Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15152
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Lau, Raphael da Silva | |
dc.date.accessioned | 2023-11-20T01:14:20Z | - |
dc.date.available | 2023-11-20T01:14:20Z | - |
dc.date.issued | 2022-10-13 | |
dc.identifier.citation | LAU, Raphael da Silva. Programação paterna com propionato de testosterona e seus impactos sobre a prole de camundongos. 2022. 154 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2022. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/15152 | - |
dc.description.abstract | Anabolic androgenic steroids (AAS) are substances that comprise testosterone and substances chemically derived from it, being widely used for aesthetic and recreational purposes. Most research involving the transmission of genetic/epigenetic inheritance has mainly focused on endocrine and nutritional insults of maternal origin, and little or no attention has been given to insults of paternal origin and their possible relationship to the establishment of inheritance in their offspring. Thus, our objective was to verify whether paternal exposure to a supraphysiological dose of testosterone propionate is capable of altering the behavioral parameters of the offspring of Swiss mice during adulthood, as well as the transcriptional mechanisms involved. For this purpose, 10 male mice were used in protocol 1, divided into a control group (n=5) and a treated group (n=5) that were administered with 7.5 mg/kg of PT, twice a week, during 5 weeks. At the end of the protocol, the animals were placed in mating. After the offspring reached 70 days of life, they were submitted to a battery of behavioral tests consisting of: open field (AC), object recognition 6 hours (RO 6h), light-dark box (CCE), elevated plus maze (LCE) ) and tail suspension (SC). At the end of the behavioral methods, the animals were euthanized, and the hippocampus was dissected for the analysis of the following genes through RT-qPCR: Gabra2, Gad1, Bdnf, Ntrk2, Tph2, Htr1a and Th. Statistical analysis was performed using Student's t test or Mann-Whittney test and means were considered different when p < 0.05. Regarding the behavioral findings, an increase in anxiety-like behaviors was observed in the offspring of males (M) and females (F). In males, it was observed a decrease in permanence on the light side in the OHC (p = 0.002) (↓60.3%), as well as in the open arms of the ECL (p=0.04) (↓26.8%) and an increase in permanence in closed arms (p=0.01) (↑47.1%), while in females it was observed an increase in the number of fecal boluses in the CA test (p=0.013) (↑81.1%) and an increase in the number of risk assessment postures (SAP) in the LCE (p=0.01) (↑109.4%). Furthermore, both males and females reduced immobility time in the SC test, (p = 0.02) (↓28%) and (p=0.04) (↓33.1%), respectively. In the OR 6h test, only females showed deficits in mnemonic memory, visualized by the relative discrimination parameter (D2) (↓9.5%). In turn, only males showed alterations in gene expression in the hippocampus, such as increased expression of Gabra2 (p=0.04) (↑42.8%) and reduced expression of Gad1 (p=0.02) ( ↓17%). For protocol 2, 59 male animals were used to form the control (n=28) and treated (n=31) groups, which were administered with PT, using the same treatment as protocol 1. Of this total number of animals, a new distribution was performed so that one part was submitted to a battery of behavioral tests right at the end of the treatment (control=23, treated=25), while another part was placed in mating (control=5, treated=6). The behavioral tests performed at this stage with the animals submitted to PT treatment were: CA, RO 6h, CCE, LCE, social interaction (IS), SC and resident intruder (IR). There were no changes in anxiety-like behaviors. In turn, it was observed that the treatment reduced the absolute discrimination time (D1) (p=0.01) (↓40.1%), as well as the absolute discrimination indexes (D2) (p=0.004) (↓ 38.2%) and the relative discrimination index (D3) (p=0.03) (↓14.1%). In addition, there was a reduction in social engagement with a conspecific, observed in the social interaction test, observed by the reduction in the sociability index (p=0.03) (↓8.3%). Parents treated with PT also had an increase in aggressive behavior, observed from the decrease in latency to the 1st attack (p=0.0001) (↓67%), as well as the increase in the number of attacks (p=0.014) (↑83.8%) and fighting time (boxing) (p=0.0001) (↑138.5%). Finally, there was a reduction in the testicular index (p=0.01) (↓29.6%), without changes in body mass, as well as in plasma testosterone levels, evaluated