Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15462
Full metadata record
DC FieldValueLanguage
dc.creatorZeca, Suelen Guedes
dc.date.accessioned2023-11-20T01:26:50Z-
dc.date.available2023-11-20T01:26:50Z-
dc.date.issued2020-09-18
dc.identifier.citationZECA, Suelen Guedes. Estudo da transmissão inter- e transgeracional de alterações metabólicas, comportamentais e cardíacas na prole de camundongos obesos por duas gerações consecutivas. 2020. 99 F. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/15462-
dc.description.abstractEpidemiological and experimental data show that maternal obesity can transmit metabolic, behavioral, and cardiovascular diseases, potentially transmitted by epigenetic mechanisms. Recent literature indicates paternal obesity's role in developing body composition and metabolic diseases by epigenetic modifications on spermatic cells. There is a lack of information about the phenomena in mammals and the dimorphic aspect of this experimental model's metabolic programming. This research aimed to understand if maternal or paternal obesity, separately, modulate the metabolism, behavior, and cardiac function in rodents, for two subsequent generations. Male and female C57BL/6J mice were fed with chow (NC, 6% lipids) or high fat (HF45 and HF60, 45 and 60% lipids, respectively) diet ad libitum for six weeks prior body composition, glycemic metabolism, and behavioral evaluation. Maternal and paternal NC, HF45, and HF60 groups, the F0 generation, were mated with NC animals to obtain F1. To boost the programming effects, the F2 generation was obtained by crossing the F1 generation within their groups. We kept all animals in a chow diet during the experimental protocol, except F0. We observed that F0-HF45 and F0-HF60 male and female had higher body weight and adiposity (female: p<0.01; male: p<0.001) and glycemic metabolism impairment (p<0.05). No significant changes were observed on females regarding pregnancy rate and litter number at birth; however, F0-HF60 females had decreased pups by the end of lactation (p<0.05). Maternal obesity had a more significant impact on MHF45 male offspring, in which F1 had increased body weight (p<0.001), adiposity (p<0.001), and impaired glycemic metabolism (p<0.05). On F2 generation, it was observed not only reduced body weight in this group (p<0.05), but also cardiac defects, showed by decreased ejection fraction (p<0.05) and increased left-ventricle (LF) end-systolic volume (p<0.05). Paternal obesity affected male and female offspring in similar proportions. We observed more significant body weight (p<0.05) and adiposity (p<0.05) in both sexes in the F1-PHF45 group and F1-PHF60 males. On F2 generation, decreased body weight was observed in male and female F2-PHF45 (p<0.05), as well as reduced adiposity in female F2-PHF45 (p<0.01), without changes in glycemic metabolism in both generations. The cardiac function was normal on F1, but a substantial reduction in the ejection fraction and increased left-ventricle (LF) end-systolic volume were detected on F2-PHF45 groups, male (p<0.05) and female (p<0.01). Therefore, we suggest that male offspring was more affected by maternal obesity, while paternal obesity affects both sexes in similar ways, especially regarding the cardiac function. Such dimorphism shows the importance of both sex's studies and the need for additional research on key epigenetic markers regarding phenotype maintenance and transmission to subsequent generations.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectecocardiogramapor
dc.subjectepigenéticapor
dc.subjectobesidade materna e paternapor
dc.subjectechocardiogrameng
dc.subjectepigeneticeng
dc.subjectmaternal, and paternal obesityeng
dc.titleEstudo da transmissão inter- e transgeracional de alterações metabólicas, comportamentais e cardíacas na prole de camundongos obesos por duas gerações consecutivaspor
dc.title.alternativeStudying inter- and transgenerational transmission of metabolic, behavioral, and heart phenotypes on mice offspring for two consecutive generationseng
dc.typeTesepor
dc.contributor.advisor1Almeida, Norma Aparecida dos Santos
dc.contributor.advisor1ID072.340.197-74por
dc.contributor.referee1Almeida, Norma Aparecida dos Santos
dc.contributor.referee2Rocha, Fábio Fagundes da|
dc.contributor.referee3Malvar, David do Carmo
dc.contributor.referee4Silva, Patrícia Cristina Lisboa da
dc.contributor.referee5Ayres, Natália Galito Rocha
dc.creator.ID116.784.667-27por
dc.creator.Latteshttp://lattes.cnpq.br/7861398897523675por
dc.description.resumoDados epidemiológicos e experimentais demonstram que a obesidade materna é capaz de transmitir distúrbios metabólicos, comportamentais e cardiovasculares na prole, transmitidas potencialmente de forma epigenética. Trabalhos mais recentes indicam a participação da obesidade paterna no desenvolvimento de alterações na composição corporal e distúrbios metabólicos através de alterações epigenéticas no espermatozóide. Pouco ainda é conhecido sobre esse fenômeno em mamíferos, e no dimorfismo da programação metabólica nesses modelos. O objetivo deste trabalho foi compreender se a obesidade materna ou paterna, separadamente, modula o metabolismo, comportamento, e função cardíaca em roedores, por duas gerações consecutivas. Camundongos C57BL/6J fêmeas ou machos alimentaram-se com dieta controle (NC, 6% de lipídeos) ou hiperlipídicas (HF45 e HF60, 45 e 60% de lipídeos, respectivamente) ad libitum por seis semanas antes da avaliação da composição corporal, metabolismo glicídico e comportamental. Os grupos maternos e paternos NC, HF45 e HF60, considerados geração F0, foram acasalados com animais NC do sexo oposto para obtenção da geração F1. Para aumentar a influência da programação, a geração F2 foi obtida pelo cruzamento de camundongos F1 dentro de seu próprio grupo. Excetuando-se F0, todos os animais foram mantidos em NC durante todo o período. Observamos que fêmeas e machos F0-HF45 e F0-HF60 apresentaram maior peso corporal e adiposidade (fêmeas: p<0,01; machos: p<0,001) e prejuízo no metabolismo glicídico (p<0,05). Nas fêmeas, nenhuma diferença significativa foi observada nas taxas de gravidez e número de filhotes ao nascimento; porém fêmeas F0-HF60 apresentaram menor taxa de sobrevivência dos filhotes após o desmame (p< 0,05). A obesidade materna afetou em maior proporção os filhotes machos MHF45, que na F1 apresentaram maior massa corporal (p<0,001), adiposidade (p<0,001) e prejuízo no metabolismo glicídico (p<0,05) e, na F2 apresentaram menor peso corporal (p<0,05) e alterações cardíacas representadas pela redução na fração de ejeção (p<0,05) e aumento no volume sistólico final do ventrículo esquerdo (p<0,05). A obesidade paterna afetou filhotes machos e fêmeas em proporções semelhantes. Observamos maior massa corporal (p<0,05) e adiposidade (p<0,05) em ambos sexos na prole F1-PHF45 e nos machos F1-PHF60. Na F2 observamos menor peso corporal na prole PHF45 (p<0,05), com menor adiposidade nas fêmeas F2-PHF45 (p<0,01), sem alteração no metabolismo glicídico nas duas gerações. A função cardíaca apresentava-se normal na F1, mas uma redução substancial na fração de ejeção e aumento do volume sistólico final do VE foi detectado nas proles F2-PHF45, em machos (p<0,05) e fêmeas (p<0,01). Dessa forma, concluímos que os filhotes machos foram mais afetados pela obesidade materna, enquanto alterações na obesidade paterna foram observadas em ambos os sexos, principalmente em relação aos prejuízos na função cardíaca. Tal dimorfismo mostra a importância do estudo em ambos os sexos, bem como a necessidade de estudos adicionais para a busca de marcadores epigenéticos chaves na manutenção e transmissão destes fenótipos às proles subsequentes.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesAHIMA, R. S.; FLIER, J. S. Adipose tissue as an endocrine organ. Trends Endocrinol Metab, v. 11, p. 327-32, 2000. AHLUWALIA, N.; ANDREEVA V. A.; KESSE-GUYOT, E.; HERCBERG, S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes & Metabolism, 2012 AIKEN, C. E.; OZANNE, S. E. Sex differences in developmental programming models. Reproduction, v. 145, p. 1-13, 2013. ALBERTI, K. G. M. M.; ECKEL, R. H.; GRUNDY, S. M.; ZIMMET, P. Z.; CLEEMAN, J. I.; DONATO, et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, v. 120, p. 1640-5, 2009. ALWARAWRAH, Y.; KIERNAN, K.; MACIVER, N. J. Changes in nutritional status impact immune cell metabolism and function. Frontiers in immunology, v. 9, p. 1055, 2018. AMAR, J.; CHABO, C.; WAGET, A.; KLOPP, P.; VACHOUX, C.; BERMÚDEZ-HUMARÁN, L. G.; SMIRNOVA, N.; BERGÉ, M.; SULPICE, T.; LAHTINEN, S.; OUWEHAND, A.; LANGELLA, P.; RAUTONEN, N.; SANSONETTI, P. J.; BURCELIN, R. