Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15155
Full metadata record
DC FieldValueLanguage
dc.creatorAlmeida, Cláudio da Silva
dc.date.accessioned2023-11-20T01:14:20Z-
dc.date.available2023-11-20T01:14:20Z-
dc.date.issued2012-06-14
dc.identifier.citationALMEIDA, Cláudio da Silva. Influência do enriquecimento ambiental na expressão comportamental e de C-fos em animais submetidos ao labirinto em cruz elevado. 2012. 38 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2012.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/15155-
dc.description.abstractThe present work aimed to study the effects of environmental enrichment (EE) on the behavioral expression of mice in elevated plus maze (EPM), open field (OF) and tail suspension (TST) tests as well as evaluate the expression of c-fos in the brain of mice submitted to the EPM after exposure to EE in different stages of life. Pairs of mice were placed in two environments, enriched or standard and the offspring of these couples were used in the experiments at 70 days old. In the first experiment, the pups were kept in the same environment of them parents and were divided into three groups, PD1 (control, standard environment for all them life), ENR-ADAPT (enrichment for all them life but adapted to the standard conditions for 1 week before testing), ENR-TOTAL (enrichment for all them life) who underwent a battery of behavioral tests. In a second experiment, four groups were studied: ENR (enrichment lifetime), ENRP (enrichment up to weaning), PENR (enrichment after weaning) and CON (control, living in standard environment for al them life). These groups were exposed to the EPM and after that were used to perform the immunohistochemistry for c-fos. In experiment 1, the groups ENR-ADAPT and ENRTOTAL showed lower levels of anxiety in the EPM than PD1 group, characterized mainly by higher % of time spent in the open arms. In the OF, the groups ENR-ADAPT and ENRTOTAL showed an increase in motor and exploratory activities reflected by an increase in the number of quadrants crossed and rearings. Antidepressant properties was not characterized in the TST. In experiment 2, all groups submitted to the EE showed a reduction in the anxiety expressed in the EPM, characterized by increase in the % time and entries in the open arms. Considering the c-fos expression analysis, no significant differences in the analysis of c-fos between ENR, ENRP, PENR and the CON group in the periaqueductal gray matter, cingulate cortex, medial nucleus of the amygdala, basolateral nucleus of the amygdale and central nucleus of the amygdala. Thus, environmental enrichment seems to promote anxiolytic effects in the EPM test when implemented at any stage of life. This effect seems no to be correlated with a changes in neuronal activity in the areas analyzed.eng
dc.description.sponsorshipFundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpor
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectneuroanatomia funcionalpor
dc.subjectativação neuronalpor
dc.subjectansiolíticopor
dc.subjectfunctional neuroanatomyeng
dc.subjectneuronal activationeng
dc.subjectanxiolyticeng
dc.titleInfluência do enriquecimento ambiental na expressão comportamental e de C-fos em animais submetidos ao labirinto em cruz elevadopor
dc.title.alternativeInfluence of environmental enrichment on behavioral and C-fos expression in animals submitted to the elevated plus-mazepor
dc.typeDissertaçãopor
dc.contributor.advisor1Rocha, Fabio Fagundes da
dc.contributor.advisor1ID068.497.697-82por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3804957959723162por
dc.contributor.referee1Sannago, Marcelo Felippe
dc.contributor.referee2Reis, Luis Carlos
dc.creator.ID098.528.197-98por