by the ELISA method. In turn, the M and F offspring of the paternal lineage that were submitted to treatment and, later, to mating, were evaluated at 70 days of age using behavioral assessment methods complementary to those performed in protocol 1 and were composed of: RO 24h, Barnes Maze (LB), Passive Dodge (EP), IS, IR. It was observed that the offspring of male mice had a memory deficit 24h after exposure to the familiar object, observed by the reduction of D1 (p=0.003) (↓87.7%), D2 (p=0.02) (↓90 .5%) and D3 (p=0.02) (↓19%). In addition, there was a reduction in social engagement with a conspecific, observed in the social interaction test, with a reduction in the sociability index (p=0.02) (↓24.4%). The same result was found in the offspring of female mice with a reduction in the social interaction index (p=0.046), as well as the social preference index (0.02) (↓17.5%). There were no significant differences in the LB, EP and IR tests. Thus, our results suggest that paternal programming with PT was able to promote behavioral and neurochemical changes in brain systems involved with affective responses, demonstrating an increase in anxiety-like behaviors, a deficit in memory, as well as a reduction in social engagement, indicating a certain degree of social anxiety in the adult offspring. | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | esteroides androgênicos anabolizantes | por |
dc.subject | programação paterna | por |
dc.subject | ansiedade | por |
dc.subject | memória, | por |
dc.subject | sociabilidade | por |
dc.subject | anabolic androgenic steroids | eng |
dc.subject | parental programming | eng |
dc.subject | anxiety | eng |
dc.subject | memory | eng |
dc.subject | sociability | eng |
dc.title | Programação paterna com propionato de testosterona e seus impactos sobre a prole de camundongos | por |
dc.title.alternative | Paternal programming with testosterone propionate and its impacts on mice offspring | eng |
dc.type | Dissertação | por |
dc.contributor.advisor1 | Côrtes, Wellington da Silva | |
dc.contributor.advisor1ID | 856.794.707-30 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1305510562756172 | por |
dc.contributor.referee1 | Côrtes, Wellington da Silva | |
dc.contributor.referee2 | Giusti, Fabiana Cardoso Vilela | |
dc.contributor.referee3 | Rocha, Fábio Fagundes da | |
dc.contributor.referee4 | Reis, Luis Carlos | |
dc.creator.ID | 130.302.107-23 | por |
dc.creator.Lattes | http://lattes.cnpq.br/5498807572595356 | por |
dc.description.resumo | Os esteroides anabólicos androgênicos (EAA) são substâncias que compreendem a testosterona e substâncias quimicamente derivadas dela, sendo amplamente utilizada para fins estéticos e recreacionais. A maioria das pesquisas envolvendo a transmissão da herança genética/epigenética esteve, principalmente, focado nos insultos endócrinos e nutricionais de origem materna, e pouca ou nenhuma atenção foi dada aos insultos de origem paterna e sua possível relação no estabelecimento de herança na sua descendência. Dessa forma, nosso objetivo foi verificar se a exposição paterna a uma dose suprafisiológica de propionato de testosterona é capaz de alterar os parâmetros comportamentais da prole de camundongos Swiss durante a idade adulta, bem como os mecanismos transcricionais envolvidos. Para esse propósito, foram utilizados no protocolo 1, 10 camundongos machos, divididos em grupo controle (n=5) e grupo tratado (n=5) que foram administrados com 7,5 mg/kg de PT, duas vezes por semana, durante 5 semanas. Ao final do protocolo, os animais foram colocados em acasalamento. Após a prole completar 70 dias de vida, foram submetidos a uma bateria de testes comportamentais composta por: campo aberto (CA), reconhecimento de objetos 6 horas (RO 6h), caixa claro-escuro (CCE), labirinto em cruz elevado (LCE) e suspensão pela cauda (SC). Ao final da realização dos métodos comportamentais, os animais foram submetidos à eutanásia, sendo o hipocampo dissecado para a análise dos seguintes genes através de RT-qPCR: Gabra2, Gad1, Bdnf, Ntrk2, Tph2, Htr1a e Th. A análise estatística foi realizada pelo teste t de Student ou Mann-Whittney e as médias foram consideradas diferentes quando p < 0,05. Em relação aos achados comportamentais, foi verificado um aumento dos comportamentos análogos à ansiedade na prole de machos (M) e fêmeas (F). Nos machos foi observado pela diminuição de permanência no lado claro na CCE (p = 0.002) (↓60,3%), assim como nos braços abertos do LCE (p=0,04) (↓26,8%) e aumento de permanência nos braços fechados (p=0,01) (↑47,1%), enquanto nas fêmeas foi observado aumento do número de bolos fecais no teste do CA (p=0,013) (↑81,1%) e aumento no número de posturas de avaliação de risco (SAP) no LCE (p=0,01) (↑109,4%). Além disso, tanto os machos, quanto as fêmeas reduziram o tempo de imobilidade no teste de SC, (p = 0,02) (↓28%) e (p=0,04) (↓33,1%), respectivamente. Já no teste de RO 6h, apenas as fêmeas demonstraram déficits na memória mnemônica, visualizado pelo parâmetro de discriminação relativa (D2) (↓9,5%). Por sua vez, apenas os machos apresentaram alteração na expressão de genes no hipocampo, como aumento da expressão de Gabra2 (p=0,04) (↑42,8%) e redução da expressão de Gad1 (p=0,02) (↓17%). Para a realização do protocolo 2, foram utilizados 59 animais machos para a formação dos grupos controle (n=28) e tratado (n=31), que foram administrados com PT, utilizando o mesmo tratamento do protocolo 1. Desse total de animais, foi realizada uma nova distribuição de modo que uma parte fosse submetida a bateria de testes comportamentais logo ao final do tratamento (controle=23, tratado=25), enquanto uma outra parte foi colocada em acasalamento (controle=5, tratado=6). Os testes comportamentais realizados nesta etapa com os animais submetidos ao tratamento com PT foram: CA, RO 6h, CCE, LCE, interação social (IS), SC e intruso residente (IR). Não foram verificadas alterações nos comportamentos análogos à ansiedade. Por sua vez, foi observado que o tratamento reduziu o tempo de discriminação absoluto (D1) (p=0,01) (↓40,1%), assim como os índices de discriminação absoluto (D2) (p=0,004) (↓38,2%) e o índice de discriminação relativo (D3) (p=0,03) (↓14,1%). Além disso, houve redução do engajamento social com um coespecífico, observado no teste de interação social, observado pela redução do índice de sociabilidade (p=0,03) (↓8,3%). Os pais tratados com PT também tiveram aumento dos comportamentos agressivos, observado a partir da diminuição da latência para o 1° ataque (p=0,0001) (↓67%), assim como o aumento do n° de ataques (p=0,014) (↑83,8%) e tempo de luta (boxing) (p=0,0001) (↑138,5%). Por fim, houve redução do índice testicular (p=0,01) (↓29,6%), sem alterações da massa corporal, assim como nos níveis plasmáticos de testosterona, avaliado por método do ELISA. Por sua vez, a prole M e F da linhagem paterna que foi submetida ao tratamento e, posteriormente, ao acasalamento, foi avaliada aos 70 dias de vida em métodos de avaliação comportamental complementar ao realizado no protocolo 1 e foi composto por: RO 24h, Labirinto de Barnes (LB), esquiva passiva (EP), IS, IR. Foi observado que a prole de camundongos machos tiveram um déficit de memória 24h após a exposição ao objeto familiar, observado pela redução do D1 (p=0,003) (↓87,7%), D2 (p=0,02) (↓90,5%) e D3 (p=0,02) (↓19%). Além disso, houve redução do engajamento social com um coespecífico, observado no teste de interação social, com redução do índice de sociabilidade (p=0,02) (↓24,4%). O mesmo resultado foi encontrado na prole de camundongos fêmeas com redução do índice de interação social (p=0,046), assim como o índice de preferência social (0,02) (↓17,5%). Não foram verificados diferença significativas nos testes LB, EP e IR. Dessa forma, nossos resultados sugerem que a programação paterna com PT foi capaz de promover alterações comportamentais e neuroquímicas de sistemas cerebrais envolvidos com respostas afetivas, demonstrando aumento dos comportamentos análogos à ansiedade, um déficit na memória, assim como uma redução no engajamento social, indicando um determinado grau de ansiedade social na prole na fase adulta. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Biológicas e da Saúde | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Fisiológicas | por |
dc.relation.references | ACEVEDO‐RODRIGUEZ, Alexandra et al. Emerging insights into hypothalamicpituitary‐ gonadal axis regulation and interaction with stress signalling. Journal of neuroendocrinology, v. 30, n. 10, p. e12590, 2018. AIKEI J L; Nyby J G; Anmuth D. M; James P J. Testosterone Rapidly Reduces Anxiety in Male House Mice (Mus musculus). Hormones and Behavior 42, 448–460 (2002) AIRES, M.M. - Fisiologia. Ed. Guanabara Koogan. 5ª edição, Rio de Janeiro, 2017 ALBERTS, B. et al. Biologia molecular da célula. 6. ed. Porto Alegre: Artmed, 2017. ALMEIDA, Osvaldo P. et al. Low free testosterone concentration as a potentially treatable cause of depressive symptoms in older men. Archives of general psychiatry, v. 65, n. 3, p. 283-289, 2008. ANDERSON, Lucy M. et al. Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition, v. 22, n. 3, p. 327-331, 2006. ANDREATINI, Roberto; BOERNGEN-LACERDA, Roseli; ZORZETTO FILHO, Dirceu. Pharmacological treatment of generalized anxiety disorder: future perspectives. Revista Brasileira de Psiquiatria, v. 23, n. 4, p. 233-242, 2001. ANTUNES, M.; BIALA, Grazyna. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive processing, v. 13, n. 2, p. 93-110, 2012. ARCHER, John. Tests for emotionality in rats and mice: a review. Animal behaviour, v. 21, n. 2, p. 205-235, 1973. ARIKIAN, Steven R.; GORMAN, Jack M. A review of the diagnosis, pharmacologic treatment, and economic aspects of anxiety disorders.Primary care companion to the Journal of clinical psychiatry, v. 3, n. 3, p. 110, 2001. ASADA, H., Kawamura, Y., Maruyama, K., Kume, H., Ding, R. G., Kanbara, N., ... & Obata, K. (1997). Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proceedings of the National Academy of Sciences, 94(12), 6496-6499 BEAR, M. F.; CONNORS, B. W.; PARADISO, M. A. Neurociências desvendando o sistema nervoso. 4. Porto Alegre: Artmed 2017. BARRETO-ESTRADA J L; Barreto J; Fortis-Santiago y; Rivera-Ramos I; Fortis- Santiago A; Jorge J C. Modulation of Affect After Chronic Exposure to the Anabolic Steroid 17α-Methyltestosterone in Adult Mice. Behavioral Neuroscience. 2004, Vol. 118, No. 5, 1071–1079 BARTLETT, Andrew A.; SINGH, Rumani; HUNTER, Richard G. Anxiety and epigenetics. Neuroepigenomics in Aging and Disease, p. 145-166, 2017. BAXTER, Amanda J. et al. Global prevalence of anxiety disorders: a systematic review and meta-regression. Psychological medicine, v. 43, n. 5, p. 897-910, 2013. BELMAKER, RH; AGAM, G. Major depressive disorder. N. Engl. J. Med., v. 358, p. 55-68, 2008. BITRAN D; Kellog C K; Hilvers R J. Treatment with an anabolic-Androgenic Steroid Affects Anxiety- Related Behavior and alters the Sensitivoty of cortical Gabaa receptor in rat. Hormones and Behavior 27, 568-583 (1993). BJØRNEBEKK, Astrid et al. Anabolic androgenic steroid use is associated with reduced brain derived neurotrophic factor in male weightlifters. 2022. BODDEN, Carina et al. Intergenerational effects of a paternal Western diet during adolescence on offspring gut microbiota, stress reactivity and social behavior. bioRxiv, 2021. BOFF, S.R. Esteróides anabólicos e exercício: ação e efeitos colaterais. Revista Brasileira de Ciência e Movimento, 2010, vol. 18, nº. 1, p. 81-88. Disponível em:< http://portalrevistas.ucb.br/index.php/RBCM/article/view/1316/1666>. Acesso: 09/10/2011. BORON, W.F.; BOULPAEP, E.L. Fisiologia Médica. 2. ed. Rio de Janeiro: Elsevier, 2015 BORKOVEC, T. D.; ABEL, Jennifer L.; NEWMAN, Heather. Effects of psychotherapy on comorbid conditions in generalized anxiety disorder.Journal of consulting and clinical psychology, v. 63, n. 3, p. 479, 1995. BORTA, Andreas; SCHWARTING, Rainer KW. Inhibitory avoidance, pain reactivity, and plus-maze behavior in Wistar rats with high versus low rearing activity. Physiology & behavior, v. 84, n. 3, p. 387-396, 2005. BRANDTNER, Maríndia; BARDAGI, Marucia. Sintomatologia de depressão e ansiedade em estudantes de uma universidade privada do Rio Grande do Sul. Gerais: Revista Interinstitucional de Psicologia, Gerais: Revista Interinstitucional de Psicologia, v. 2, n. 2, p. 81-91, 2009. CAN, Adem et al. The tail suspension test. JoVE (Journal of Visualized Experiments), n. 59, p. e3769, 2012. CASTAGNÉ, Vincent et al. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Current protocols in neuroscience, v. 55, n. 1, p. 8.10 A. 1-8.10 A. 14, 2011. CASTILLO, Ana Regina GL et al. Transtornos de ansiedade. Revista Brasileira de Psiquiatria, v. 22, p. 20-23, 2000. CHAOULOFF, F.; DURAND, M.; MORMEDE, P. Anxiety-and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light tests. Behavioural brain research, v. 85, n. 1, p. 27-35, 1997. CHARNEY, Dennis S.; NESTLER, Eric J.; PAMELA SKLAR, M. D. (Ed.). Charney & Nestler's neurobiology of mental illness. Oxford University Press, 2017. CHAU, Davor Kin-Fan et al. Downregulation of glutamatergic and GABAergic proteins in valproric acid associated social impairment during adolescence in mice. Behavioural brain research, v. 316, p. 255-260, 2017. CLARK A S; Costine B A; Jones B L: Kelton-Rehkopf M C; Meerts S H; Nutbrown- Greene L L: Penatti C A A; Porter D M; Yang P; Henderson L P. Sex- and age-specific effects of anabolic androgenic steroids on reproductive behaviors and on GABAergic transmission in neuroendocrine control regions. B R A I N R E S E A R C H 1 1 2 6 ( 2 0 0 6 ) 1 2 2 – 1 3 8 COLLINSON, Neil et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAAReceptor. Journal of Neuroscience, v. 22, n. 13, p. 5572-5580, 2002. CORRÊA, Rafaela V. et al. Complete form of androgen insensitivity syndrome in Brazilian patients due to P766A mutation in the androgen receptor. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 49, n. 1, p. 98-102, 2005. CONSOLARO, Alberto. O gene e a epigenética: as características dentárias e maxilares estão relacionadas com fatores ambientais ou Os genes não comandam tudo! ou O determinismo genético acabou?. Revista Dental Press de Ortodontia e Ortopedia Facial, v. 14, n. 6, p. 14-18, 2009. CORDÁS, Táki Athanássios. Depressão: da bile negra aos neurotransmissores: uma introdução história. Lemos Editorial, 2002. COSTA, Zaquer Suzana Munhoz. Ação da testosterona sobre o potencial de membrana das células de Sertoli. Envolvimento da via PLC-PIP2 sobre os canais de K. 2004. Tese de Doutorado. Universidade Federal do Rio Grande do Sul. COSTANZO, L. Fisiologia. 5. Ed. Editores Bruce M. Koeppen, Bruce A. Stanton. Rio de Janeiro: Elsevier, 2014. CRAWLEY, Jacqueline; GOODWIN, Frederick K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacology Biochemistry and Behavior, v. 13, n. 2, p. 167-170, 1980. CURI, Rui; ARAÚJO FILHO, Joaquim Procopio de. Fisiologia básica. In: Fisiologia básica. 2009. p. 882-882. DAO, D. T.; KOVACSICS, C. E. Mood and anxiety related phenotypes in mice: characterization using behavioral tests. New York:: Humana Press, 2009. DA SILVA, Emanuel Isaque Cordeiro. Gametogênese Animal: Espermatogênese e Ovogênese. DA SILVA, Mariluci Camargo Ferreira; FUREGATO, Antonia Regina Ferreira; DA COSTA JÚNIOR, Moacyr Lobo. Depressão: pontos de vista e conhecimento de enfermeiros da rede básica de saúde. Revista Latino-Americana de Enfermagem, v. 11, n. 1, p. 7-13, 2003. DAVIS, Susan R.; TRAN, Jane. Testosterone influences libido and well being in women. Trends in Endocrinology & Metabolism, v. 12, n. 1, p. 33-37, 2001. DAY, Jonathan et al. Influence of paternal preconception exposures on their offspring: through epigenetics to phenotype. American Journal of Stem Cells, v. 5, n. 1, p. 11, 2016. DE ALMEIDA, Rosa MM et al. Escalated aggressive behavior: dopamine, serotonin and GABA. European journal of pharmacology, v. 526, n. 1-3, p. 51-64, 2005. DE LADEIRA, Pedro Ribeiro Soares; ISAAC, Cesar; FERREIRA, Marcus Castro. Reação em cadeia da polimerase da transcrição reversa em tempo real. Revista de Medicina, v. 90, n. 1, p. 47-51, 2011. DE LIMA, Alisson Padilha; CARDOSO, Fabrício Bruno. Alterações fisiológicas e efeitos colaterais decorrentes da utilização de esteroides anabolizantes androgênicos. Revista de Atenção à Saúde, v. 9, n. 29, 2012. DELOREY, Timothy M. et al. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behavioural brain research, v. 187, n. 2, p. 207-220, 2008. DELVILLE, Yvon; DE VRIES, Geert J.; FERRIS, Craig F. Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain, behavior and evolution, v. 55, n. 2, p. 53-76, 2000. DEL PORTO, José Alberto. Conceito e diagnóstico. Revista Brasileira de Psiquiatria, v. 21, p. 06-11, 1999. DE OLIVEIRA, Jaqueline Carvalho. Epigenética e doenças humanas. Semina: Ciências Biológicas e da Saúde, v. 33, n. 1, p. 21-34, 2012. DIETZ, David M. et al. Paternal transmission of stress-induced pathologies. Biological psychiatry, v. 70, n. 5, p. 408-414, 2011. DINIZ, Gabriela de Almeida Rezende¹; MUNIZ, Bruno Vilela. USO DE ESTEROIDES ANABOLIZANTES E OS EFEITOS PSICOLÓGICOS. DIXON, C. I.; ROSAHL, T. W.; STEPHENS, D. N. Targeted deletion of the GABRA2 gene encoding α2-subunits of GABAA receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates. Pharmacology Biochemistry and Behavior, v. 90, n. 1, p. 1-8, 2008. DRAGICA, Selakovic; JOVANA, Joksimovic; GVOZDEN, Rosic. Behavioral Alterations of Supraphysiological Doses of Androgenic Anabolic Steroids–A mini review. Proceedings of the Nature Research Society, v. 2, n. 1, p. 02007, 2018. DUCA, Ylenia et al. Substance abuse and male hypogonadism. Journal of clinical medicine, v. 8, n. 5, p. 732, 2019. EAGLE, Andrew L.; MAZEI-ROBISON, Michelle; ROBISON, Alfred J. Sucrose preference test to measure stress-induced anhedonia. Bio Protoc, v. 6, n. 11, p. 1822, 2016. EDKINS, Robert Patrick. THE MODIFICATION OF THE DURATION OF DRUG ACTION: Pharmaceutical Considerations. Journal of Pharmacy and Pharmacology, v. 11, n. S1, p. 54T-66T, 1959. EGASHIRA, Nobuaki et al. Depression-like behavior and reduced plasma testosterone levels in the senescence-accelerated mouse. Behavioural brain research, v. 209, n. 1, p. 142-147, 2010. ENNACEUR, Abdelkader. One-trial object recognition in rats and mice: methodological and theoretical issues. Behavioural brain research, v. 215, n. 2, p. 244-254, 2010. ESPEJO, Emilio Fdez. Structure of the mouse behaviour on the elevated plus-maze test of anxiety. Behavioural brain research, v. 86, n. 1, p. 105-112, 1997. FALKENSTEIN, Elisabeth et al. Multiple actions of steroid hormones—a focus on rapid, nongenomic effects. Pharmacological reviews, v. 52, n. 4, p. 513-556, 2000. FAN, Zhengxiao et al. Using the tube test to measure social hierarchy in mice. Nature protocols, v. 14, n. 3, p. 819-831, 2019. FERREIRA, Urival Magno Gomes et al. Esteróides anabólicos androgênicos. RbPS, v. 20, n. 1, p. 267-275, 2007. FERREIRA, A. R.; FRANCO, M. M. Reprogramação epigenética em gametas e embriões de mamíferos. Rev. Bras. Reprod. Anim, v. 36, n. 3-9, 2012. FONSECA, Pedro Emilio Rodrigues; COSTA JR, Cassio Valério; SILVEIRA, Bianca Ferreira. Epigenética e sua relação com algumas doenças. 