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med, v. 3, n. 9, p. 559-572, 2011. AN, H. M.; PARK, S.Y.; LEE, D.K.; KIM, J.R.; CHA, M.K.; LEE. S.W.; et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis, v.10, p. 116, 2011. ANDERSON, L. M.; RIFFLE, L.; WILSON, R.; TRAVLOS, G. S.; LUBOMIRSKI, M. S.; ALVORD, W. G. Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition, v. 22, p. 327–331, 2006. ARCHER, J. Tests for emotionality in rats and mice: a review. Anim. Behav., v. 21, p. 205–235, 1973. ARMITAGE, J. A.; POSTON, L.; TAYLOR. P. D. Developmental origins of obesity and the metabolic syndrome: The role of maternal obesity. Front Horm Res, v. 36, p. 73–84, 2008. ARMSTRONG, L. Epigenetics, 1a edição. Garland Science, New York, 2014. AUBERT, J.; DARIMONT, C.; SAFONOVA, I.; AILHAUD, G.; NEGREL, R. Regulation by glucocorticoids of AGT gene expression and secretion in adipose cells. Biochem J., v. 328, p. 701-706, 1997. AUBERT, J.; SAFONOVA, I.; NEGREL, R.; AILHAUD, G. Insulin down-regulates angiotensinogen gene expression and angiotensinogen secretion in cultured adipose cells. Biochem Biophys. Res Commun, v. 250, p. 77-82, 1998. BALE, T. L. Sex differences in prenatal epigenetic programming of stress pathways. Stress, v. 14, p. 348-356, 2011. BALSEVICH, G.; BAUMANN, V.; URIBE, A.; CHEN, A.; SCHMIDT, M. V. Prenatal exposure to maternal obesity alters anxiety and stress coping behaviors in aged mice. Neuroendocrinology, v. 103, p. 354-68, 2016. BARATTA, R.; AMATO, S.; DEGANO, C.; FARINA, M.G.; PATANE, G.; VIGNERI, R.; FRITTITTA, L. Adiponectin relationship with lipid metabolism is independent of body fat mass: Evidence from both cross-sectional and intervention studies. J. Clin. Endocrinol. Metab., v. 89, p. 2665–2671, 2004. BARBOSA, C.; FIGUEIREDO, V.; BARBOSA, M; CARDOSO, L.; ALZAMORA, A. Maternal high-fat diet triggers metabolic syndrome disorders that are transferred to first and second offspring generations. British Journal of Nutrition, v. 123, n. 1, p. 59-71, 2020. BARKER, D. J. The fetal and infant origins of adult disease. BMJ, v. 301, p. 1111, 1990. BARKER, D. J. The fetal origins of diseases of old age. Eur. J. Clin. Nutr, v. 46, s. 3, p. S3-S9, 1992. BARKER, D. J. The origins of the developmental origins theory. J Intern Med, v. 261, n. 5, p. 412-17, 2007. BELL, C. G.; WALLEY, A. J.; FROGUEL, P. The genetics of human obesity. Nat. Rev. Genet, v. 6, p. 221–23, 2005. BELTOWSKI, J.; WÓJCICKA, G.; MARCINIAK, A.; JAMROZ, A. Oxidative stress, nitric oxide production, and renal sodium handling in leptin-induced hypertension. Life Sci, v. 74, n. 24, p. 2987-3000, 2004. BERENSON, G. S.; SRINIVASAN, S. R.; Cardiovascular risk in young persons: secondary or primordial prevention? Ann Intern Med., v. 153, n. 3, p. 202-203, 2010. BERNAL, R. T. I.; MALTA, D. C.; ISER, B. P. M.; MONTEIRO, R. A.. Método de projeção de indicadores das metas do Plano de Ações Estratégicas para o Enfrentamento das Doenças Crônicas não Transmissíveis no Brasil segundo capitais dos estados e Distrito Federal. Epidemiol. Serv. Saúde, v. 25, n. 3, 2016. BERRIDGE, K. C.; ALDRIDGE, J. W. Super-stereotypy II: enhancement of a complex movement sequence by intraventricular dopamine D1 agonists. Synapse, v. 37, p. 205–215, 2000. BILBO, S. D.; TSANG, V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J., v. 24, p. 2104–2115, 2010. BINDER, N. K.; BEARD, S. A.; KAITU'U-LINO, T. J.; TONG, S.; HANNAN, N. J.; GARDNER, D. K. Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reproduction (Cambridge, England), v. 149, n. 5, p. 435–444, 2015. BLACKMORE, H. L.; NIU, Y.; FERNANDEZ-TWINN, D. S.; TARRY-ADKINS, J. L.; GIUSSANI, D. A.; OZANNE, S. E. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight. Endocrinology, v. 155, n. 10, p. 3970–3980, 2014. BLAKEMORE, A. I.; FROGUEL, P. Investigation of Mendelian forms of obesity holds out the prospect of personalized medicine. Ann. N.Y.Acade. Sci., v. 1214, p. 180–189, 2010. BLE-CASTILLO, J. L.; APARICIO-TRAPALA, M. A.; JUÁREZ-ROJOP; I. E.; TORRES-LOPEZ, J. E.; MENDEZ, J. D.; AGUILAR-MARISCAL, H.;OLVERAHERNÁNDEZ, V.; PALMA-CORDOVA, L. C.; DIAZ-ZAGOYA, J. C. Differential Effects of High-Carbohydrate and High-Fat Diet Composition on Metabolic Control and Insulin Resistance in Normal Rats. Int J Environ Res Public Health, v. 9, p. 1663-1676, 2012. BONEY, C. M.; VERMA. A.; TUCKER, R.; VOHR. B. R. Metabolic syndrome in childhood: Association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics, v.115, p. 290–296, 2005. BOOTH, A.; MAGNUSON, A.; FOUTS, J.; FOSTER, M. Adipose tissue, obesity and adipokines: Role in cancer promotion. Hormone Mol. Biol. Clin. Invest, v. 21, p. 57-74, 2015. BORTA, A.; SCHWARTING, R. K. Inhibitory avoidance, pain reactivity, and plus-maze behavior in Wistar rats with high versus low rearing activity. J. Phys. Behav., v. 84, p. 387-396, 2005. BOUCHARD, C.; TREMBLAY, A.; DESPRES, J. P.; NADEAU, A.; LUPIEN, P. J.; THERIAULT, G.; DUSSAULT, J.; MOORJANI, S.; PINAULT, S.; FOURNIER, G. The response to long-term overfeeding in identical twins. N. Engl. J. Med., v. 322, p. 1477–1482, 1990. BOULOUMIÉ, A.; DREXLER, H. C. A.; LAFONTAN, M.; BUSSE, R. Leptin, the product of Ob gene, promotes angiogenesis. Circ. Res, v. 83, p. 1059–1066, 1998. BRAVO, P. E.; MORSE, S.; BORNE, D. M.; AGUILAR, E. A.; REISIN, E. Leptin and hypertension in obesity. Vascular Health and Risk Management, v. 2, n. 2, p. 163–169, 2006. BRINGHENTI, I.; MORAES-TEIXEIRA, J. A.; CUNHA, M. R.; ORNELLAS, F.; MANDARIM-DE-LACERDA, C. A.; AGUILA, M. B. Maternal obesity during the preconception and early life periods alters pancreatic development in early and adult life in male mouse offspring. PLoS One, v. 8, n. 1, p. e55711, 2013. BROMFIELD, J. J. Seminal fluid and reproduction: much more than previously thought. J Assist Reprod Genet., v. 31, n. 6, p. 627–636, 2014. BUCKMAN, L. B.; HASTY, A. L.; FLAHERTY, D. K.; BUCKMAN, C. T.; THOMPSON, M. M.; MATLOCK, B. K.; et al. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun, v. 35 p. 33-42, 2014. BUETTNER, R.; SCHOLMERICH, J.; BOLLHEIMER, L.C. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring), v. 15, p. 798-808, 2007. BURDGE, G. C.; SLATER-JEFFERIES, J.; TORRENS, C.; PHILLIPS, E. S.; HANSON, M. A.; LILLYCROP, K. A. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr., v. 97, p. 435–439, 2007. BYGREN, L. O.; KAATI, G.; EDVINSSON, S. Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor., v. 49, p. 53-59, 2001. CANNON B, NEDERGAARD J. Brown adipose tissue: function and physiological significance. Physiol Rev., v. 84, n. 1, p. 277-359, 2004. CAPELL, W. H.; ZAMBON, A.; AUSTIN, M. A.; BRUNZELL, J. D.; HOKANSON, J. E. Compositional differences of LDL particles in normal subjects with LDL subclass phenotype A and LDL subclass phenotype B. Arterioscler Thromb. Vasc. Biol., v. 16 p. 1040-1046, 1996. CAPURSO, C.; CAPURSO, A. From excess adiposity to insulin resistance: The role of free fatty acids. Vascul. Pharmacol, v. 57, p. 91-97, 2012. CARONE, B. R.; FAUQUIER, L.; HABIB, N.; SHEA, J. M.; HART, C. E.; LI, R.; BOCK, C.; LI, C.; GU, H.; ZAMORE, P. D.; MEISSNER, A.; WENG, Z.; HOFMANN, H. A.; FRIEDMAN, N.; RANDO, O. J. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell, n. 143, p. 1084 –1096, 2010. CASSIS, L. A. Fat cell metabolism: insulin, fatty acids, and renin. Curr Hypertens Rep, v. 2, p. 132–138, 2000. CHAIT, A.; DEN HARTIGH, L. J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med, 2020. CHALK, M. B.; Obesity: addressing a multifactorial disease. Case Manager, v. 15, n. 6, p. 47-50, 2004. CHAMBERS, T.; MORGAN, M. D.; HEGER, A. H.; SHARPE, R. M.; DRAKE, A. J. High-fat diet disrupts metabolism in two generations of rats in a parent-of-origin specific manner. Scientific reports, v. 6, p. 31857, 2016. CHAMPAGNE, F.; MEANEY, M. J. Like mother, like daughter: Evidence for non-genomic transmission of parental behavior and stress responsivity. Prog. Brain Res., v. 133, p. 287–302, 2001. CHAVARRO, J. E.; FURTADO, J.; TOTH, T. L.; FORD, J.; KELLER, M.; CAMPOS, H.; HAUSER, R. Trans-fatty acid levels in sperm are associated with sperm concentration among men from an infertility clinic. Fertil Steril, n. 95, p. 1794 –1797, 2011. CHEN, Y-P.; XIAO, X-M.; LI, J.; REICHETZEDER, C.; WANG, Z-N.; HOCHER, B. Paternal body mass index (BMI) is associated with offspring intrauterine growth in a gender dependent manner. PLoS ONE, v. 7, n. 5, p. e36329, 2012. CHOQUET, H.; MEYRE, D. Molecular basis of obesity: current status and future prospects. Curr Genomics., v. 12, n. 3, p. 154-168, 2011. CHOWDHURY, S. S.; LECOMTE, V.; ERLICH, J. H.; MALONEY, C. A.; MORRIS, M. J. Paternal high fat diet in rats leads to renal accumulation of lipid and tubular changes in adult offspring. Nutrients, v. 8, p. 521, 2016. CHRISTIANS, J. K.; LENNIE, K. I.; WILD, L. K.; GARCHA, R. Effects of high-fat diets on fetal growth in rodents: a systematic review. RB&E, v. 17, n. 1, p. 39, 2019. COELHO, M..; OLIVEIRA, T.; FERNANDES, R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci, v. 9, n. 2, p. 191-200, 2013. CONTU, L.; HAWKES, C. A. A Review of the impact of maternal obesity on the cognitive function and mental health of the offspring. Int. J. Mol. Sci., v. 18, p. 1093, 2017. COSTA, J. V.; DUARTE, J. S.; Adipose tissue and adipokines. Acta Med Port, v. 19, n. 3, p. 251-6, 2006. COSTA-FONT, J.; MAS, N. ‘Globesity’? The effects of globalization on obesity and caloric intake. Food Policy, v. 64, p. 121-132, 2016. CREAN, A. J.; BONDURIANSKY, R. What is a paternal effect? Trends Ecol Evol., v. 29, n. 10, p. 554–559, 2014. CRISTANCHO, A. G.; LAZAR, M. A. Forming functional fat: A growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol, v. 12, p. 722–734, 2011. CURAT, C. A.; WEGNER, V.; SENGENÈS, C.; MIRANVILLE, A.; TONUS, C.; BUSSE, R.; et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia, v. 49, p. 744–747, 2006. DE ALMEIDA, M. M.; DIAS-ROCHA, C. P.; REIS-GOMES, C. F.; WANG, H.; CORDEIRO, A.; PAZOS-MOURA, C. C.; JOSS-MOORE, L.; TREVENZOLI, I. H. Maternal high-fat diet up-regulates type-1 cannabinoid receptor with estrogen signaling changes in a sex- and depot- specific manner in white adipose tissue of adult rat offspring. Eur. J. Nutr., 2020. DEACON, R. M. J. Housing, husbandry and handling of rodents for behavioral experiments. Nature protocols, v. 1.2, p. 936-946, 2006. DELAHUNTY, K. M.; HORTON, L. G.; COOMBS, H. F. 3RD.; SHULTZ, K. L.; SVENSON, K. L.; MARION, M. A.; HOLICK, M. F.; BEAMER, W. G.; ROSEN, C. J. Gender- and compartment-specific bone loss in C57BL/6J mice: correlation to season? J Clin Densitom., v. 12, n. 1, p. 89-94, 2009. DEMARCO, V. G.; AROOR, A. R.; SOWERS, J. R. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol, v. 10, p. 364-76, 2014. DIAMOND, F. The endocrine function of adipose tissue. Growth Genetics Horm v. 18, p. 17-23, 2002. DOLINOY, D. C.; JIRTLE, R. L. Environmental epigenomics in human health and disease. Environ Mol Mutagen, v. 49, p. 4-8, 2008. DRAKE, A. J.; REYNOLDS, R. M. Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. Reproduction, v. 140, p. 387–398, 2010. DULLOO, A. G.; JACQUET, J; SOLINAS G; MONTANI; J. P.; SCHUTZ, Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes (Lond), v. 34, s. 2, p. 4– 17, 2010. DUNN, G. A.; BALE, T. L. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology, v. 152, n. 6, p. 2228-2236, 2011. DUNN, G. A.; BALE, T. L. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology, v. 150, p. 4999–5009, 2009. EATON, A. S.; AIKEN, A. J.; YOUNG, P. E.; HO, J. W. K.; CROPLEY, J. E.; SUTER, C. M. Maternal obesity heritably perturbs offspring metabolism for three generations without serial programming. International Journal of Obesity, v. 42, p. 911–914, 2018. EDLOW, A. G. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat. Diagn., v. 37, p. 95–110, 2017. EGUCHI, K.; NAGIA, R.; Islet inflammation in type 2 diabetes and physiology. J Clin Invest, v. 127, n. 1, p. 14-23, 2017. ELAHI, M. M, CAGAMPANG, F. R.; MUKHTAR, D.; ANTHONY, F. W.; OHRI, S. K.; HANSON, M. A. Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. Br J Nutr., v. 102, n. 4, p. 514-519, 2009. ELIAS, M. F.; ELIAS, P. K.; SULLIVAN, L. M.; WOLF, P. A.; D’AGOSTINO, R. B. Obesity, diabetes and cognitive deficit: The Framingham Heart Study. Neurobiol Aging, v. 26, p. 11-16, 2005. ENGELI, S.; GORZELNIAK, K.; KREUTZ, R.; RUNKEL, N.; DISTLER, A.; SHARMA, A. M. Co-expression of renin-angiotensin system genes in human adipose tissue. J Hypertens, v. 17, p. 555-560, 1999. ENNACEUR, A. Tests of unconditional anxiety – pitfalls and disappointments. J. Phys. Behav., v. 135, p. 55-71, 2014. ESLER, M.; STRAZNICKY, N., EIKELIS, N., MASUO, K., LAMBERT, G., LAMBERT, E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension, v. 48, p. 787–796, 2006. FAN, L.; LINDSLEY, S.; COMSTOCK, S.; TAKAHASHI, D. L.; EVANS, A. E.; HE, G-W.; THORNBURG, K. L.; GROVE, K. L. Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int. J. Obes., v. 37, p. 254–262, 2013. FANTUZZI, G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol, v. 115, n. 5, p. 911 – 919, 2005. FEIL, R.; FRAGA, M. F. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet, v. 13, p. 97–109, 2012. FEREY, J. L.; BOUDOURES, A. L.; REID, M.; DRURY, A.; SCHEAFFER, S.; MODI, Z.; KOVACS, A.; PIETKA, T.; DEBOSCH, B. J.; THOMPSON, M. D.; DIWAN, A.; MOLEY, K. H. A maternal high-fat, high-sucrose diet induces transgenerational cardiac mitochondrial dysfunction independently of maternal mitochondrial inheritance. Am. J. Physiol. Heart Circ. Physiol., v. 316, p. H1202–H1210, 2019. FERNANDEZ-TWINN, D. S.; BLACKMORE, H. L.; SIGGENS, L.; GIUSSANI, D. A.; CROSS, C. M.; FOO, R.; OZANNE, S. E. The programming of cardiac hypertrophy in the offspring by maternal obesity is associated with hyperinsulinemia, AKT, ERK, and mTOR activation. Endocrinology, v. 153, n. 12, p. 5961–5971, 2012. FERREIRA, A. P. S.; SZWARCWALD, C. L.; DAMACENA, G. N. Prevalência e fatores associados da obesidade na população brasileira: estudo com dados aferidos da Pesquisa Nacional de Saúde, 2013. Rev Bras Epidemiol, v. 22, p. e190024, 2019. FINAN, B.; YANG, B.; OTTAWAY, N.; STEMMER, K.; MÜLLER, T. D.; YI, C-X.; HABEGGER, K.; SCHRIEVER, S. C.; GARCÍA-CÁCERES, C.; KABRA, D. G.; HEMBREE, J.; HOLLAND, J.; RAVER, C.; SEELEY, R. J.; HANS, W.; IRMLER, M.; BECKERS, J,; DE ANGELIS, M. H.; TIANO, J. P.; MAUVAIS-JARVIS, F.; PEREZ-TILVE, D.; PFLUGER, P.; ZHANG, L.; GELFANOV, V.; DIMARCHI, R. D.; TSCHÖP, M. H. Targeted estrogen delivery reverses the metabolic syndrome. Nat. Med., v. 18, p. 1847–1856, 2012. FORTUÑO, A.; BIDEGAIN, J.; BALTANÁS, A.; MORENO, M. U.; MONTERO, L.; LANDECHO, M. F.; BELOQUI, O.; DÍEZ, J.; ZALBA, G. Is leptin involved in phagocytic NADPH oxidase overactivity in obesity? Potential clinical implications. J Hypertens, v. 28, p.1944–1950, 2010. FRANCO, J. G.; FERNANDES, T. P.; ROCHA, C. P.; CALVIÑO, C.; PAZOS-MOURA, C. C.; LISBOA, P. C.; MOURA, E. G.; TREVENZOLI, I. H. Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning. The Journal of Physiology, v. 590, n. 21, p. 5503–5518, 2012. FRANSSEN, R.; MONAJEMI, H.; STROES, E. S.; KASTELEIN, J. J. Obesity and dyslipidemia. Med. Clin. North. Am., v. 95, p. 893–902, 2011. FRIEDMAN, J. M. Leptin at 14 y of age: an ongoing story. Am J Clin Nutr, v. 89, n. 3, p. 973S-979S, Mar-2009. FULLSTON, T.; PALMER, N. O.; OWENS, J. A.; MITCHELL, M.; BAKOS, H. W.; LANE, M. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod., v. 27, p. 1391–1400, 2012. FULLSTON, T.; SHEHADEH, H. S.; SCHJENKEN, J. E.; MCPHERSON, N. O.; ROBERTSON, S. A.; ZANDER-FOX, D.; LANE, M. Paternal obesity and programming of offspring health. In: GREEN, L. R. & HESTER, R. L. Parental obesity: intergenerational programming and consequences, 1a edição. The American Physiological Society, New York, 2016. FULLSTON, T.; TEAGUE, E. M. C. O.; PALMER, N. O.; DEBLASIO, M. J.; MITCHELL, M.; CORBETT, M.; PRINT, C. G.; OWENS, J. A.; LANE, M. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. The FASEB Journal, v. 27, p. 4226-4243, 2013. GABORY, A.; ATTIG, L.; JUNIEN, C. Sexual dimorphism in environmental epigenetic programming. Mol Cell Endocrinol, v. 304, p. 8-18, 2009. GABRIEL, C. L.; SMITH, P. B.; MENDEZ-FERNANDEZ, Y. V.; WILHELM, A. J.; YE, A. M.; MAJOR, A. S. Autoimmune-mediated glucose intolerance in a mouse model of systemic lupus erythematosus. Am. J. Physiol. Endocrinol. Metab., v. 303, p. E1313–E1324, 2012. GAINSFORD, T.; WILLSON, T. A.; METCALF, D.; HANDMAN, E.; MCFARLANE, C.; NG, A.; NICOLA, N. A.; ALEXANDER, W. S.; HILTON, D. J. Leptin can induce proliferation, differentiation, and functional activation of hematopoietic cells. Proc Natl Acad Sci USA, v. 93, p. 14564-8, 1996. GALIC, S.; OAKHILL, J. S.; STEINBERG, G. R. Adipose tissue as an endocrine organ. Mol Cell Endocrinol, v. 316, p. 129-39, 2010. GALLOU‐KABANI, C.; VIGÉ, A.; GROSS, M‐S.; RABÈS, J‐P.; BOILEAU, C.; LARUE‐ACHAGIOTIS, C.; TOMÉ, D.; JAIS, J.‐P.; JUNIEN, C. C57BL/6J and A/J mice fed a high‐fat diet delineate components of metabolic syndrome. Obesity, v. 15, p. 1996-2005, 2007. GAO, M.; MA, Y.; LIU, D. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice. PLOS ONE, v. 10, n. 3, p. e0119784, 2015. GELINEAU, R. R.; ARRUDA, N. L.; HICKS, J. A.; MONTEIRO DE PINA, I.; HATZIDIS, A.; SEGGIO, J. A. The behavioral and physiological effects of high‐fat diet and alcohol consumption: Sex differences in C57BL6/J mice. Brain Behav., v. 7, p. e00708, 2017. GHIBAUDI, L.; COOK, J.; FARLEY, C.; VAN HEEK, M.; HWA, J. J. Fat intake affects adiposity, comorbidity factors, and energy metabolism of Sprague-Dawley rats. Obes Res, v. 10, p. 956-963, 2002. GHOSH, P.; BITSANIS, D.; GHEBREMESKEL, K.; CRAWFORD, M. A.; POSTON, L. Abnormal aortic fatty acid composition and small artery function in offspring of rats fed a high fat diet in pregnancy. J Physiol, v. 533, n. 3, p. 815–22, 2001. GIRIKO, C. A.; ANDREOLI, C. A.; MENNITTI, L. V.; HOSOUME, L. F.; SOUTO-TDOS, S.; SILVA, A. V.; MENDES-DA-SILVA, C. Delayed physical and neurobehavioral development and increased aggressive and depression-like behaviors in the rat offspring of dams fed a high-fat diet. Int. J. Dev. Neurosci., v. 31, p. 731–739, 2013. GLUCKMAN, P. D.; HANSON, M. A.; COOPER, C.; et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med, v. 359, n. 1, p. 61-73, 2008. GLUCKMAN, P. D.; HANSON, M. A.; SPENCER, H; G.; Predictive adaptive responses and human evolution. Trends Ecol Evol, v. 20, n. 10, p; 527-33, 2005. GNIULI, D.; CALCAGNO, A.; CARISTO, M. E.; MANCUSO, A.; MACCHI, V.; MINGRONE, G.; VETTOR, R. Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J Lipid Res., v. 49, p. 1936–1945, 2008. GODFREY, K. M.; REYNOLDS, R. M.; PRESCOTT, S. L.; NYIRENDA, M.; JADDOE, V. W. M.; ERIKSSON, J. G.; BROEKMAN, B. F. P. Influence of maternal obesity on the long-term health of offspring. The Lancet Diabetes & Endocrinology, v. 5, n. 1, p. 53-64, 2017. GOMES, D. C. K.; SICHIERI, R.; JUNIOR, E. V.; et al. Trends in obesity prevalence among Brazilian adults from 2002 to 2013 by educational level. BMC Public Health, v. 19, p. 965 2019. GONZALEZ-RIVAS, J. P.; NIETO-MARTÍNEZ, R.; BRAJKOVICH, I.; UGEL, E.; RÍSQUEZ, A. Prevalência de Dislipidemias em Três Regiões na Venezuela: Resultados do Estudo VEMSOLS. Arq. Bras. Cardiol., v. 110, n. 1, 2018. GREEN, B. B.; MARSIT C. J. Select prenatal environmental exposures and subsequent alterations of gene-specific and repetitive element DNA methylation in fetal tissues. Curr. Environ. Health Rep., v. 2, n. 2, p. 126–136, 2015. GRUNDY ,S. M.; CLEEMAN, J. I.; STEPHEN, R. D.; DONATO, K. A.; ECKEL, R. H.; FRANKLIN, B. A.; GORDON, D. J.; KRAUSS, R. M.; SAVAGE P. J.; et al. Diagnosis and Management of the Metabolic Syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, v. 112, p. 2735-2752, 2005. GRUNDY, S. M. Obesity, Metabolic Syndrome, and Coronary Atherosclerosis. Circulation, v. 105, p. 2696-2698, 2002. GUBERMAN, C.; JELLYMAN, J. K.; HAN, G.; ROSS, M. G.; DESAI, M. Maternal high-fat diet programs rat offspring hypertension and activates the adipose renin-angiotensin system. Am J Obstet Gynecol, v. 209, n. 3, p. 261–268, 2013. GUIDA, M. C.; BIRSE, R. T.; DALL’AGNESE, A.; TOTO, P. C.; DIOP, S. D.; MAI, A.; ADAMS, P. D.; PURI, P. L.; BODMER, R. Intergenerational inheritance of high fat diet-induced cardiac lipotoxicity in Drosophila. Nat. Commun., v. 10, p. 193, 2019. GUO, F.; JEN, K. L. High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol. Behav., v. 57, p. 681–686, 1995. GUZIK, T. J.; MANGALAT, D.; KORBUT, R. Adipocytokines – novel link between inflammation and vascular function? J Physiol Pharmacol, v. 57, p. 505-28, 2006. HALES, C. N.; BARKER, D. J. P. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia, v. 35, p. 595–601, 1992. HALES, C. N.; BARKER, D. J. The thrifty phenotype hypothesis. Br Med Bull, v. 60, n. 1, p. 5-20, 2001. HAMMOUD, A. O.; GIBSON, M.; STANFORD, J.; WHITE, G.; CARRELL, D. T.; PETERSON, M. In vitro fertilization availability and utilization in the United States: a study of demographic, social, and economic factors. Fertil Steril, v. 91, p. 1630–1635, 2009. HARIKUMAR, A.; MESHORER, E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep., v. 16, p. 1609-1619, 2015. HEARD, E.; MARTIENSSEN, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell, v. 157, p. 95-109, 2014. HEINRICH, P. C.; CASTELL, J. V.; ANDUS, T. Interleukin-6 and the acute phase response. Biochemical Journal, v. 265, n. 3, p. 621–636, 1990. HRUBY, A.; HU, F. B. The Epidemiology of Obesity: A Big Picture. Pharmaco Economics, v. 33, n. 7, p. 673–689, 2015. HSU, M. H.; CHEN, Y. C.; SHEEN, J. M.; HUANG, L. T. Maternal obesity programs offspring development and resveratrol potentially reprograms the effects of maternal obesity. Int. J. Envir. Res. and Pub. Health, v. 17, n. 5, p. 1610, 2020. HU, E.; LIANG, P.; SPIEGELMAN, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem, .v. 271, p. 10697–10703, 1996. HUANG, P. L. A comprehensive definition for metabolic syndrome. Dis Model Mech, v. 2, n. 5-6, p. 231-237, 2009. HUYPENS, P.; SASS, S.; WU, M.; DYCKHOFF, D.; TSCHÖP, M.; THEIS, F.; MARSCHALL, S.; HRABĚ DE ANGELIS, M.; BECKERS, J. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet., v. 48, p. 497 – 499, 2016. HUYPENS, P.; SASS, S.; WU, M.; DYCKHOFF, D.; TSCHÖP, M.; THEIS, F.; MARSCHALL, S.; HRABĚ DE ANGELIS, M.; BECKERS, J. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nature genetics, v. 48, n. 5, p. 497–499, 2016. INTERNATIONAL OBESITY TASKFORCE. The Global Epidemic. IASO/IOTB, 2019. Disponível em: http://www.iaso.org/iotf/obesity/obesitytheglobalepidemic/ [Acessado em Jan 2019] IWAI, M.; CHEN, R.; IMURA, Y.; HORIUCHI. M. TAK-536, a new AT1 receptor blocker, improves glucose intolerance and adipocyte differentiation. Am J Hypertens, v. 20, p. 579-586, 2007. JAIS, A, BRÜNING, J. C. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest, v. 127, n. 1, p. 24-32, 2017. JOHNSTON, S. L.; SOUTER, D. M.; TOLKAMP, B. J.; GORDON, I. J.; ILLIUS, A. W.; KYRIAZAKIS, I.; SPEAKMAN, J. R. Intake compensates for resting metabolic rate variation in female C57BL/6J mice fed high-fat diets. Obesity (Silver Spring), v. 15, p. 600-606, 2007. JONES, B. H.; STANDRIDGE, M. K.; TAYLOR, J. W.; MOUSTAI¨D, N. Angiotensinogen gene expression in adipose tissue: analysis of obese models and hormonal and nutritional control. Am J Physiol, v. 273, p. R236–R242, 1997. JUAN, C. C.; CHUANG, T. Y.; LIEN, C. C.; LIN, Y. J.; HUANG, S. W.; KWOK, C. F.; HO, L. T. Leptin increases endothelin type A receptor levels in vascular smooth muscle cells. Am J Physiol Endocrinol Metab, v. 294, n. 3, p. E481-7, 2008. JUNG, M.; PFEIFER, G. P. Aging and DNA methylation. BMC Biol., v. 13, p. 7, 2015. JUONALA, M.; PITKÄNEN, N.; TOLONEN, S.; LAAKSONEN, M.; SIEVÄNEN, H.; JOKINEN, E.; LAITINEN, T.; SABIN, M. A.; HUTRI-KÄHÖNEN, N.; LEHTIMÄKI, T.; TAITTONEN, L.; JULA, A.; LOO, B-M.; IMPIVAARA, O.; KÄHÖNEN, M.; MAGNUSSEN, C. N.; VIIKARI, J. S. A.; RAITAKARI, O. T. Childhood exposure to passive smoking and bone health in adulthood. The Cardiovascular Risk in Young Finns Study. J. Clin. Endocrinol. Metab., v. 6, p. 2403–2411, 2019. KAATI, G.; BYGREN, L. O.; EDVINSSON, S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur. J. Hum. Genet., v. 10, p. 682-8, 2002. KAATI, G.; BYGREN, L. O.; PEMBREY, M.; SJOSTROM, M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet., v. 15, p. 784-90, 2007. KADOWAKI, T.; YAMAUCHI, T. Adiponectin and adiponectin receptors. Endocrine Reviews, v. 26, n. 3, p. 439–451, 2005. KALUEFF, A. V.; ALDRIDGE, J. W.; LAPORTE, J. L.; MURPHY, D. L.; TUOHIMAA, P. Analyzing grooming microstructure in neurobehavioral experiments. Nat. Protoc., v. 2, p. 2538–2544, 2007. KALUEFF, A. V.; STEWART, A. M.; SONG, C.; BERRIDGE, K. C.; GRAYBIEL, A. M.; FENTRESS, J. C. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat. Rev. Neuroscience, v. 17, n. 1, p. 45–59, 2016. KANG, S. S.; KURTI, A.; FAIR, D. A.; FRYER, J. D. Dietary intervention rescues maternal obesity induced behavior deficits and neuroinflammation in offspring. J. Neuroinflammation, v. 11, p. 156, 2014. KANGARLU, A.; ROBITAILLE, P. M. L. Biological effects and health implications in magnetic resonance imaging. Concepts Magn Reson, v. 12, p. 321-359, 2000. KHAN, I. Y.; TAYLOR, P. D.; DEKOU, V.; SEED, P. T.; LAKASING, L.; GRAHAM, D.; DOMINICZAK, A. F.; HANSON, M. A.; POSTON, L. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension, v. 41, p. 168–175, 2003. KING, V.; DAKIN, R. S.; LIU, L.; HADOKE, P. W.; WALKER, B. R.; SECKL, J. R.; NORMAN, J. E.; DRAKE, A. J. Maternal obesity has little effect on the immediate offspring but impacts on the next generation. Endocrinology, v. 154, p. 2514– 2524, 2013. KLOP, B.; PROCTOR, S. D.; MAMO, J. C.; BOTHAM, K.M.; CASTRO-CABEZAS, M. Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases. Int. J. Vasc. Med, v. 2012, 947417, 2012. KOH, K. K.; HAN, S. H.; QUON M. J. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. Journal of the American College of Cardiology, v. 46, n. 11, p. 1978–1985, 2005. KONSTANTINIDES, S.; SCHAFER, K.; LOSKUTOFF, D. J. The Prothrombotic Effects of Leptin: Possible Implications for the Risk of Cardiovascular Disease in Obesity. Annals of the New York Academy of Sciences, v. 947, n. 1, 2006. KONUKOGLU, D.; SERIN, O.; TURHAN, M. S. Plasma leptin and its relationship with lipid peroxidation and nitric oxide in obese female patients with or without hypertension. Arch Med Res, v. 37, n. 5, p. 602-6, 2006. KORT, H. I.; MASSEY, J. B.; ELSNER, C. W.; MITCHELL-LEEF, D.; SHAPIRO, D. B.; WITT, M. A.; ROUDEBUSH, W. E. Impact of body mass index values on sperm quantity and quality. J Androl, v. 27, p. 450–452, 2006. KOSARI, S.; RATHNER, J. A.; BADOER, E. Central resistin enhances renal sympathetic nerve activity via phosphatidylinositol 3-kinase but reduces the activity to brown adipose tissue via extracellular signal-regulated kinase 1/2. J. Neuroendocrinol, v. 24, p. 1432–1439, 2012. KOSARI, S.; RATHNER, J. A.; CHEN, F.; KOSARI, S.; BADOER, E. Centrally administered resistin enhances sympathetic nerve activity to the hindlimb but attenuates the activity to brown adipose tissue. Endocrinology, v. 152, p. 2626–2633, 2011 KRESSEL, G.; TRUNZ, B.; BUB, A. et al., Systemic and vascular markers of inflammation in relation to metabolic syndrome and insulin resistance in adults with elevated atherosclerosis risk. Atherosclerosis, v. 202, n. 1, p. 263–271, 2009. KUNDSON, J. D.; PAYNE, G. A.; BORTBOUSE, L.; TUNE, J. D. Leptin and mechanisms of endothelial dysfunction and cardiovascular disease. Curr Hypertens Rep, v. 10, p. 434–439, 2008. LACAL, I.; VENTURA, R. Epigenetic inheritance: concepts, mechanisms and perspectives. Frontiers in Molecular Neuroscience, v. 11, p. 292, 2018. LAM, Y. Y.; HA, C. W.; HOFFMANN, J. M.; OSCARSSON, J.; DINUDOM, A.; MATHER, T. J.; et al. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity (Silver Spring), v. 23, n. 7, p. 1429-39, 2015. LAWN, R. B.; ANDERSON, E. L.; SUDERMAN, M.; SIMPKIN, A. J.; GAUNT, T. R.; TESCHENDORFF, A. E.; WIDSCHWENDTER, M.; HARDY, R.; KUH, D.; RELTON, C. L.; HOWE, L. D. Psychosocial adversity and socioeconomic position during childhood and epigenetic age: analysis of two prospective cohort studies. Hum Mol Genet., v. 27, n. 7, p. 1301–1308, 2018. LEE, B.; SHAO, J. Adiponectin and energy homeostasis, Reviews in Endocrine and Metabolic Disorders, v. 15, n. 2, p. 149–156, 2014. LEE, S.; LEE, H.-C.; KWON, Y.-W.; LEE, S. E.; CHO, Y.; KIM, J.; et al. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes. Cell Metabol, v. 19, p. 484–497, 2014b. LEE, Y. S.; KIM, J. W.; OSBORNE, O.; OH, D. Y.; SASIK, R.; SCHENK, S.; CHEN, A.; CHUNG, H.; MURPHY, A.; WATKINS, S. M.; QUEHENBERGER, O.; JOHNSON, R. S.; OLEFSKY, J. M. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell, v. 157, n. 6, p. 1339-1352, 2014a. LI, T. L.; CHIOU, L. C.; LIN, Y. S.; HSIEH, J. R.; HWANG, L. L. Electrophysiological study on the effects of leptin in rat dorsal motor nucleus of the vagus. Am J Physiol Regul Integr Comp Physiol, v. 292, p. R2136–R2143, 2007. LIANG, C.; OEST, M. E.; PRATER, M. R. Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B Dev Reprod Toxicol, v. 86, n. 5, p. 377– 384, 2009. LIMA, F. B.; CURI, R. Moléculas ativas produzidas por órgãos não endócrinos. In: AIRES, M. M. Fisiologia, 4ª edição. Guanabara Koogan, Rio de Janeiro, 2012. LIN, C.; SHAO, B.; HUANG, H.; ZHOU, Y.; LIN, Y. Maternal high fat diet programs stress-induced behavioral disorder in adult offspring. Physiol. Behav., v. 152, p. 119–127, 2015. LISTER, R.; PELIZZOLA, M.; DOWEN, R. H.; HAWKINS, R. D.; HON, G.; TONTI-FILIPPINI, J.; NERY, J. R.; LEE, L.; YE, Z.; NGO, Q-M.; EDSALL, L.; ANTOSIEWICZ-BOURGET, J.; STEWART, R.; RUOTTI, V.; MILLAR, A. H.; THOMSON, J. A.; REN, B.; ECKER, J. R. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, v. 462, p. 315–322, 2009. LIU, G. Y.; LIANG, Q. H.; CUI, R. R.; LIU, Y.; WU, S. S.; SHAN, P. F.; YUAN, L. Q.; LIAO, E. Y. Leptin Promotes the Osteoblastic Differentiation of Vascular Smooth Muscle Cells From Female Mice by Increasing RANKL Expression. Endocrinology, v. 155, p. 558 –567, 2014. LOCHE, E.; BLACKMORE, H. L.; CARPENTER, A. A.; BEESON, J. H.; PINNOCK, A.; ASHMORE, T. J.; AIKEN, C. E.; ALMEIDA-FARIA, J.; SCHOONEJANS, J. M.; GIUSSANI, D. A.; FERNANDEZ-TWINN, D. S.; OZANNE, S. E. Maternal diet-induced obesity programmes cardiac dysfunction in male mice independently of post-weaning diet. Cardiov. Res., v. 114, n. 10, p. 1372-84, 2018. LOFFREDA, S.; YANG, S. Q.; LIN, H. Z.; KARP, C. L.; BRENGMAN, M. L.; WANG, D. J.; KLEIN, A. S.; BULKLEY, G. B.; BAO, C.; NOBLE, P. W.; LANE, M. D. Leptin regulates proinflammatory immune responses. FASEB J, v. 12, p. 57–65, 1998. LOUET, J. F.; LEMAY, C.; MAUVAIS-JARVIS, F. Antidiabetic actions of estrogen: insight from human and genetic mouse models. Curr. Atheroscler. Rep., v. 6, p. 180 – 185, 2004. LUCAS, A. Role of nutritional programming in determining adult morbidity. Arch Dis Child, v. 71, p. 288-290, 1994. LUMENG, C. N.; BODZIN, J. L.; SALTIEL, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest, v. 117, n. 1, p. 175-184, 2007. LUZZO, K. M.; WANG, Q.; PURCELL, S. H.; CHI, M.; JIMENEZ, P. T.; GRINDLER, N.; SCHEDL, T.; MOLEY, K. H. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS ONE, v. 7, p. e49217, 2012. MAEDA, K.; OKUBO, K.; SHIMOMURA, I.; FUNAHASHI T.; MATSUZAWA, Y, Kenichi Matsubara, cDNA Cloning and Expression of a Novel Adipose Specific Collagen-like Factor, apM1 (Adipose Most Abundant Gene Transcript 1). Biochemical and Biophysical Research Communications, v. 221, n. 2, p. 286-289, 1996. MANDY, M.; NYIRENDA, M. Developmental Origins of Health and Disease: the relevance to developing nations. International Health, v. 10, n. 2, p. 66–70, 2018. MARTÍNEZ-MARTÍNEZ, E.; JURADO-LÓPEZ, R.; VALERO-MUNÕZ, M.; BARTOLOMÉ, M. V.; BALLESTEROS, S.; LUACES, M.; BRIONES, A. M.; LÓPEZ-ANDRÉS, N.; MIANA, M.; CACHOFEIRO, V. Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress: potential role in obesity. J Hypertens, v. 32, n. 5, p. 1104-14, 2014. MASSIERA, F.; SEYDOUX, J.; GELOEN, A.; et al. Angiotensinogen-deficient mice exhibit impairment of diet-induced weight gain with alteration in adipose tissue development and increased locomotor activity. Endocrinology, v. 142, p. 5220-5, 2001. MASUYAMA, H.; MITSUI, T.; EGUCHI, T.; TAMADA, S.; HIRAMATSU, Y. The effects of paternal high‐fat diet exposure on offspring metabolism with epigenetic changes in the mouse adiponectin and leptin gene promoters. Am. J. Physiol. Endocrinol. Metab., v. 311, p. e236-e245, 2016. MATSUI, H.; YOKOYAMA, T.; TANAKA, C.; SUNAGA, H.; KOITABASHI, N.; TAKIZAWA, T.; ARAI, M.; KURABAYASHI, M. Pressure mediated hypertrophy and mechanical stretch up-regulate expression of the long form of leptin receptor (ObR-b) in rat cardiac myocytes. BMC Cell Biol., v. 13, p. 37, 2012. MATSUZAWA, Y. The metabolic syndrome and adipocytokines. FEBS Letters, v. 580, p. 2917-21, 2006. MCALLISTER, E. J.; DHURANDHAR, N. V.; KEITH, S. W.; ARONNE, L. J.; BARGER, J.; BASKIN, M.; BENCA, R. M.; BIGGIO, J.; BOGGIANO, M. M.; EISENMANN, J. C.; ELOBEID, M.; FONTAINE, K. R.; GLUCKMAN, P.; HANLON, E. C.; KATZMARZYK, P.; PIETROBELLI, A.; REDDEN, D. T.; RUDEN, D. M.; WANG, C.; WATERLAND, R. A.; ALLISON, D. B. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr., v. 49, p. 868–913, 2009. MCCANCE, R. A. Critical periods of growth. Proc. Nutr. Soc, v. 35, p. 309–313, 1976. MCLAUGHLIN, T.; ACKERMAN, S. E.; SHEN, L.; ENGLEMAN, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest, v. 127, n. 1, p. 5-13, 2017. MCPHERSON, N. O.; BELL, V. G.; ZANDER-FOX, D. L.; FULLSTON, T.; WU, L. L.; ROBKER, R. L.; LANE, M. When two obese parents are worse than one! Impacts on embryo and fetal development. Am. J. Physiol. Endocrinol. Metab., v. 309, p. E568 – E581, 2015. MENTING, M. D.; MINTJENS, S.; VAN DE BEEK, C.; FRICK, C. J.; OZANNE, S. E.; LIMPENS, J.; ROSEBOOM, T. J.; HOOIJMANS, C. R.; VAN DEUTEKOM, A. W.; PAINTER, R. C. Maternal obesity in pregnancy impacts offspring cardiometabolic health: Systematic review and meta‐analysis of animal studies. Ob. Rev.,v. 20, n. 5, p. 675-685, 2019. MEYER, L.; CASTON, J.; MENSAH-NYAGAN, A. G. Seasonal variation of the impact of a stressful procedure on open field behaviour and blood corticosterone in laboratory mice. Behav Brain Res., v. 167, n. 2, p. 342-8, 2006. MISRA, A.; SHRIVASTAVA, U. Obesity and dyslipidemia in South Asians. Nutrients, v. 5, n. 7, p. 2708-2733, 2013. MITRA, A.; ALVERS, K. M.; CRUMP, E. M.; ROWLAND, N. E. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., v. 296, p.R20–R28, 2009. MURRAY, S. A.; et al. Mouse gestation length is genetically determined. PloS one, v. 5, n. 8, 2010. NAKANO, Y.; TOBE T.; CHOI-MIURA, N. H.; et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem, v. 120, p. 803–812, 1996. NATIONAL CHOLESTEROL EDUCATION PROGRAM (NCEP). Expert Panel on Detection and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, v. 106, p. 3143–3421, 2002. NATIONAL RESEARCH COUNCIL (US) COMMITTEE FOR THE UPDATE OF THE GUIDE FOR THE CARE AND USE OF LABORATORY ANIMALS. Guide for the Care and Use of Laboratory Animals. 