dc.creator.Latteshttp://lattes.cnpq.br/0560189477795224por
dc.description.resumoO presente trabalho estudou os efeitos do enriquecimento ambiental (EA) na expressão comportamental de camundongos nos testes do labirinto em cruz elevado (LCE), campo aberto (CA) e suspensão pela cauda (SPC) além de avaliar a expressão de c-fos no encéfalo de camundongos submetidos ao LCE após exposição ao EA em diferentes fases da vida. Casais de camundongos foram colocados em dois ambientes, enriquecido ou padrão e os filhotes destes casais utilizados nos experimentos aos 70 dias de idade. No primeiro experimento, os filhotes foram mantidos no mesmo ambiente de criação dos pais, sendo divididos em três grupos: PD1 (controle, ambiente padrão por toda a vida), ENR-ADAPT (enriquecimento por toda a vida, adaptado às condições padrão por 1 semana antes dos testes), ENR-TOTAL (enriquecimento por toda a vida) que foram submetidos a uma bateria de testes comportamentais. Em um segundo experimento, foram estudados 4 grupos: ENR (enriquecimento a vida inteira), ENRP (enriquecimento até o desmame), PENR (enriquecimento após o desmame) e CON (controle, vivendo em ambiente padrão por toda a vida) que foram submetidos ao LCE e logo após realizada a imunohistoquímica para c-fos. No experimento 1, os grupos ENR-ADAPT e ENR-TOTAL apresentaram menor grau de ansiedade no LCE, caracterizado principalmente por maior % de tempo de permanência nos braços abertos. No CA, os grupos ENR-ADAPT e ENR-TOTAL apresentaram aumento das atividades motora e exploratória com aumento no número de quadrantes percorridos e levantamentos realizados. O protocolo utilizado não apresentou atividade do tipo antidepressiva no SPC. No experimento 2, todos os grupos submetidos ao EA demonstraram redução da ansiedade no LCE, caracterizada por aumento das % de tempo e entradas nos braços abertos. Na análise da expressão de c-fos não houve diferenças significativas na análise de c-fos dos grupos ENR, ENRP e PENR em relação ao grupo CON na substância cinzenta periaquedutal, córtex cingulado e nos núcleos medial, central e basolateral da amígdala. Assim o enriquecimento ambiental parece promover efeitos ansiolíticos quando implementado em qualquer fase da vida no teste do LCE, este efeito parece não estar correlacionado com alterações na atividade neuronal nas áreas analisadas.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma Multicêntrico de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesABRAHAM, I. M.; KOVÁCS, K. J. Posnatal handling alters the activation of stressrelated neural circuites. European Journal of Neurosciense, vol. 12, pp. 3003-3014, 2000. ALBRECHET-SOUZA, L.; BORELLI, K. G.; BRANDÃO, M. L. Activity of the medial prefrontal cortex and amygdala underlies one-trial tolerance of rats in the elevated plusmaze. Journal of Neuroscience Methods 169, 109–118, 2008. ALBRECHET-SOUZA, L.; BORELLI, K. G.; CARVALHO, M. C.; BRANDÃO, M. L. The anterior cingulated cortex is a target structure for the anxiolytic-like effects of benzodiazepines assessed by repeated exposure to the elevated plus maze and fos immunoreactivity. Neuroscience 164, 387–397, 2009. ALI, A. E. E.; WILSON, Y. M.; MURPHY, M. A single exposure to an enriched environment stimulates the activation of discrete neuronal populations in the brain of the fostau-lacZ mouse. Neurobiology of Learning and Memory 92, 381–390, 2009. ANDRADE, J. S.; ABRÃO, R. O.; CESPEDES, I. C.; GARCIA, M. C.; NASCIMENTO, J. O. G.; SPADARI-BRATFISH, R. C.; MELLO, L. L.; SILVA, R. C. B.; VIANA, M. B. Acute restraint differently alters defensive responses and fos immunoreactivity in the rat brain. Behavioural Brain Research, 232, 20– 29, 2012. ARCHER, J. Tests for emotionality in rats and mice: a review. Anim. Behav., 21, 205- 235, 1973. ARIKAIN, S.R. & GORMAN, J.M. A Review of the Diagnosis, Pharmacologic Treatment, and Economics Aspects of Anxiety Disordres. Primary Care Companion J.Clin. Psychiatry, (3) 110-117, 2001. 34 BAI, F.; LI, X.; CLAY, M.; LINDSTROM, T.; SKOLNICK, P. Intra- and interstrain differences in models of ‘‘behavioral despair’’. Pharmacology, Biochemistry and Behavior, 70, 187–192, 2001. BAUMANS, V. Environmental Enrichment for Laboratory Rodents and Rabbits: Requirements of Rodents, Rabbits, and Research. ILAR Journal. Volume 46, Number 2 2005. BECK, C.H.M. & FIBIGER, H.C. Conditioned Fear-induced Changes in Behavior and in the Expression of the Immediate Early Gene c-fos: With and Whithout Diazepam Pretreatment.The Journal of Neuroscience, 15 (1), 709-720, 1995. BEIJAMINI, V & GUIMARÃES, F. S. Activation of neurons containing the enzyme nitric oxide synthase following exposure to an elevated plus maze. Brain Research Bulletin 69, 347–355, 2006. BELZ, E.E.; KENNELL, J.S.; CZAMBEL, R.K.; RUBIN, R.T.; RHODES, M.E. Environmental enrichment lowers stress-responsive hormones in singly housed male and female rats. Pharmacol Biochem Behav, 76:481–486, 2003. BENAROYA-MILSHTEIN, N.; HOLLANDER, N.; APTER, A.; KUKULANSKY, T; RAZ, N; WILF, A.; YANIV, I.; PICK, C.G. Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. European Journal of Neuroscience, 20: 1341–1347, 2004. BOERE, V. Environmental enrichment for neotropical primates in captivity. Ciência Rural, Santa Maria, v.31, n.3, p.543-551, 2001. BORKOVEC, T.D.; ABEL, J.L.; NEWMAN, H. Effects of Psychotherapy on Comorbid Conditions in Generalized Anxiety Disorder. Journal of Consulting and Clinical Psychology, Vol.63, No. 3. 479-483, 1995. BRANDÃO M. L. & GRAEF F .G. Neurobiology of mental disorders. Capitulo 3. Paginas 44 e 45. Nova Science Publish inc. New York. 2006. BRENES, J.C.; PADILLA, M.; FORNAGUERA, J. A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats. Behavioural Brain Research, 197, 125–137, 2009. CAROBREZ, A. P. & BERTOGLIO, L. J. Ethological and temporal analyses of anxietylike behavior: The elevated plus-maze model 20 years on. Neuroscience and Biobehavioral Reviews. 29, 1193–1205, 2005. CARVALHO, M. C.; MOREIRA, C. M.; ZANOVELI, J. M.; BRANDÃO, M. L. Central, but not basolateral, amygdale involvement in the anxiolytic-like effects of midazolam in rats in the elevated plus maze. J Psychopharmacol, 26 (4) 543-554, 2012. CASTILLO, A. R. G. L.; RECONDO, R.; ASBAHR, F. R.; MANFRO, G.G. Transtornos de ansiedade. Rev Bras Psiquiatr, 22 (Supl II): 20-3, 2000. CHAPILLON, P.; MANNECHE, C.; BELZUNG, C.; CASTON, J. Rearing Environmental Enrichment in Two Inbred Strains of Mice: Effects on Emotional Reactivity. Behavior Genetics, 29: 41-46, 1999. CHAUVET, C.; LAURDEX, V.; JABER, M.; SOLINAS, M. Brain regions associated with the reversal of cocaine conditioned place preference by environmental enrichment. Neuroscience 184, 88–96, 2011. CRUZ, A. P. M.; FREI, F.; GRAEFF, F. G. Ethopharmacological Analysis of Rat Behavior on the Elevated Plus-Maze. Pharmacology Biochemistry and Behavior, Vol. 49, No. 1, p. 171-176, 1994. DAVIS, M. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci, 15, 353- 75, 1992. DIORIO, D.; VIAU, V.; MEANEY, M. J. The role of the medial prefrontal córtex (cingulated gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. The Journal of Neuroscience, September, 13(9), 3839-3847, 1993. 35 American Psychiatric Association. Manual Diagnóstico e Estatístico de Transtornos Mentais. Artmed, Porto Alegre, 4.ed.-texto revisado, 2007. DUNCAN, G.E.; KNAPP, D.J.; BREESE, G.R. Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety. Brain Research, 713, 79-91, 1996. FOSTER, T. C. & DUMAS, T. C. Mechanism for increased hippocampal synaptic strength following differential experience. Journal of Neurophysiology, 85, 1377–1383, 2001. FOX, C.; MERALI, Z.; HARRISON, C. Therapeutic and protective effect of environmental enrichment against psychogenic and neurogenic stress. Behavioural Brain Research , 175, 1–8, 2006. FRANKLIN, K. B. J. & PAXINOS, G. The mouse Brain in stereotaxic coordinates. Academic Press is an imprint of Elsevier, New York, USA. Terceira edição 2007. FRISKE, J.E.; & GAMMIE, S.C. Environmental enrichment alters plus maze, but not maternal defense performance in mice. Physiology & Behavior 85, 187 – 194, 2005. GALANI, R.; BERTHEL, M.; LAZARUS,C.; MAJCHRZAK, M.; BARBELIVIEN, A.;KELCHE, C.; CASSEL, J. The behavioral effects of enriched housing are not altered by serotonin depletion but enrichment alters hippocampal neurochemistry. Neurobiology of Learning and Memory, 88, 1–10, 2007. GRAEFF, F.G. Ansiedade. In Graeff, F.G. & Brandão, M.L. Neurobiologia das doenças mentais. São Paulo, Brasil, Editora Lemos, 3a,. edição, 109-144, 1996. GRAEFF, F.G. Ansiedade, pânico e o eixo hipotálamo-pituitária-adrenal. Rev Bras Psiquiatr, 29 (Supl I):S3-6, 2007. GRAEFF, F.G.; SILVEIRA, M. C. L.; NOGUEIRA, R. L.; AUDI, E. A.; OLIVEIRA, R. M. W. Role of the amygdala and periaqueductal gray in anxiety and panic. Behavioural Brain Research, 58, 123-131, 1993. HALE, M. W.; SHEKHAR, A.; LOWRY, C. A. Stress-related Serotonergic Systems: Implications for Symptomatology of Anxiety and Affective Disorders. Cell Mol Neurobiol, 32, 695-708, 2012. HEDLUND, P. B., HUITRON-RESENDIZ, S., HENRIKSEN, S. J., SUTCLIFFE, J. G. 5-HT7 Receptor Inhibition and Inactivation Induce Antidepressantlike Behavior and Sleep Pattern. Biol. Psychiatry, 58, 831–837, 2005. HEIDBREDER, C. A. & GROENEWEGEN, H. J. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience and Biobehavioral Reviews, 27, 555–579, 2003. HETTEMA, J.M.; NEALE, M.C.; KENDLER, K.S. A Review and Meta-Analysis of the Genetic Epidemiology of Anxiety Disorders. Am J Psychiatry, 158, 1568–1578, 2001. HINKS, G. L., BROWN, P., FIELD, M., POAT, J. A., HUGHES, J. The anxiolytics CI- 988 and chlordiazepoxide fail to reduce immediate early gene mRNA stimulation following exposure to the rat elevated X-maze. European Journal of Pharmacology 312,153-161, 1996. HOFFMAN, G.E & LYO, D. Anatomical Markers of Activity in Neuroendocrine Systems: Are we all ‘Fos-ed out’? Journal of Neuroendocrinology, Vol. 14, 259–268, 2002. HOFFMAN, G.E.; SMITH, M.S.; VERBALIS, J.G. c-fos e related Immediate Early Gene Products as Markers of Activity in Neuroendocrine Systems. Fronties in Neuroendocrinology, vol.14 nº 3 pp 173-213, 1993. HOLMES, A.; PARMIGIANI, S.; FERRARI, P. F.; PALANZA, P.; RODGERS, R. J. Behavioral profile of wild mice in the elevated plus-maze test for anxiety. Physiology & Behavior, 71, 509 – 516, 2000. http://cfnewsads.thomasnet.com/images/large/828/828524.jpg retirado de http://news.thomasnet.com/fullstory/Test-Equipment-screens-anti-depressant-activity-inmice-828524 em 2/4/2012. 36 ICKES, B. R.; PHAM, T. M.; SANDERS, L. A.; ALBECK, D. S.; MOHAMMED, A. H.; GRANHOLM, A. C. Long-term environmental enrichment leads to regional increases inneurotrophin levels in rat brain. Experimental Neurology, 164, 45–52, 2000. KEMPERMANN, G., KUHN, H.G.; GAGE, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493– 495, 1997. KEMPERMANN, G.; KUHN, H. G.; GAGE, F.H. Experience-Induced Neurogenesis in the Senescent Dentate Gyrus. The Journal of Neuroscience, 18, 3206–3212, 1998. KESSLER, R.C.; CHIU, W.T.; DEMLER, O.; WALTERS, E.E. Prevalence, Severity, and Comorbidity of Twelve-month DSM-IV Disorders in the National Comorbidity Survey Replication (NCSR). Arch Gen Psychiatry, 62(6), 617–627, junho 2005. KICHENSKI, G. C. & CAROBREZ, A. P. The dorsal periaqueductal gray modulates the increased fear-like behavior exhibited by experienced rats in the elevated plus-maze. Behavioural Brain Research 206, 120–126, 2010. KOVÁCS, K.J. C-Fos as a transcription factor: A stressful (re)view from a functional map. Neurochem Int, 33: 287–297, 1998. KRAMER, K. M., CHOE, C., CARTER, C. S., CUSHING, B. S. Developmental effects of oxytocin on neural activation and neuropeptide release in response to social stimuli. Hormones and Behavior, 49, 206 – 214, 2006. LINDEN, A.M.; BAEZ, M.; BERGERON, M.; SCHOEPP, D.D. Increased c_fos expression in the centromedial nucleus of the thalamus in metabotropic glutamate 8 receptor knouckout mice following the elevated plus maze test. Neuroscience, 121, 167–178, 2003. LINDEN, A.M.; GREENE, S. J.; BERGERON, M.; SHOEPP, D. D. Anxiolytic Activity of the MGLU2/3 Receptor Agonist LY354740 on the Elevated Plus Maze is Associated with the Suppression of Stress-Induced c-Fos in the Hippocampus and Increases in c-Fos Induction in Several Other Stress-Sensitive Brain Regions. Neuropsychopharmacology, 29, 502–513, 2004. LISTER, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology, 92, 180–185, 1987. MARASHI, V.; BARNEKOW, A.; OSSENDORF, E.; SACHSER, N. Effects of different forms of environmental enrichment on behavioral, endocrinological, and immunological parameters in male mice. Horm Behav., 43, 281–292, 2003. MUEGGLER, T.; RAZOUX, F.; RUSSIG, H.; BUEHLER, A.; FRANKLIN, T. B.; BALTES, C.; MANSUY, I. M.; RUDIN, M. Mapping of CBV changes in 5-HT1A terminal fields by functional MRI in the mouse brain. European Neuropsychopharmacology, 21, 344– 353, 2011. NIKOLAEV, E.; KACZMAREK, L.; ZHU, S.W.; WINBLAD, B.; MOHAMMED, A.H. Environmental manipulation differentially alters c-Fos expression in amygdaloid nuclei following aversive conditioning. Brain Research, 957, 91–98, 2002. NISHIKAWA, H.; HATA, T.; ITHO, E.; FUNAKAMI, Y. A Role for CorticotropinReleasing Factor in Repeated Cold Stress- Induced Anxiety-Like Behavior during Forced Swimming and Elevated Plus-Maze Tests in Mice. Biol. Pharm. Bull. 27 (3), 352—356, 2004. NITHIANANTHARAJAH, J. & HANNAN, A. J. Enriched environments, experience dependent plasticity and disorders of the nervous system. Nature Reviews Neuroscience, 7, 697–709, 2006. PAYLOR, R.; SPENCER, C.M.; YUVA-PAYLOR, L. A.; PIEKE-DAHL, S. The use of behavioral test batteries, II: Effect of test interval. Physiology & Behavior, 87, 95 – 102, 2006. PELLOW, S.; CHOPIN, P.; FILE, S. E.; BRILEY, M. Validation of open: closed arm entries in a elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods, 4, 149-167, 1985. 37 ROCHA, F. F.; ALMEIDA, C. S.; SANTOS, R. T.; SANTANA, S. A.; COSTA, E. A.; PAULA, J. R.; VANDERLINDE, F. A. Anxiolytic-like and sedative effects of Hydrocotyle umbellata extract in mice. Revista Brasileira de Farmacognosia 21(1), 115-120, Jan./Feb. 2011. RODGERS, R. J.; CAO, B. J.; DALVI, A.; HOLMES, A. Animal models of anxiety: an ethological perspective. Brazillian Jounal of Medical and Biological Research, 30, 289-304, 1997. RODGERS, R. J. & DALVI, A. Anxiety, Defence and the Elevated Plus-maze. Neuroscience and Biobehavioral Reviews, Vol. 21, No. 6, pp. 801–810, 1997. RODGERS, R. J.; HALLER, J.; HOLMES, A.; HALAZS, J.; WALTON, T. J.; BRAIN, P. F. Corticosterone response to the plus-maze: High correlation with risk assessment in rats and mice. Physiology & Behavior, 68, 47–53, 1999. RODGERS, R. J. & JHONSON, J. T. Factor Analysis of Spatiotemporal and Ethological Measures in the Murine Plus-Maze Test of Anxiety. Pharmacology Biochemistry and Behavior, Vol. 52, No. 2, pp. 297-303, 1995. ROY, V.; BELZUNG, C.; DELARUE, C., CHAPILLON, P. Environmental enrichment in BALB/c mice Effects