2021. FIELD, Andy. Descobrindo a estatística usando o SPSS. trad. Lorí Viali. 2ª ed. Porto Alegre: Artmed, 2009. FRANCIS, Richard. Epigenética: Como a ciência está revolucionando o que sabemos sobre hereditariedade. Zahar, 2015. FRYE, Cheryl A. et al. Androgens with activity at estrogen receptor beta have anxiolytic and cognitive-enhancing effects in male rats and mice. Hormones and behavior, v. 54, n. 5, p. 726-734, 2008. FRYE, Cheryl A.; WALF, Alicia A. Depression-like behavior of aged male and female mice is ameliorated with administration of testosterone or its metabolites. Physiology & behavior, v. 97, n. 2, p. 266-269, 2009 FUJIHARA, Kazuyuki et al. Genetic deletion of the 67‐kDa isoform of glutamate decarboxylase alters conditioned fear behavior in rats. FEBS Open bio, v. 11, n. 2, p. 340-353, 2021. GALHARDO, Vitor Ângelo Carlucio; MARIOSA, Maria Aparecida Silva; TAKATA, João Paulo Issamu. Depressão e perfis sociodemográfico e clínico de idosos institucionalizados sem déficit cognitivo. 2010. GAWEL, Kinga et al. Assessment of spatial learning and memory in the Barnes maze task in rodents—methodological consideration. Naunyn-Schmiedeberg's archives of pharmacology, v. 392, n. 1, p. 1-18, 2019. GHAMKHARINEJAD, Ghazaleh et al. Unconditioned and learned morphine tolerance influence hippocampal-dependent short-term memory and the subjacent expression of GABA-A receptor alpha subunits. PloS one, v. 16, n. 9, p. e0253902, 2021. GLANOWSKA, Katarzyna M.; BURGER, Laura L.; MOENTER, Suzanne M. Development of gonadotropin-releasing hormone secretion and pituitary response. Journal of Neuroscience, v. 34, n. 45, p. 15060-15069, 2014. GRECCO, Marcus Vinicius. Esteróides anabólicos no fisiculturismo. Revista Brasileira de Fisiologia do Exercício, v. 7, n. 1, p. 21-28, 2009. GRIMES, J. M., Ricci, L. A., & Melloni, R. H. (2003). Glutamic acid decarboxylase (GAD 65) immunoreactivity in brains of aggressive, adolescent anabolic steroid-treated hamsters. Hormones and behavior, 44(3), 271-280. GRIMES, Jill M.; MELLONI JR, Richard H. Prolonged alterations in the serotonin neural system following the cessation of adolescent anabolic-androgenic steroid exposure in hamsters (Mesocricetus auratus). Behavioral Neuroscience, v. 120, n. 6, p. 1242, 2006. GRIMES, Jill M.; RICCI, Lesley A.; MELLONI JR, Richard H. Alterations in anterior hypothalamic vasopressin, but not serotonin, correlate with the temporal onset of aggressive behavior during adolescent anabolic-androgenic steroid exposure in hamsters (Mesocricetus auratus). Behavioral neuroscience, v. 121, n. 5, p. 941, 2007. GUILLOT, P. V., & CHAPOUTHIER, G. (1998). Intermale aggression, GAD activity in the olfactory bulbs and Y chromosome effect in seven inbred mouse strains. Behavioural brain research, 90(2), 203-206. GUYTON, A.C. e Hall J.E.– Tratado de Fisiologia Médica. Editora Elsevier. 13ª ed., 2017. HALENE, Tobias B. et al. Assessment of NMDA receptor NR1 subunit hypofunction in mice as a model for schizophrenia. Genes, Brain and Behavior, v. 8, n. 7, p. 661-675, 2009. HELDT, S. A. et al. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Molecular psychiatry, v. 12, n. 7, p. 656-670, 2007. HENIKOFF, Steven; SMITH, M. Mitchell. Histone variants and epigenetics. Cold Spring Harbor perspectives in biology, v. 7, n. 1, p. a019364, 2015. HODOSY, Július et al. The anxiolytic effect of testosterone in the rat is mediated via the androgen receptor. Pharmacology Biochemistry and Behavior, v. 102, n. 2, p. 191-195, 2012. HILL, L. E. et al. Voluntary exercise alters GABAA receptor subunit and glutamic acid decarboxylase-67 gene expression in the rat forebrain. Journal of psychopharmacology, v. 24, n. 5, p. 745-756, 2010. JENSEN, Per. Transgenerational epigenetic effects on animal behaviour. Progress in biophysics and molecular biology, v. 113, n. 3, p. 447-454, 2013. JIRTLE, Randy L.; SKINNER, Michael K. Environmental epigenomics and disease susceptibility. Nature reviews genetics, v. 8, n. 4, p. 253-262, 2007 JUSZCZAK, Grzegorz R. et al. The usage of video analysis system for detection of immobility in the tail suspension test in mice. Pharmacology Biochemistry and Behavior, v. 85, n. 2, p. 332-338, 2006. KAATI, Gunnar; BYGREN, Lars Olov; EDVINSSON, Soren. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. European journal of human genetics, v. 10, n. 11, p. 682-688, 2002. KAIDANOVICH-BEILIN, Oksana et al. Assessment of social interaction behaviors. JoVE (Journal of Visualized Experiments), n. 48, p. e2473, 2011. KALININE, Eduardo. Efeitos comportamentais, neuroquímicos e metabólicos do tratamento com decanoato de nandrolona em camundongos. 2011. KALUEFF, Allan V.; NUTT, David J. Role of GABA in anxiety and depression. Depression and anxiety, v. 24, n. 7, p. 495-517, 2007. KAMEYAMA, Tsutomu; NABESHIMA, Toshitaka; KOZAWA, Teruo. Step-down-type passive avoidance-and escape-learning method: Suitability for experimental amnesia models. Journal of pharmacological methods, v. 16, n. 1, p. 39-52, 1986. KANAYAMA, Gen; POPE JR, Harrison G. History and epidemiology of anabolic androgens in athletes and non-athletes. Molecular and cellular endocrinology, v. 464, p. 4-13, 2018. KAPRARA, Athina; HUHTANIEMI, Ilpo T. The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism, v. 86, p. 3-17, 2018 KATZUNG, Bertram G.; TREVOR, Anthony J. (Orgs.). Farmacologia básica e clínica. 13 ed. Porto Alegre: McGraw-Hill, 2017. KENNY, Anne M. et al. Effects of testosterone on behavior, depression, and cognitive function in older men with mild cognitive loss. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, v. 59, n. 1, p. M75-M78, 2004. KOMADA, Munekazu; TAKAO, Keizo; MIYAKAWA, Tsuyoshi. Elevated plus maze for mice. JoVE (Journal of Visualized Experiments), n. 22, p. e1088, 2008. KOUVELAS D; Pourzitaki C; papazisis G; Dagklis T; Dimou K; Kraus M M. Nandrolone abuse decreases anxiety and impairs memory in rats via central androgenic receptors. International Journal of Neuropsychopharmacology (2008), 11, 925–934. KUHN, Cynthia M. Anabolic steroids. Recent progress in hormone research, v. 57, p. 411-434, 2002. KURLING, Sanna et al. The effect of sub-chronic nandrolone decanoate treatment on dopaminergic and serotonergic neuronal systems in the brains of rats. Brain research, v. 1044, n. 1, p. 67-75, 2005. LEGER, Marianne et al. Object recognition test in mice. Nature protocols, v. 8, n. 12, p. 2531-2537, 2013. LI, En; ZHANG, Yi. DNA methylation in mammals. Cold Spring Harbor perspectives in biology, v. 6, n. 5, p. a019133, 2014. LI, Yuanyuan. Transgenerational epigenetic regulation by environmental factors in human diseases. In: Epigenetic Gene Expression and Regulation. Academic Press, 2015. p. 209-222. LIMA, Dênio. Depressão e doença bipolar na infância e adolescência. Jornal de Pediatria, v. 80, n. 2, p. 11-20, 2004. LISCHINSKY, Julieta E.; LIN, Dayu. Neural mechanisms of aggression across species. Nature neuroscience, v. 23, n. 11, p. 1317-1328, 2020. LOW, Karin et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science, v. 290, n. 5489, p. 131-134, 2000. LUEPTOW, Lindsay M. Novel object recognition test for the investigation of learning and memory in mice. JoVE (Journal of Visualized Experiments), n. 126, p. e55718, 2017. LUINE, Victoria. Recognition memory tasks in neuroendocrine research. Behavioural brain research, v. 285, p. 158-164, 2015. LUMIA, Augustus R.; THORNER, Kim M.; MCGINNIS, Marilyn Y. Effects of chronically high doses of the anabolic androgenic steroid, testosterone, on intermale aggression and sexual behavior in male rats. Physiology & behavior, v. 55, n. 2, p. 331- 335, 1994. LUSSIER, Stephanie J.; STEVENS, Hanna E. Delays in GABAergic interneuron development and behavioral inhibition after prenatal stress. Developmental neurobiology, v. 76, n. 10, p. 1078-1091, 2016. MARTINEZ-SANCHIS, S. et al. Effects of chronic treatment with testosterone propionate on aggression and hormonal levels in intact male mice. Psychoneuroendocrinology, v. 23, n. 3, p. 275-293, 1998. MATRISCIANO, Francesco et al. Repeated anabolic androgenic steroid treatment causes antidepressant-reversible alterations of the hypothalamic–pituitary–adrenal axis, BDNF levels and behavior. Neuropharmacology, v. 58, n. 7, p. 1078-1084, 2010. MAZZIO, Elizabeth A.; SOLIMAN, Karam FA. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics, v. 7, n. 2, p. 119-130, 2012. MCHENRY, Jenna et al. Sex differences in anxiety and depression: role of testosterone. Frontiers in neuroendocrinology, v. 35, n. 1, p. 42-57, 2014. MCILWAIN, Kellie L. et al. The use of behavioral test batteries: effects of training history. Physiology & behavior, v. 73, n. 5, p. 705-717, 2001. MCINTYRE K L; Porter D M; Henderson L P. Anabolic androgenic steroids induce age- , sex, and dosedependent changes in GABAA receptor subunit mRNAs in the mouse forebrain. Neuropharmacology 43 (2002) 634–645 MELO, Roberto Laureano et al. Avaliação psicobiológica em camundongos swiss submetidos às manipulações farmacológicas do sistema serotonérgico durante o período neonatal. 2017. MICZEK, Klaus A. et al. Aggressive behavioral phenotypes in mice. Behavioural brain research, v. 125, n. 1-2, p. 167-181, 2001. MIGUEL, Marina; MENEZES, Liliana; ARAÚJO, Eugênio. Western Blotting: A técnica e aplicações na pesquisa e rotina diagnóstica em medicina veterinária. Enciclopédia Biosfera, v. 8, n. 15, 2012. MILLAN, Mark J.; LEJEUNE, Françoise; GOBERT, Alain. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents. Journal of Psychopharmacology, v. 14, n. 2, p. 114-138, 2000. MIYATA, Shigeo et al. Global knockdown of glutamate decarboxylase 67 elicits emotional abnormality in mice. Molecular brain, v. 14, n. 1, p. 1-14, 2021. MORRISON T R; Ricci L A; Melloni Jr R H. Anabolic/androgenic steroid administration during adolescence and adulthood differentially modulates aggression and anxiety. Hormones and Behavior 69 (2015) 132–138. MORRISON, Thomas R. et al. Serotonin type-3 receptors differentially modulate anxiety and aggression during withdrawal from adolescent anabolic steroid exposure. Hormones and Behavior, v. 119, p. 104650, 2020. MOURA, Nélio Alfano. Esteróides anabólicos androgênicos e esportes: uma breve revisão. Revista Brasileira de Ciências do Esporte, v. 6, n. 1, 1984. MOY, S. S. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic‐like behavior in mice. Genes, Brain and Behavior, v. 3, n. 5, p. 287-302, 2004. MPHIL D S; Molde C H; Andreassen C S Torshein T; Pallesen S. The global epidemiology of anabolic-androgenic steroid use: a meta-analysis and meta-regression analysis. Annals of Epidemiology 24 (2014). NAGHDI, Nasser; NAFISY, Nastaran; MAJLESSI, Nahid. The effects of intrahippocampal testosterone and flutamide on spatial localization in the Morris water maze. Brain research, v. 897, n. 1-2, p. 44-51, 2001. NAGHDI, Nasser; MAJLESSI, Nahid; BOZORGMEHR, Tahereh. The effect of intrahippocampal injection of testosterone enanthate (an androgen receptor agonist) and anisomycin (protein synthesis inhibitor) on spatial learning and memory in adult, male rats. Behavioural brain research, v. 156, n. 2, p. 263-268, 2005. NAIR, Anroop B.; JACOB, Shery. A simple practice guide for dose conversion between animals and human. Journal of basic and clinical pharmacy, v. 7, n. 2, p. 27, 2016. National Center for Biotechnology Information. "PubChem Compound Summary for CID 5995,Testosterone propionate" PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Testosterone-propionate. Accessed 6 January, 2022. NASSAR, George N.; LESLIE, Stephen W. Physiology, testosterone. 2018. NELSON, Randy J.; TRAINOR, Brian C. Neural mechanisms of aggression. Nature Reviews Neuroscience, v. 8, n. 7, p. 536-546, 2007. NIKNAZAR, Somayeh et al. Parents’ adulthood stress induces behavioral and hormonal alterations in male rat offspring. Behavioural brain research, v. 252, p. 136-143, 2013. NIESCHLAG, Eberhard; BEHRE, Hermann M.; NIESCHLAG, Susan (Ed.). Testosterone: action, deficiency, substitution. Cambridge University Press, 2012. OBLANDER J G; Henderson L. Corticotropin-Releasing Factor Modulation of Forebrain GABAergic Transmission has a Pivotal Role in the Expression of Anabolic Steroid- Induced Anxiety in the Female Mouse. Neuropsychopharmacology (2012) 37, 1483– 1499 OBLANDER J G; Porter D M; Penatti C A A; Henderson L P. Anabolic Androgenic Steroid Abuse: Multiple Mechanisms of Regulation of GABAergic Synapses in Neuroendocrine Control Regions of the Rodent Forebrain. Journal of Neuroendocrinology 24, 202–214. ÖGREN, S. O.; STIEDL, Oliver. Passive avoidance. Encyclopedia of psychopharmacology, v. 2, p. 960-967, 2010. OKAMOTO, Kazuki et al. GABAergic malfunction in the anterior cingulate cortex underlying maternal immune activation-induced social deficits. Journal of neuroimmunology, v. 321, p. 92-96, 2018. O’LEARY, Olivia F.; CRYAN, John F. The tail-suspension test: a model for characterizing antidepressant activity in mice. In: Mood and Anxiety Related Phenotypes in Mice. Humana Press, Totowa, NJ, 2009. p. 119-137. OLESEN, J. et al. The economic cost of brain disorders in Europe.European Journal of Neurology, v. 19, n. 1, p. 155-162, 2012. OLIVARES E L; Silveira A L B; Fonseca F V; Silva-Almeida C; Côrtes R F; