Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15479
Full metadata record
DC FieldValueLanguage
dc.creatorRodrigues, Nayana Coutinho
dc.date.accessioned2023-11-20T01:27:50Z-
dc.date.available2023-11-20T01:27:50Z-
dc.date.issued2016-12-20
dc.identifier.citationRODRIGUES, Nayana Coutinho. Modulação da função tireóidea após privação de sono paradoxal em ratos adrenalectomizados ou tratados com propranolol. 2016. 64 f. Tese (Doutorado em Ciências Fisiológicas) - Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/15479-
dc.description.abstractModern life is shortening the sleep time and the consequences of this decreased has been studied in humans and animal models. Nevertheless, the effects of sleep deprivation in thyroid function are rarely studied. Our group pioneered in demonstrating the effects of paradoxcal sleep deprivation in the thyroid function; previous stududy related to thyroid function did full sleep deprivation. In this study, our objective was evaluating if the recent data we observed effects on thyroid function after paradoxcal sleep deprivation were due to the sleep deprivation or secondary to an hyperadrenocorticism and/or β-adrenergic hyperstimulation. Male rats (250-300g) from UFRRJ, animal care were kept in light-dark cycles (7-19h), controlled temperature (22° ± 2°C) with food and water ad libitum. For the propranolol protocol, the animals were distributed in 6 groups: 1 control (C), with a regular sleep pattern; 2 control treated with propranolol (C+P); 3 sleep deprived for 24h (P24); 4 sleep deprived for 24h with a 24h rebound period (P24R); 5 P24 treated with propranolol (P24+P) and 6 P24R treated with propranolol (P24R+P). All animals were treated with a 30mg/Kg dosage of propranolol benzoate or water in the control groups, for 14 days. For the adrenalectomy protocol, (Ax), the animals were anesthetized e adrenalectomized, or Shan, after 10 days of surgery the animals were divided as: Sham, sleep deprived for 24h or 96 with their respective rebound periods (P24, P96, P24R and P96R) e sleep deprived Ax for 24 e 96 hours with their respective rebound periods (AxP24, Ax P96, AxP24R e AxP96 and AxP96R). All animals were euthanized on the same day; blood was collected for T3, T4, TSH e corticosterone analisys; liver(F) and thyroid(T) for type 1 deiodinase (D1), hypophysis (H), brown adipose tissue (TAM), hypothalamus (HP) for type 2deiodinase (D2) activity. The entire procedure was approved by UFRRJ Ethics Committee 003/2015. T4 decreased in both protocols, T3 had no change in the propranolol protocol, where the D1 increases at the F in all groups and sees no changes in the T; D2 increases on TAM only in P24+P and P24R+P at the HP, while in the H D2 decreased on C+P and P24+P but normalizes after the rebound period. Corticosterone decreased in all Ax e AxP24, yet on Ax96 this decrease normalized. TSH increased in Ax e and normalized in AxP24 e AxP24R when compared to Sham. We can conclude that the decrease in T4 is independent to an adrenergic hyperactivation, for neither the adrenalectomia nor the β-adrenergic block were effective in maintaining T4 levels and sleep deprivation leads to a failure in the feedback mechanism once the diminished T4 doesnt stimulate a TSH increase and that T3 probably suffers no alteration due to the increase in T4-T3's peripheral conversion.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjecthormônio tireóideopor
dc.subjectprivação de sonopor
dc.subjectefeito fisiológicopor
dc.titleModulação da função tireóidea após privação de sono paradoxal em ratos adrenalectomizados ou tratados com propranololpor
dc.typeTesepor
dc.contributor.advisor1Marassi, Michelle Porto
dc.contributor.advisor1ID052.532.637-56por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6763458141044454por
dc.contributor.advisor-co1Silva, Alba Matos da
dc.contributor.advisor-co1ID009.997.747-85por
dc.contributor.referee1Marassi, Michelle Porto
dc.contributor.referee2Fortunato, Rodrigo Soares
dc.contributor.referee3Rocha, Fábio Fagundes da
dc.contributor.referee4Weide, Luciene de Carvalho