in classical tests of anxiety and exposure to a predatory odor. Physiology & Behavior, 74, 313– 320, 2001. SAH, P.; FABER, E. S. L.; LOPES DE ARMENTIA, M.; POWER, J. The Amygdaloid Complex: Anatomy and Physiology. Physiol. Rev.83, 803–834, 2003. SHYNE, A. Meta-Analytic Review of the Effects of Enrichment on Stereotypic Behavior in Zoo Mammals. Zoo Biology, 25, 317–337, 2006. SILVEIRA, M. C.; SANDNER, G.; GRAEFF, F. G. Induction of Fos immunoreactivity in the brain by exposure to the elevated plus-maze. Behavioural Brain Research, 56, 115-118, 1993. SILVEIRA, M.C.; ZANGROSSI, H.; DE BARROS VIANA, M.; SILVEIRA, R.; GRAEFF, F.G. Differential expression of Fos protein in the rat brain induced by performance of avoidance or escape in the elevated T-maze. Behav Brain Res, 126, 13–21, 2001. SIMPSON, J.& KELLY, J.P. The impact of environmental enrichment in laboratory rats—Behavioural and neurochemical aspects. Behavioural Brain Research, 222, 246–264, 2011. SINGEWALD, N. Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping Neuroscience and Biobehavioral. Reviews, 31, 18–40, 2007. SINGEWALD, N.; SALCHNER, P.; SHARP, T. Induction of c-Fos Expression in Specific Areas of the Fear Circuitry in Rat Forebrain by Anxiogenic Drugs. Biol Psychiatry, 53, 275–283, 2003. SINGEWALD, N & SHARP, T. Neuroanatomical targets of anxiogenic drugs in the hindbrain as revealed by fos immunocytochemistry. Neuroscience, Vol. 98, No. 4, pp. 759– 770, 2000. SIQUEIRA, C. C.; ROSSONI, R. R.; SCHENBERG, L. C. Dorsal periaqueductal gray matter-evoked panic-like behaviors are markedly inhibited by a low peripheral dose of thyrotropin releasing hormone. Psychoneuroendocrinology, 35, 262—271, 2010. STERU, L.; CHERMAT, R.; THIERRY, B.; SIMON. P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology, 85, 367-370, 1985. SZTAINBERG, Y.; KUPERMAN, Y.; TSOORY, M.; LEBOW, M.; CHEN, A. The anxiolytic effect of environmental enrichment is mediated via amygdalar CRF receptor type 1. Molecular Psychiatry, 1–13, 2010. 38 VILHENA-FRANCO,T.; MECAWI, A.S.; ELIAS, L.L.K.; ANTUNES-RODRIGUES, J. Oestradiol Potentiates Hormone Secretion and Neuronal Activation in Response to Hypertonic Extracellular Volume Expansion in Ovariectomised Rats. Journal of Neuroendocrinology, 23, 481–489, 2011. VIOLLE, N.; BALANDRAS, F.; LE ROUX, Y.; DESOR, D.; SHOEREDER, H. Variations in illumination, closed wall transparency and/or extramaze space influence both baseline anxiety and response to diazepam in the rat elevated plus-maze. Behavioural Brain Research, 203, 35–42, 2009. WEISS, S. M.; WADSWORTH, G.; FLETCHER, A.; DOURISH, C. T. Utility of ethological analysis to overcome locomotor confounds in elevated maze models of anxiety. Neuroscience and Biobehavioral Reviews, 23, 265–271, 1998. WHO 2001 - World Health Organization. Burden of mental and behavioural disorders. Capitulo 2. Pagina 24. [2007 Junho 3] Disponível em: URL: ww.who.int/entity/whr/2001/chapter2/en/por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/60169/2012%20-%20Cl%c3%a1udio%20da%20Silva%20Almeida.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3596
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2020-06-02T13:53:15Z No. of bitstreams: 1 2012 - Cláudio da Silva Almeida.pdf: 1549338 bytes, checksum: f81c90a3d396bb743bad77052645f260 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-06-02T13:53:15Z (GMT). No. of bitstreams: 1 2012 - Cláudio da Silva Almeida.pdf: 1549338 bytes, checksum: f81c90a3d396bb743bad77052645f260 (MD5) Previous issue date: 2012-06-14eng
Appears in Collections:Mestrado Multicêntrico em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2012 - Cláudio da Silva Almeida.pdfCláudio da Silva Almeida1.51 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.