. Journal of Technology and Science Education, v10, n2, p. 241-258. 2020 AHMAD TARMIZI, S.S. et al. A Case Study on Student Attrition Prediction in Higher Education Using Data Mining Techniques. In: Berry M., Yap B., Mohamed A., Köppen M. (eds) Soft Computing in Data Science. SCDS 2019. Communications in Computer and Information Science, vol 1100. Springer, Singapore. https://doi.org/10.1007/978-981-15- 0399-3_15 88 NANDESHWAR, A.; MENZIES, T.; NELSON, A. Learning patterns of university student retention. Expert Systems with Applications. Volume 38, Issue 12, 2011, p. 14984-14996, ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2011.05.048. BEAULAC, C.; ROSENTHAL, J. S. Predicting University Students’ Academic Success and Major Using Random Forests. Res High Educ. 60, 1048–1064. 2019. https://doi.org/10.1007/s11162-019-09546-y BELLO, F. A. et al. Using machine learning methods to identify significant variables for the prediction of first-year Informatics Engineering students dropout. 39th International Conference of the Chilean Computer Science Society (SCCC), 2020, pp. 1-5, doi: 10.1109/SCCC51225.2020.9281280. BERKA, P.; MAREK, L. Who tend to stay and who tend to leave? Studies in Educational Evaluation, Volume 70, 2021, 100999, ISSN 0191-491X, https://doi.org/10.1016/j.stueduc.2021.100999. BILQUISE G.; ABDALLAH S.; KOBBAEY T. Predicting Student Retention Among a Homogeneous Population Using Data Mining. In: Hassanien A., Shaalan K., Tolba M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058. Springer, 2020. https://doi.org/10.1007/978-3-030-31129-2_4 GRAY, C. C.; PERKINS, D. Utilizing early engagement and machine learning to predict student outcomes. Computers & Education, Volume 131, p. 22-32, ISSN 0360-1315. 2019. https://doi.org/10.1016/j.compedu.2018.12.006. CARDONA, T. A.; CUDNEY E. A., Predicting Student Retention Using Support Vector Machines. Procedia Manufacturing, Volume 39, 2019, p. 1827-1833, ISSN 2351-9789, https://doi.org/10.1016/j.promfg.2020.01.256. CHEN, Y.; JOHRI, A.; RANGWALA, H. Running out of STEM: a comparative study across STEM majors of college students at-risk of dropping out early. 2018. DOI - 10.1145/3170358.3170410. CONTINI, D.; SALZA, G. Too few university graduates. Inclusiveness and effectiveness of the Italian higher education system. Socio-Economic Planning Sciences, Volume 71, 2020, 100803, ISSN 0038-0121, https://doi.org/10.1016/j.seps.2020.100803. DELEN, D. A comparative analysis of machine learning techniques for student retention management. Decision Support Systems. Volume 49, Issue 4, 2010, Pages 498-506, ISSN 0167-9236, https://doi.org/10.1016/j.dss.2010.06.003 SARKER, F.; TIROPANIS, T.; DAVIS, H. C. Linked data, data mining and external open data for better prediction of at-risk students, 2014 International Conference on Control, Decision and Information Technologies (CoDIT), 2014, pp. 652-657, doi: 10.1109/CoDIT.2014.6996973. GIL, P.D. et al. A data-driven approach to predict first-year students’ academic success in higher education institutions. Educ Inf Technol 26, 2165–2190. 2021. https://doi.org/10.1007/s10639-020-10346-6 89 HEGDE, V.; PRAGEETH, P. P. Higher education student dropout prediction and analysis through educational data mining. 2nd International Conference on Inventive Systems and Control (ICISC), 2018, pp. 694-699, doi: 10.1109/ICISC.2018.8398887. HUO, H. D. et al. Predicting Dropout for Nontraditional Undergraduate Students: A Machine Learning Approach. Journal of College Student Retention: Research, Theory & Practice. 2020. https://doi.org/10.1177/1521025120963821 IAM-ON, N.; BOONGOEN, T. Improved student dropout prediction in Thai University using ensemble of mixed-type data clusterings. Int. J. Mach. Learn. & Cyber. 8, 497–510. 2017. https://doi.org/10.1007/s13042-015-0341-x KUZILEK, J.; ZDRAHAL, Z.; FUGLIK, V. Student success prediction using student exam behaviour, Future Generation Computer Systems, Volume 125, 2021, p. 661-671, ISSN 0167-739X. https://doi.org/10.1016/j.future.2021.07.009. JAYARAMAN, J. D.; GERBER, S.; GARCIA, J. Supporting Minority Student Success by using Machine Learning to Identify At-Risk Students. In Michel C. Desmarais, Collin F. Lynch, Agathe Merceron, Roger Nkambou, editors, Proceedings of the 12th International Conference on Educational Data Mining, EDM 2019, Montréal, Canada, July 2-5, 2019. International Educational Data Mining Society (IEDMS), 2019. [doi] KILIAN, P.; LOOSE, F.; KELAVA, A. Predicting Math Student Success in the Initial Phase of College With Sparse Information Using Approaches From Statistical Learning. Frontiers in Education, Volume 5, DOI - 10.3389/feduc.2020.502698. KEMPER, L.; VORHOFF, G.; WIGGER B.U. Predicting student dropout: A machine learning approach. European Journal of Higher Education. 2020. https://doi.org/10.1080/21568235.2020.1718520 MALDONADO, S. et al. Redefining profit metrics for boosting student retention in higher education. Decision Support Systems, Volume 143, 2021, 113493, ISSN 0167-9236, https://doi.org/10.1016/j.dss.2021.113493. OLAYA, D. et al. Uplift Modeling for preventing student dropout in higher education. Decision Support Systems, Volume 134, 2020, 113320, ISSN 0167-9236, https://doi.org/10.1016/j.dss.2020.113320. PALACIOS, C. A. et al. Discovery for Higher Education Student Retention Based on Data Mining: Machine Learning Algorithms and Case Study in Chile. Entropy (Basel). 2021 Apr 20;23(4):485. doi: 10.3390/e23040485. PMID: 33923879; PMCID: PMC8072774. PATTERSON, J. et al. Integrating Lean Six Sigma and Data Analytics to Improve Student Bachelor’s degree student dropouts: Retention. Proceedings of the 2020 IISE Annual Conference, 2020. PERALTA, B. et al. A causal modelling for desertion and graduation prediction using Bayesian networks: A Chilean case. 90 PÉREZ, B.; CASTELLANOS, C.; CORREAL, D. Predicting Student Drop-Out Rates Using Data Mining Techniques: A Case Study. In: Orjuela-Cañón A., Figueroa-García J., Arias-Londoño J. (eds) Applications of Computational Intelligence. ColCACI 2018. Communications in Computer and Information Science, vol 833. Springer, 2018. https://doi.org/10.1007/978-3-030-03023-0_10 PEREZ, A. Comparative Analysis of Prediction Techniques to Determine Student Dropout: Logistic Regression vs Decision Trees, 2018. DOI - 10.1109/SCCC.2018.8705262. SANTOS, K. J. de O. et al. Supervised Learning in the Context of Educational Data Mining to Avoid University Students Dropout, IEEE 19th International Conference on Advanced Learning Technologies (ICALT), 2019, pp. 207-208, doi: 10.1109/ICALT.2019.00068. SILVA, P. M. da, et al. Ensemble Regression Models Applied to Dropout in Higher Education, 8th Brazilian Conference on Intelligent Systems (BRACIS), 2019, pp. 120-125, doi: 10.1109/BRACIS.2019.00030. TAMPAKAS, V. et al. Prediction of Students’ Graduation Time Using a Two-Level Classification Algorithm. In: Tsitouridou M., A. Diniz J., Mikropoulos T. (eds) Technology and Innovation in Learning, Teaching and Education. TECH-EDU 2018. Communications in Computer and Information Science, vol 993. Springer, 2019. TSAI, S, C. et al. Precision education with statistical learning and deep learning: a case study in Taiwan. Int J Educ Technol High Educ 17, 12. 2020. https://doi.org/10.1186/s41239- 020-00186-2 ULLAH, M. A. et al. Predicting Factors of Students Dissatisfaction for Retention. In: Abraham A., Dutta P., Mandal J., Bhattacharya A., Dutta S. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 755. Springer, Singapore, 2019. https://doi.org/10.1007/978-981-13-1951-8_45 VILA, D. et al. Detection of Desertion Patterns in University Students Using Data Mining Techniques: A Case Study. In: Botto-Tobar M., Pizarro G., Zúñiga-Prieto M., D’Armas M., Zúñiga Sánchez M. (eds) Technology Trends. CITT 2018. Communications in Computer and Information Science, vol 895. Springer, 2019. https://doi.org/10.1007/978-3-030-05532-5_31 VILORIA, A. et al. Integration of Data Technology for Analyzing University Dropout. Procedia Computer Science, Volume 155, Pages 569-574, ISSN 1877-0509, 2019. https://doi.org/10.1016/j.procs.2019.08.079. WAN YAACOB, W.F. et al. Predicting Student Drop-Out in Higher Institution Using Data Mining Techniques. Journal of Physics: Conference Series, Volume 1496, International Conference of Mathematics, Statistics and Computing Technology 2019 28 October 2019, Aula Timur, Institut Teknologi Bandung, Indonesia. ZEINEDDINE, H.; BRAENDLE, U.; FARAH, A. Enhancing prediction of student success: Automated machine learning approach. Computers & Electrical Engineering, Volume 89, 2021, 106903, ISSN 0045-7906. https://doi.org/10.1016/j.compeleceng.2020.106903. 91 ZHANG L.; RANGWALA H. Early Identification of At-Risk Students Using Iterative Logistic Regression. In: Penstein Rosé C. et al. (eds) Artificial Intelligence in Education. AIED 2018. Lecture Notes in Computer Science, vol 10947. Springer, 2018. https://doi.org/10.1007/978-3-319-93843-1_45 | por |
dc.subject.cnpq | Interdisciplinar | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/74936/2022%20-%20L%c3%a1yla%20Advincula%20Candido%20de%20Azevedo.Pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6965 | |
dc.originais.provenance | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-27T15:58:38Z No. of bitstreams: 1 2022 - Láyla Advincula Candido de Azevedo.Pdf: 3585836 bytes, checksum: 2d1197909e9bb59972f22d021b12aab5 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-09-27T15:58:38Z (GMT). No. of bitstreams: 1 2022 - Láyla Advincula Candido de Azevedo.Pdf: 3585836 bytes, checksum: 2d1197909e9bb59972f22d021b12aab5 (MD5) Previous issue date: 2022-04-28 | eng |
Appears in Collections: | Mestrado em Humanidades Digitais |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Láyla Advincula Candido de Azevedo.Pdf | 2022 - Láyla Advincula Candido de Azevedo | 3.5 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.