dc.contributor.referee5Silva, Wagner Seixas da
dc.creator.ID053.538.707-51por
dc.creator.Latteshttp://lattes.cnpq.br/4191653168449090por
dc.description.resumoA vida moderna vem diminuindo o tempo de sono da maioria dos homens devido às exigências da vida moderna, os efeitos dessa diminuição tem sido extensivamente estudados nos últimos anos em homens e em modelos animais, No entanto os efeitos da privação de sono na função tireoidiana são pouco estudados. O nosso grupo foi pioneiro em demonstrar os efeitos da privação de sono REM na função tireoidiana, trabalhos anteriores relacionados à função tireoidiana faziam privação de sono total. Neste trabalho nosso objetivo foi avaliar se os efeitos observados anteriormente na função tireoidiana após privação de sono REM eram diretamente pela privação de sono ou secundários a um hiperadrenocorticismo e/ou hiperestimulação β-adrenérgica. Ratos machos (250-300g) do biotério da UFRRJ foram mantidos em ciclo claro-escuro (7-19h) temperatura controlada (22° ± 2°C) com comida e água ad libitum; Para o protocolo do propranolol os animais foram distribuídos em: 1 controle (C), com padrão de sono normal; 2 controle tratado com propranolol (C+P); 3 privados de sono por 24h (P24);4 privados de sono por 24h com rebote de 24h (P24R); 5- P24 tratados com propranolol (P24+P) e, 6 P24R tratados com propranolol (P24R+P). Todos os animais foram tratados com benzoato de propranolol na dose 30mg/Kg ou com água nos grupos controles por 14 dias. Para o protocolo da adrenalectomia (Ax), os animais foram anestesiados e adrenalectomizados, falso operados (Fo), após 10 dias de cirurgia os animais foram distribuídos em: Fo, Ax adrenalectomizados com padrão de sono normal; privados de sono por 24h ou 96 com seus respectivos rebotes( P24, P96, P24R e P96R) e Ax privados de sono por 24 e 96 horas com seus respectivos rebotes (AxP24, Ax P96, AxP24R e AxP96 e AxP96R). Todos os animais foram eutanaziados no mesmo dia, sangue coletado para análise de T3, T4, TSH e corticosterona; fígado(F) e tireoide(T) para análise da desiodase tipo 1 (D1), hipófise(H), tecido adiposo marrom (TAM) e hipotálamo(HP) para a atividade da desiodase tipo 2 (D2). Todo procedimento foi aprovado pelo comitê de ética da UFRRJ 003/2015. O T4 diminui em ambos os protocolos, o T3 não muda no protocolo do propranolol, onde a D1 aumenta no F em todos os grupos e não sofre alteração na T, a D2 aumenta no TAM apenas em P24+P e em P24R+P no HP enquanto em H D2 diminui em C+P e P24+P e o rebote normaliza. A corticosterona diminuiu em todos os Ax e AxP24, já no Ax96 houve uma normalização dessa diminuição. O TSH aumentou em Ax e normalizou em AxP24 e AxP24R quando comparados ao Fo. Podemos concluir que a diminuição do T4 é independente de uma hiperativação adrenérgica, pois nem a adrenalectomia nem o bloqueio β-adrenérgico foram eficazes na manutenção dos níveis de T4 e que a privação de sono leva à uma falha no mecanismo de feedback uma vez que o T4 diminuído não estimula o aumento do TSH e que provavelmente o T3 não sofre alteração devido ao aumento da conversão periférica de T4-T3.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesAllard JS, Tizabi Y, Shaffery JO, Manaye K. Efect of rapid eye moviment sleep deprivation on hypocretin neurons in the hypothalamus of a rat model of deprivation. Neuropeptides 2007; 41:329-37 Alvarenga TA, Patti CL, Andersen ML, Silva RH, Calzavara MB, Lopez GB, Frussa- Filho R, Tuffik, S. Paradoxal sleep deprivation impairs acquisition, consolidation, and retrieval of a discriminative avoidace task in rats. Neurobiol Learn Mem 2008;90:624-632 Andersen ML, Bignotto M, Tufik S. Influence of paradoxcal sleep deprivation and cocaine on development of spontaneous penile reflexes in rats of different ages. Brain res 2003; 968:130-138 Andersen ML, Bignotto M, Tufik S. Hormone treatment facitates penile erection in castrated rats after sleep geprivation and cocaine. J Neuroendocrinol 2004a; 16:154-159 Andersen ML,Bignotto M, Machado RB, Tufik S. effect of chronic stress on steroid hormones secretion in male rats. Braz J Med Res 2004b;37:791-797 