8a edição. Washington (DC). National Academies Press (US), 2011. NERI, C.; EDLOW, A. G. Effects of Maternal Obesity on Fetal Programming: Molecular Approaches. Cold Spring Harbor perspectives in medicine, v. 6, n. 2, a026591. 2015 NG, S. F.; LIN, R. C.; LAYBUTT, D. R.; BARRES, R.; OWENS, J. A.; MORRIS, M. J. Chronic high‐fat diet in fathers programs beta‐cell dysfunction in female rat offspring. Nature, v. 467, p. 963‐966, 2010. NICHOLAS, L. M.; OZANNE, S. E. Early life programming in mice by maternal overnutrition: mechanistic insights and interventional approaches. Phil. Trans. R. Soc. B., v. 374, p. 20180116, 2019. NISHIMURA, S.; MANABE, I.; NAGASAKI, M.; ETO, K.; YAMASHITA, H.; OHSUGI, M.; OTSU, M.; HARA, K.; UEKI, K.; SUGIURA, S.; YOSHIMURA, K.; KADOWAKI, T.; NAGAI, R. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med., v. 15, n. 8, p. 914-20, 2009. NIVOIT, P.; MORENS, C.; VAN ASSCHE, F.A.; JANSEN, E.; POSTON, L.; REMACLE, C.; REUSENS, B. Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia, v. 52, p. 1133–1142, 2009. O’REILLY, J. R.; REYNOLDS, R. M. The risk of maternal obesity to the long-term health of the offspring. Clin Endocrinol (Oxf), v. 78, p. 9–16, 2013. OH, D. Y.; OLEFSKY, J. M. Omega 3 fatty acids and GPR120. Cell Metab, v. 15, n. 5, p. 564-565, 2012. OKEN, E.; RIFAS-SHIMAN, S. L.; FIELD, A.E.; FRAZIER, A. L.; GILLMAN, M. W. Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol, v. 112, p. 999– 1006, 2008. OLAMOYEGUN, M. A.; OLUYOMBO, R.; ASAOLU, S. O. Evaluation of dyslipidemia, lipid ratios, and atherogenic index as cardiovascular risk factors among semi-urban dwellers in Nigeria. Annals of African medicine, v. 15, n. 4, p. 194–199, 2016. OPOKU, S.; GAN, Y.; FU, W.; CHEN, D.; ADDO-YOBO, E.; TROFIMOVITCH, D.; YUE, W.; YAN, F.; WANG, Z.; LU, Z. Prevalence and risk factors for dyslipidemia among adults in rural and urban China: findings from the China National Stroke Screening and prevention project (CNSSPP). BMC public health, v. 19 n. 1, p. 1500, 2019. ORGANIZAÇÃO MUNDIAL DE SAÚDE. Tópicos em saúde: Obesidade, 2019. Disponível em: http://www.who.int/topics/obesity/en/ [Acessado em Dez 2019] ORNELLAS, F.; CARAPETO, P. V.; MANDARIM-DE-LACERDA, C. A.; AGUILA, M. B. Obese fathers lead to an altered metabolism and obesity in their children in adulthood: review of experimental and human studies. Jornal de Pediatria, v. 93, n. 6, p. 551–559, 2017. ORNELLAS, F.; SOUZA‐MELLO, V.; MANDARIM‐DE‐LACERDA, C. A.; AGUILA, M. B. Programming of obesity and comorbidities in the progeny: lessons from a model of diet‐induced obese parents. PLoS One, v. 10, p. e124737, 2015. OSMOND, C.; BARKER, D. J.; WINTER, P. D.; et al. Early growth and death from cardiovascular disease in women. Br Med J, v. 307, n. 6918, p. 1519-24, 1993. ÖST, A.; LEMPRADL, A.; CASAS, E.; WEIGERT, M.; TIKO, T.; DENIZ, M.; PANTANO, L.; BOENISCH, U.; ITSKOV, P. M.; STOECKIUS, M.; RUF, M.; RAJEWSKY, N.; REUTER, G.; IOVINO, N.; RIBEIRO, C.; ALENIUS, M.; HEYNE, S.; VAVOURI, T.; POSPISILIK, J. A. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell, v. 159, n. 6, p. 1352–1364, 2014. PADILLA, J.; VIERIRA-POTTER, V. J.; JIA, G.; SOWERS, J. R. Role of perivascular adipose tissue on vascular reactive oxygen species in type 2 diabetes: A give and take relationship. Diabetes, v. 64, p. 1904-06, 2015. PANG, T. Y.; SHORT, A. K.; BREDY, T. W.; HANNAN, A. J. Transgenerational paternal transmission of acquired traits: stress-induced modification of the sperm regulatory transcriptome and offspring phenotypes. Curr. Opin. Behav. Sci., v. 14, p. 140–147, 2017. PAPAIT, R.; CATTANEO, P.; KUNDERFRANCO, P.; GRECO, C.; CARULLO, P.; GUFFANTI, A.; VIGANÒ, V.; STIRPARO, G. G.; LATRONICO, M. V. G.; HASENFUSS, G.; CHEN, J.; CONDORELLI, G. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci USA, v. 110, n. 50, p. 20164–20169, 2013. PARENTE, L. B.; AGUILA, M. B.; MANDARIM-DE-LACERDA, C. A. Deleterious effects of high-fat diet on perinatal and postweaning periods in adult rat offspring. Clin. Nutr., v. 27, p. 623–634, 2008. PARHAMI, F.; TINTUT, Y.; BALLARD, A.; FOGELMAN, A. M.; DEMER, L. L. Leptin enhances the calcification of vascular cells: artery wall as a target of leptin. Circ Res, v. 88, n. 9, p. 954-60, 2001. PARK, A., KIM, W. K., BAE, W-H. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells, v. 26, n. 1, p. 33-42, 2014. PARK, E. J.; LEE, J. H.; YU, G-Y, HE. G.; ALI, S. R.; HOLZER R. G.; ÖSTERREICHER, C. H.; TAKAHASHI, H.; KARIN, M. Dietary and Genetic Obesity Promote Liver Inflammation and Tumorigenesis by Enhancing IL-6 and TNF Expression. Cell, v. 140, n. 2, p.197-208, 2010. PATANE, G.; CAPORARELLO, N.; MARCHETTI, P.; PARRINO, C.; SUDANO, D.; MARSELLI, L.; VIGNERI, R.; FRITTITTA, L. ADIPONECTIN increases glucose-induced insulin secretion through the activation of lipid oxidation. Acta Diabetol, v. 50, p. 852-857, 2013. PATEL, S. D.; RAJALA, M. W.; ROSSETTI, L.; SCHERER, P. E.; SHAPIRO, L. Disulfide-dependent multimeric assembly of resistin family hormones. Science, v. 304 , p. 1154-8, 2004. PATSCH, J. R.; MIESENBOCK, G.; HOPFERWIESER, T.; MUHLBERGER, V.; KNAPP, E.; DUNN, J. K.; GOTTO, A. M. JR.; PATSCH, W. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler. Thromb, v. 12, p. 1336–1345, 1992. PELEG-RAIBSTEIN, D.; LUCA, E.; WOLFRUM, C. Maternal high-fat diet in mice programs emotional behavior in adulthood. Behav. Brain Res., v. 233, p. 398–404, 2012. PENTINAT, T.; RAMON-KRAUEL, M.; CEBRIA, J.; DIAZ, R.; JIMENEZ-CHILLARON, J. C. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology, v. 151, p. 5617–5623, 2010. PERK, J.; DE BACKER, G.; GOHLKE, H.; GRAHAM, I.; REINER, Z.; VERSCHUREN, M.; ALBUS, C.; et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012).The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J, v. 33, p. 1635-701, 2012. POSTON, L. Influence of maternal nutritional status on vascular function in the offspring. Microcirculation, v. 18, p. 256–262, 2012. PRPIC, V.; WATSON, P. M.; FRAMPTON, I. C.; SABOL, M. A.; JEZEK, G. E.; GETTYS, T. W. Adaptive changes in adipocyte gene expression differ in AKR/J and SWR/J mice during diet-induced obesity. J Nutr, v. 132, p. 3325-32, 2002. RACHED, F. H.; CHAPMAN, M. J.; KONTUSH. A. An overview of the new frontiers in the treatment of atherogenic dyslipidemias. Clin Pharmacol Ther, v. 96, p. 57-63, 2014. RAJAPUROHITAM, V.; GAN, X. T.; KIRSHENBAUM, L. A.; KARMAZYN, M. The obesity associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res, v. 93, p. 277–9, 2003. RAJAPUROHITAM, V.; JAVADOV, S.; PURDHAM, D. M.; KIRSHENBAUM, L. A.; KARMAZYN, M. An autocrine role for leptin in mediating the cardiomyocyte hypertrophic effects of angiotensin II and endothelin-1. Journal of Molecular and Cellular Cardiology, v. 41, p. 265–274, 2006. RANDO, O. J. Daddy Issues: Paternal Effects on Phenotype. Cell, v. 151, n. 4, p. 702 – 708, 2012. REDDON, H.; GUÉANT, J. L.; MEYRE, D. The importance of gene-environment interactions in human obesity. Clin Sci (Lond), v. 130, n. 18, p. 1571-1597, 2016. REYNOLDS, R. M.; ALLAN, K. M.; RAJA, E. A.; BHATTACHARYA, S.; MCNEILL, G.; HANNAFORD, P. C.; SARWAR, N.; LEE, A. J.; BHATTACHARYA, S.; NORMAN J. E. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: Follow-up of 1 323 275 person years. BMJ, v. 347, f4539, 2013. RODRIGUEZ, J. S.; RODRIGUEZ-GONZALEZ, G. L.; REYES-CASTRO, L. A.; IBANEZ, C.; RAMIREZ, A.; CHAVIRA, R.; LARREA, F.; NATHANIELSZ, P. W.; ZAMBRANO, E. Maternal obesity in the rat programs male offspring exploratory, learning and motivation behavior: Prevention by dietary intervention pre-gestation or in gestation. Int. J. Dev. Neurosci., v. 30, p. 75–81, 2012. RODRÍGUEZ-HERNÁNDEZ, H.; SIMENTAL-MENDÍA, L. E.; RODRÍGUEZ-RAMÍREZ, G.; REYES-ROMERO, M. A. Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol, v. 2013, 678159, 2013. ROEDER, L. M.; CHOW, B. F. Maternal undernutrition and its long-term effects on the offspring. Am J Clin Nutr, v. 25, n. 8, p. 812-21, Ago-1972. ROSSMEISL, M.; RIM, J. S.; KOZA, R. A.; KOZAK, L. P. Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes, v. 52, p. 1958-66, 2003. SAFONOVA, I.; AUBERT, J.; NEGREL, R.; AILHAUD, G. Regulation by fatty acids of angiotensinogen gene expression in preadipose cells. Biochem J, v. 322, p. 235-239, 1997. SALTIEL, A. R; OLEFSKY. J. M. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest, v. 127, n. 1 p. 1-4, 2017. SAMUELSSON, A. M.; MATTHEWS, P. A.; ARGENTON, M.; CHRISTIE, M. R.; MCCONNELL, J. M.; JANSEN, E. H.; PIERSMA, A. H.; OZANNE, S. E.; TWINN, D. F.; REMACLE, C.; ROWLERSON, A.; POSTON, L.; TAYLOR, P. D. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension, v. 51, p. 383–392, 2008. SAMUELSSON, A. M.; MORRIS, A.; IGOSHEVA, N.; KIRK, S. L.; POMBO, J. M.; COEN, C. W.; POSTON, L.; TAYLOR, P. D. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension, v. 55, n. 1, p. 76–82, 2010. SASAKI, A.; DE VEGA, W. C.; ST-CYR, S.; PAN, P.; MCGOWAN, P. O. Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience, v. 240, p. 1–12, 2013. SASSON, I. E.; VITINS, A. P.; MAINIGI, M. A.; MOLEY, K. H.; SIMMONS, R. A. Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia, v. 58, p. 615 – 624, 2015. SATOH, N.; OGAWA, Y.; KATSUURA, G.; NUMATA, Y.; TSUJI, T.; HAYASE, M.; EBIHARA, K.; MASUZAKI, H.; HOSODA, K.; YOSHIMASA, Y.; NAKAO, K. Sympathetic Activation of Leptin via the Ventromedial Hypothalamus Leptin-Induced Increase in Catecholamine Secretion. Diabetes, v. 48, p. 1787–1793, 1999. SCHELLONG, K.; SCHULZ, S.; HARDER, T.; PLAGEMANN, A. Birth weight and long-term overweight risk: Systematic review and a meta-analysis including 643,902 persons from 66 studies and 26 countries globally. PLoS ONE, v. 7, p. e47776, 2012. SCHERER, P. E. The Multifaceted Roles of Adipose Tissue-Therapeutic Targets for Diabetes and Beyond: The 2015 Banting Lecture. Diabetes, v. 65, p. 1452-1461, 2016. SCHERER, P. E.; WILLIAMS, S.; FOGLIANO, M.; BALDINI, G.; LODISH, H. F. A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes. The Journal of Biological Chemistry, v. 270, p. 26746-26749, 1995. SCHMIDT, M. I.; DUNCAN, B. B.. O enfrentamento das doenças crônicas não transmissíveis: um desafio para a sociedade brasileira. Epidemiol. Serv. Saúde, v. 20, n. 4, 2011 SEIBENHENER, M. L.; WOOTEN, M. C. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. JoVE, v. 96, p. e52434, 2015. SHANKAR, K.; HARRELL, A.; LIU, X.; GILCHRIST, J. M.; RONIS, M. J.; BADGER, T. M. Maternal obesity at conception programs obesity in the offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol., v. 294, p. R528–R538, 2008. SHARP, G. C.; LAWLOR, D. A. Paternal impact on the life course development of obesity and type 2 diabetes in the offspring. Diabetologia, v. 62, p. 1802–1810, 2019. SHI, H.; KOKOEVA, M. V.; INOUYE, K.; TZAMELI, I.; YIN, H.; FLIER, J. S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest, v. 116 , n. 11, p. 3015-3025, 2006. SIERRA-HONIGMANN, M. R.; NATH, A. K.; MURAKAMI, C.; GARCIA-CARDENA, G.; PAPAPETROPOULOS, A.; SESSA, W. C.; MADGE, L. A.; SCHECHNER, J. S.; SCHWABB, M. B.; POLVERINI, P. J.; FLORES-RIVEROS, J. R. Biological action of leptin as an angiogenic factor. Science, v. 281, p. 1683–1686, 1998. SIMMERMAN, H. K.; JONES, L. R. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev, v. 78, p. 921–947, 1998. SIMMONS, R. Developmental origins of adult metabolic disease: concepts and controversies. Trends Endocrinol Metab, v. 16, p. 390-394, 2005. SIMONNET, A.; CHETBOUN, M. ; POISSY, J. ; RAVERDY, V. ; NOULETTE, J. ; DUHAMEL, A.; et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) requiring invasive mechanical ventilation. Obesity (Silver Spring, Md.), v. 28, n.7, p. 1195–1199, 2020. SKAZNIK-WIKIEL, M. E.; SWINDLE, D. C.; ALLSHOUSE, A. A.; POLOTSKY, A. J.; MCMANAMAN, J. L. High-fat diet causes subfertility and compromised ovarian function independent of obesity in mice. Bio. Rep., v. 94, n. 5, p. 108, 2016. SKINNER, M. K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol., v. 25, p. 2–6, 2008. SOARES, T. S.; ANDREOLLA, A. P.; MIRANDA, C. A.; KLÖPPEL, E.; RODRIGUES, L. S.; MORAES-SOUZA, R. Q.; DAMASCENO, D. C.; VOLPATO, G. T.; CAMPOS, K. E. Effect of the induction of transgenerational obesity on maternal-fetal parameters. Systems Biology in Reproductive Medicine, v. 64, n. 1, p. 51-59, 2018. SONNENBURG, J. L.; BACKHED, F. Diet-microbiota interactions as moderators of human metabolism. Nature, v. 535, n. 7610, p. 56-64, 2016. SPARANO, S.; AHRENS, W.; DE HENAUW, S.; MARILD, S.; MOLNAR, D.; MORENO, L. A.; SULING, M.; TORNARITIS, M.; VEIDEBAUM, T.; SIANI, A.; et al. Being macrosomic at birth is an independent predictor of overweight in children: Results from the IDEFICS study. Matern Child Health J, v. 17 p. 1373–1381, 2013. SPEIGHT, A.; DAVEY, W. G.; MCKENNA, E.; VOIGT, J. W. Exposure to a maternal cafeteria diet changes open-field behaviour in the developing offspring. Int. J. Dev. Neurosci., v. 57, p. 34–40, 2017. SPRUIJT, B. M.; VAN HOOFF, J. A.; GISPEN, W. H. Ethology and neurobiology of grooming behavior. Physiol. Rev., v. 72, p. 825–852, 1992. SPRUIJT, B. M.; WELBERGEN, P.; BRAKKEE, J.; GISPEN, W. H. An ethological analysis of excessive grooming in young and aged rats. Ann. NY Acad. Sci., v. 525, p. 89-100, 1988. SRIDHAR, S. B.; DARBINIAN, J.; EHRLICH, S. F.; MARKMAN, M. A.; GUNDERSON, E. P.; FERRARA, A.; HEDDERSON, M. M. Maternal gestational weight gain and offspring risk for childhood overweight or obesity. Am J Obstet Gynecol, v. 211 p. e251– e258, 2014. SRINIVASAN, M.; KATEWA, S. D.; PALANIYAPPAN, A.; PANDYA, J. D.; PATEL, M. S. Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am. J. Physiol. Endocrin. Metab., v. 29, n. 4, p. E792–E799, 2006. STEFAN, E.; RAYMOND, N.; ARYA, M. S. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension, v. 35, p. 1270-1277, 2000. STEPPAN, C. M.; BAILEY, S. T.; BHAT, S.; BROWN, E. J.; BANERJEE, R. R.; WRIGHT, C. M.; et al. The hormone resistin links obesity to diabetes. Nature, v. 409, p. 307–312, 2001. STRANAHAN, A. M.; NORMAN, E. D.; LEE, K.; et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus, v. 18, p. 1085-1088, 2008. STUNKARD, A. J.; FOCH, T. T.; HRUBEC, Z. A twin study of human obesity. JAMA, v. 256, p. 51–54, 1986. SULLIVAN, E. L.; GRAYSON, B.; TAKAHASHI, D.; ROBERTSON, N.; MAIER, A.; BETHEA, C. L.; SMITH, M. S.; COLEMAN, K.; GROVE, K. L. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J. Neurosci., v. 30, p. 3826–3830, 2010. SURWIT, R. S.; FEINGLOS, M. N.; RODIN, J.; SUTHERLAND, A.; PETRO, A. E.; OPARA, E. C.; KUHN, C. M.; REBUFFE-SCRIVE, M. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism, v. 44, p. 645-651, 1995. T., BAKE; M., MURPHY; D.G.A., MORGAN; J.G., MERCER. Large, binge-type meals of high fat diet change feeding behaviour and entrain food anticipatory activity in mice. Appetite, v. 77, p. 62-73, 2014. TAJMIR, P.; CEDDIA, R. B.; LI, R. K.; COE, I. R.; SWEENEY, G. Leptin increases cardiomyocyte hyperplasia via extracellular signal-regulated kinase- and phosphatidylinositol 3-kinase-dependent signaling pathways. Endocrinology, v. 145, n. 4, p. 1550-5, 2004. TAK, Y. G.; FARNHAM, P. J. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics & Chromatin, v. 8, p. 57, 2015. TANAKA, S. I.; ISODA, F.; ISHIHARA, Y.; KIMURA, M.; YAMAKAWA, T. T lymphopaenia in relation to body mass index and TNF‐α in human obesity: adequate weight reduction can be corrective. Clinical endocrinology, v. 54, n. 3, p. 347-354, 2001. TARKOWSKI, A.; BJERSING, J.; SHESTAKOV, A.; BOKAREWA, M. I. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J. Cell. Mol. Med, v. 14, p. 1419–1431, 2010. TARTAGLIA, L. A.; DEMBSKI, M.; WENG, X.; DENG, N.; CULPEPPER, J.; DEVOS, R.; RICHARDS, G. J.; CAMPFIELD, L. A.; CLARK, F. T.; DEEDS, J.; MUIR, C.; SANKER, S.; MORIARTY, A.; MOORE, K. J.; SMUTKO, J. S.; MAYS, G. G.; WOOL, E. A.; MONROE, C. A.; TEPPER, R. I. Identification and expression cloning of a leptin receptor, OBR. Cell, v. 83, p. 1263-71, 1995. TARTOF, S. Y.; QIAN, L.; HONG, V.; WEI, R.; NADJAFI, R. F.; FISCHER, H.; et al. Obesity and mortality among patients diagnosed with COVID-19: results from an integrated health care organization. Annals of Internal Medicine, M20-3742. THAMOTHARAN, M.; GARG, M.; OAK, S.; ROGERS, L. M.; PAN, G.; SANGIORGI, F.; LEE, P. W.; DEVASKAR, S. U. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring. Am. J. Physiol. Endocrinol. Metab., v. 292, p. E1270–E1279, 2007. THATCHER, S.; YIANNIKOURIS, F.; GUPTE, M.; CASSIS, L. The adipose renin-angiotensin system: role in cardiovascular disease. Molecular and cellular endocrinology, v. 302, n. 2, p. 111–117, 2009. THORP, A. A.; SCHLAICH, M. P. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J. Diabetes Res, v. 2015, 341583, 2015. TORTORIELLO, D. V.; MCMINN, J.; CHUA, S. C. Dietary-induced obesity and hypothalamic infertility in female DBA/2J mice. Endocrinology, v. 145, p. 1238–1247, 2004. TRZECIAK-RYCZEK, A.; TOKARZ-DEPTUŁA, B.; DEPTUŁA, W. Adipocytokines affecting the immune system – selected data. Centr Eur J Immunol, v. 36, p. 92-4, 2011. TUNE, J. D.; GOODWILL, A. G.; SASSOON, D. J.; MATHER, K. J. Cardiovascular consequences of metabolic syndrome. Translational research: the journal of laboratory and clinical medicine, v. 183, p. 57–70, 2017. UHLEY, V.E.; JEN, K.L. Changes in feeding efficiency and carcass composition in rats on repeated high-fat feedings. Int. J. Obesity, v. 13, p. 849-856, 1989. VALVASSORI, S. S.; VARELA, R. B.; QUEVEDO, J. Animal models of mood disorders: focus on bipolar disorder and depression. In: CONN, P. M. Animal models for study of human disease, 2a edição. Elsevier, USA, 2017. VAN ABEELEN, A. F.; DE ROOIJ, S. R.,; OSMOND, C.,; PAINTER, R. C.; VEENENDAAL, M. V.; BOSSUYT, P. M.; ELIAS, S. G.; GROBBEE, D. E.; VAN DER SCHOUW, Y. T.; BARKER, D. J.; ROSEBOOM, T. J. The sex-specific effects of famine on the association between placental size and later hypertension. Placenta, v. 32, p. 694-698, 2011. VAN OTTERDIJK, S. D.; MATHERS, J. C.; STRATHDEE, G. Do age related changes in DNA methylation play a role in the development of age-related diseases? Biochem. Soc. Trans., v. 41, p. 803–807, 2013. VAN OTTERDIJK, S.; MICHELS, B. K. Transgenerational epigenetic inheritance in mammals: how good is the evidence? FASEB J., v. 30, p. 2457–2465, 2016. VIDO, D. S.; NEJM, M. B.; SILVA, N. R.; SILVA, S. M. A.; CRAVO, S. L.; LUZ, J. Maternal obesity and late effects on offspring metabolism. Arq. Bras. Endocrinol. Metab., v. 58, p. 3, 2014. VOGLER, G.; BODMER, R. Cellular mechanisms of Drosophila heart morphogenesis. Journal of Cardiovascular Development and Disease, v. 2, n. 1, p. 2-16, 2015. VON DIEMEN, V.; TRINDADE, E. N.; TRINDADE, M. R. M. Experimental model to induce obesity in rats. Acta Cirúrgica Brasileira, v. 21, n. 6, p. 425, 2006. WADDELL, J.; MCCARTHY, M. M. Sexual differentiation of the brain and ADHD: what is a sex difference in prevalence telling us? Curr. Top. Behav. Neurosci, v. 9, p. 341-360, 2012. WAKE, M.; NICHOLSON, J. M.; HARDY, P., SMITH, K. Preschooler obesity and parenting styles of mothers and fathers: Australian national population study. Pediatrics, v. 120, n. 6, p. e1520–e1527, 2007. WALKER, C. L.; HO, S. M. Developmental reprogramming of cancer susceptibility. Nat. Rev. Cancer, v. 12, p. 479-486, 2012. WANG, J.; FREIRE, D.; KNABLE, L.; et al. Childhood and adolescent obesity and long-term cognitive consequences during aging. J. Comp. Neurol., v. 523, p. 757-768, 2015. WANG, J.; WANG, H.; LUO, W.; GUO, C.; WANG, J.; CHEN, Y. E.; CHANG, L.; EITZMAN, D.T. Leptin-Induced Endothelial Dysfunction Is Mediated by Sympathetic Nervous System Activity. J Am Heart Assoc, v. 2, p. e000299, 2013. WANG, Y.; YANG, M.; HUANG, Z.; TIAN, L.; NIU, L.; XIAO, S. Urinary cotinine concentrations in preschool children showed positive associations with smoking fathers. Acta Paediatr., v.106, n. 1, p. 67–73, 2017. WATKINS, A. J.; SINCLAIR, K. D. Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am J Physiol Heart Circ Physiol, n. 306, p. H1444 – H1452, 2014. WELTER, D.; MACARTHUR, J.; MORALES, J.; BURDETT, T.; HALL, P.; JUNKINS, H.; KLEMM, A.; FLICEK, P.; MANOLIO, T.; HINDORFF, L.; PARKINSON, H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research, v. 42, p. D1001–D1006, 2014. WHITE, C. L.; PURPERA, M. N.; MORRISON, C. D. Maternal obesity is necessary for the programming effect of a high-fat diet on offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol., v. 296, p. R1464–R1472, 2009. WIJESEKARA, N.; KRISHNAMURTHY, M.; BHATTACHARJEE, A.; SUHAIL, A.; SWEENEY, G.; WHEELER, M. B. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. The Journal of Biological Chemistry, v. 285, n. 44, p. 33623– 33631, 2010. WILLIAMS, K. W.; ZSOMBOK, A.; SMITH, B. N. Rapid Inhibition of Neurons in the Dorsal Motor Nucleus of the Vagus by Leptin. Endocrinology, v. 148, n.4, p. 1868–1881, 2007. WILLIAMS, L. M.; CAMPBELL, F. M.; DREW, J. E.; KOCH, C.; HOGGARD, N.; et al. The development of diet-induced obesity and glucose intolerance in C57BL/6 mice on a high-fat diet consists of distinct phases. PLoS ONE, v. 9, n. 8, p. e106159, 2014. WILSON, R. C.; VACEK, T.; LANIER, D. L.; DEWSBURY, D. A. Open-field behavior in muroid rodents. Behavioral Biology, v. 17, n. 4, p. 495–506, 1976. WISNIEWSKI, P. J.; DOWDEN, R. A.; CAMPBELL, S. C. Role of Dietary Lipids in Modulating Inflammation through the Gut Microbiota. Nutrients, v. 11, p; 117, 2019. WOFFORD, M. R.; HALL, J. E. Pathophysiology and treatment of obesity hypertension. Current Pharmaceutical Design, v. 10, n. 29, p. 3621–3637, 2004. WOODS, S. C.; SEELEY, R. J.; RUSHING, P. A.; D'ALESSIO, D.; TSO, P. A controlled high-fat diet induces an obese syndrome in rats. J Nutr, v. 133, n. 4, p. 1081–7, 2003. WRIGHT, T.; LANGLEY-EVANS, S. C.; VOIGT, J. P. The impact of maternal cafeteria diet on anxiety-related behavior and exploration in the offspring. Physiol. Behav., v. 103, p. 164–172, 2011. WU, H.; BALLANTYNE, C. M. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest. v. 127, n. 1, p. 43-54, 2017. WU, H.; HAUSER, R.; KRAWETZ, S. A.; PILSNER, J. R. Environmental susceptibility of the sperm epigenome during windows of male germcell development. Curr. Environ. Health Rep., v. 2, p. 356-66, 2015. WU, X.; MOTOSHIMA, H.; MAHADEV, K.; STALKER, T. J.; SCALIA, R.; GOLDSTEIN, B. J. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes, v. 52, n. 6, p. 1355–1363, 2003. XIAO, R. P. Cell logic for dual coupling of a single class of receptors to Gs and Gi proteins. Circ Res, v. 87, p. 635–637, 2000. XU, W. L.; ATTI, A. R.; GATZ, M.; PEDERSEN, N. L.; JOHANSSON, B.; FRATIGLIONI, L. Midlife overweight and obesity increase late-life dementia risk a population-based twin study. Neurology, v. 76, p. 1568-1574, 2011b. XU, Y.; ELMQUIST, J. K.; FUKUDA, M. Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann N Y Acad Sci, v. 1243, p. 1-14, 2011a. YAMAUCHI, T.; KAMON, J.; ITO, Y.; TSUCHIDA, A.; YOKOMIZO, T.; KITA, S.; SUGIYAMA, T.; MIYAGISHI, M.; HARA, K.; TSUNODA, M.; et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, v. 423, p. 762-769, 2003. YANG, R. Z.; HUANG, Q.; XU, A.; MCLENITHAN, J. C.; EISEN, J. A.; SHULDINER, A. R.; et al. Comparative studies of resistin expression and phylogenomics in human and mouse. Biochem. Biophys. Res. Commun. v. 310, p. 927–935, 2003. YE, R.; SCHERER, P. E. Adiponectin, driver or passenger on the road to insulin sensitivity? Molecular Metabolism, v. 2, n. 3, p. 133–141, 2013. YOKOMIZO, H.; INOGUCHI, T.; SONODA, N.; SAKAKI, Y.; MAEDA, Y.; INOUE, T.; HIRATA, E.; TAKEI, R.; IKEDA, N.; FUJII, M.; FUKUDA, K.; SASAKI, H.; TAKAYANAGI, R. Maternal high-fat diet induces insulin resistance and deterioration of pancreatic beta-cell function in adult offspring with sex differences in mice. Am. J. Physiol. Endocrinol. Metab., v. 306, p. E1163 – E1175, 2014. YOO, S. R.; KIM, Y. J.; PARK, D. Y.; JUNG, U. J.; JEON, S. M,.; AHN, Y.T.; et al. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity (Silver Spring), v. 21, n. 12, p. 2571-8, 2013. YUDKIN, J. S.; STEHOUWER, C. D. A.; EMEIS, J. J..; COPPACK, S. W. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arteriosclerosis, Thrombosis, and Vascular Biology, v. 19, n. 4, p. 972–978, 1999. YVAN-CHARVET, L.; EVEN, P.; BLOCH-FAURE, M.; et al. Deletion of the angiotensin type 2 receptor reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes, v. 54, p. 991-9, 2005. ZECA, S. G. Efeito do consumo materno de dieta hiperlipídica sobre a função cardíaca da prole jovem. 2015. 109f. Dissertação (Mestrado em Ciências Fisiológicas)- Institituto de Biologia. Universidade Federal Rural o Rio de Janeiro. Seropédica. 2015. ZHANG, L., XIONG, X. Q.; FAN, Z. D.; GAN, X. B.; GAO, X. Y.; ZHU, G. Q. Involvement of enhanced cardiac sympathetic afferent reflex in sympathetic activation in early stage of diabetes. J. Appl. Physiol, v. 113, p. 47-55, 2012. ZHAO, X. L.; GUTIERREZ, L.M.; CHANG, C.F.; HOSEY, M. M. The alpha 1-subunit of skeletal muscle L-type Ca channels is the key target for regulation by A-kinase and protein phosphatase-1C. Biochem Biophys Res Commun, v. 198, p. 166–173, 1994. ZHOU, Y.; ZHU, H.; WU, H. Y.; JIN, L. Y.; CHEN, B.; PANG, H. Y.; MING, Z. H.; CHENG, Y.; ZHOU, C. L.; GUO, M. X.; HUANG, Y. T.; YU, D. Q.; SHENG, J. Z.; HUANG, H. F. Diet-Induced Paternal Obesity Impairs Cognitive Function in Offspring by Mediating Epigenetic Modifications in Spermatozoa. Obesity (Silver Spring, Md.), v. 26, n. 11, p. 1749–1757, 2018.por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69652/2020%20-%20Suelen%20Guedes%20Zeca.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5745
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-06-06T21:39:11Z No. of bitstreams: 1 2020 - Suelen Guedes Zeca.pdf: 3091702 bytes, checksum: 230f43102416157cda462a713b6b6cca (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-06-06T21:39:11Z (GMT). No. of bitstreams: 1 2020 - Suelen Guedes Zeca.pdf: 3091702 bytes, checksum: 230f43102416157cda462a713b6b6cca (MD5) Previous issue date: 2020-09-18eng
Appears in Collections:Mestrado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Suelen Guedes Zeca.pdf3.02 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.