Andersen ML, D’Almeida V, Ko GM, Kawakami R, Martins PJF, Magalhães LE, Tufik ______.S. Experimental Procedure. Em: UNIFESP (Ed.) Ethical and Practical Principles of the Use of Laboratory Animals. São Paulo, Brasil; p. 45-69, 2004c Andersen ML, Martins PJ, D’Ameida V, Bignotto, Tufik S. Endocrinological and catecholaminergic alterations during sleep deprivation and recovery in male rats. J sleep Res 2005; 14:83-90 Antunes IB, Andersen ML, Baracat EC, Tufik S. The effect of paradoxal sleep deprivation on estrous cycles of the female rats. Horm Behav 2006; 49:49:433-440 Araújo MP, Andersen Ml, Albino VC, Gomes DC, Carvalho RC, Silva RH, Ribeiro R de A, Tufik S, Fussa-Filho R. Sleep deprivatin abolishes the locomotor stimulant effect of ethanol in mice. Brain Res Bull 2006; 69:332-7 Berry, M.J.; Kieffer, J.D.; Harney, J.W.; Larsen, P.R. Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. The Journal of Biological Chemistry 266(22): 14155-14158, 1991. Bianco, A.C.; Salvatore, D.; Gereben, B.; Berry, M.J.; Larsen, P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocrine Reviews 23:38-89, 2002. Bianco AC, Silva JE 1987 intaracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brow adipose tissue 70:295-300, 1987 Bergmann MB, Kushida CA, Everson CA, Gilliand MA, Obermeyer W, Rechtschaffen A. Sleep deprivation in rats:II Methodology. Sleep 1989;12:5-12 Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the protein-dye binding. Analytical Biochemistry 72:248- 254, 1976. Carol A. Everson1 and Thaddeus S. Nowak, JR.2 Hypothalamic thyrotropin-releasing hormone mRNA responses to hypothyroxinemia induced by sleep deprivation Am J Physiol Endocrinol Metab 283: E85–E93, 2002. Carvalho SD, Kimura ET, Bianco AC, Silva JE, Central role of Brown adipose tissue thyroxine 5-deiodinase on thyroid hormone-dependent thermogenic response to cold. Endocrinology 128:2149-2159, 1991 Croteau, W. Davey, J.C., Galton, V.A., D.L.St. Germain. Cloning of the mammalian type II iodothyronine deiodinase. The American Society for Clinical Investigation 98(2): 405- 417, 1996. Davis H, Davis PA, Loomis AL, Harvey EN, Hobart G. Changes in human brain potentials durin the onset of sleep. Science 1937; 86(2237):448-450 Dement W, Kleitman N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol 1957; 9:673-90 Donald.L.St.German, Valerie Anne Galton and Arturo Hernandez. Defining the roles of the iodothyronine deiodinases: Current concepts and challenges. Endocrinology 2009;150(3):1097-1107 Evans JI, Maclean AM, Ismail AA, Love D. Circulating levels of plasma testosterone during sleep. Proc R Soc Med 1971; 64:841-2 Everson CA, Crowley WR. Reduction in circulating anabolic hormones induced by sustained sleep deprivation in rats. Am J Physiol Endocrinol Metab 2004; 286:E1060-70 Rodrigo Soares Fortunato1 William M.O. Braga, Victor H. Ortenzi, Deivid C. Rodrigues3 Bruno Moulin Andrade, Leandro Miranda-Alves, Edson Rondinelli, Corinne Dupuy, Andrea Claudia Freitas Ferreira, and Denise P. Carvalho. Sexual Dimorphism of Thyroid Reactive Oxygen Species production Due to Higher NADPH Oxidase 4 Expression in Female Thyroid Glands. THYROID,23; 1, 2013 Galton, V.A.; Martinez, E.; Hernandez, A.; sT Germain, E.A.; Bates, J.M.; ST Gt, D.L. The type 2 iodothyronine deiodinase is expressed in rat uterus and induced during pregnancy. Endocrinology 142: 2123-2128, 2001. Germain, D.L. ST. & Galton, V.A. The deiodinase family of selenoproteins. Thyroid 7:655-668, 1997. Greenspan, F.S. The Thyroid In: Greenspan, FS & Baxter, Basic & Clinical Endocrinology, JD 4a ed., Appleton & Lange eds, cap 4, pp. 160-226, 1994. Jouvet M, Michel F. Electroencephalographic aspects of habituation to the arousal reaction. J Physiol (Paris) 1959; 51:489-90 Larsen P. Reed Type 2 Iodothyronine Deiodinase in Human Skeletal Muscle: New Insights into Its Physiological Role and Regulation J Clin Endocrinol Metab. 2009 June; 94(6): 1893–1895. Lucia A, de Jesus, Suzy D. Carvalho, Mirian O. Ribeiro, Mark Schneider, Sung-woo Kim, Juhn W. Harney, P.Reed Larsen, Antonio C. Bianco. The type2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest.2001;108(9):137 Lobo LL, Tufik S. Effects of alcohol on sleep parameters of sleep-deprived healthy volunteers. Sleep. 1997 Jan;20(1):52-9. Köhrle, J. Local activation and inactivation of thyroid hormones: the deiodinase family. Molecular and Cellular Endocrinology 151:103-119, 1999. Lejeune-Lenain C, Van Cauter E, Désir D, Beyloos M, Franckson JR. Control of circadian and episodic variations of adrenal androgens secretion in man. J Endocrinol Invest 1987; 10:267-76. Nascimento CP. Estudo da função tireoidea, metabolismo extratireoideo das iodotironinas e papel dos hormônios gonadais femininos em ratas submetidas à privação de sono paradoxal. Dissertação de mestrado; 2012. Nayana Coutinho Rodrigues, Nat´alia Santos da Cruz, Cristine de Paula Nascimento, Rodrigo Rodrigues da Conceicão, Alba Cen´elia Matos da Silva, Emerson Lopes Olivares and Michelle Porto Marassi. Sleep deprivation alters thyroid hormone economy in rats. Exp Physiol 100.2 (2015) pp 193–202 Palma B.D., Hipolide D.C. and Tufik S. Effects on prolactin secretion and binding to dopaminergic receptors in sleep-deprived lupus-prone mice Brazilian Journal of Medical and Biological Research 2009 42: 299-304 Rechetschaffen e Siegel. sleep and dreaming in: principles of neura science 4th Edition 2000 (ed) Eric R. Kandel Salvatore, D.; Bartha, T.; Harney, J.W.; Larsen, P.R. Molecular biological and biochemical characterization of the human type 2 selenodeiodinase. Endocrinology 137: 3308-3315, 1996. Shahab M, Irfans S, Zaman WU, Wahab F. Short-term fasting attenuates the response of the HPG axis to kisspeptin challenge in the adult male rhesus monkey (Macaca mulatta). 2008 7;83 (19-20): 633-7 Suchecki D, Antunes J, Tufik S. Palatable solutions during paradoxal sleep deprivation: reduction of hypotalamic-pituitary-adrenal axis activity and lack of effect on energy imbalance. J Neuroendocrinol 2003; 15:815-21 Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354(9188):1435-9 St Germain, D.L, Hernandez, A., Schneider, M.J.;Galton.V.A. Insighhts into the role of deiodinases fron studies of genetically modified. Thyroid 15(8):905-915, 2005 Takahashi Y, Kipnis DM, Daughaday WH. Growth hormone secretion during sleep. J Clin Invest 1968; 47:2079-90 Tanaka, K.; Murakami, M.; Greer, M.A. Type-II thyroxine 5'-deiodinase is present in the rat pineal gland. Biochemical and Biophysical Research Communications 137(2): 863- 868, 1986. Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and risk of type 2 diabetes in humans. Poc Natl Acad Sci USA 2008; 105:1044-9 Timo-Laria C, Negrão N, Schmidek WR, Rocha TL, Hoshino K. Phases and states of sleep in the rat. Physiol Behav 1970;5:402-407 Tufik S, Lindsey CJ, Carlini EA Does REM sleep deprivation induce a supersensitivity of dopaminergic receptors in the rat brain? Pharmacology. 1978;16(2):98-105. Van Cauter E, Holmback U, Knutson, Leproult R, Miller A, Nedeltcheva A, Pannain S, Penev P, Tasali E, Spiegel K. Impact of sleep and sleep loss on neuroendocrine and metabolic function. Hormone Res 2007; 67:2-9 Vogel GW.A review of Rem sleep deprivation. Arc Gen Phych 1975; 32:749-760 Zager A, Andersen ML, Ruiz FS, Antunes IB, Tufik S. Effect of acute and chronic sleep loss on immune modulation of rats. Am J Physiol Regul Inter Comp Physiol 2007; 293:504-509por
dc.subject.cnpqBiofísicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/70649/2016%20-%20Nayana%20Coutinho%20Rodrigues.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5968
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-09-06T19:29:17Z No. of bitstreams: 1 2016 - Nayana Coutinho Rodrigues.pdf: 1484143 bytes, checksum: 4c035913d5385b6295f9f1f441eaa76d (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-09-06T19:29:18Z (GMT). No. of bitstreams: 1 2016 - Nayana Coutinho Rodrigues.pdf: 1484143 bytes, checksum: 4c035913d5385b6295f9f1f441eaa76d (MD5) Previous issue date: 2016-12-20eng
Appears in Collections:Doutorado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Nayana Coutinho Rodrigues.pdf1.45 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.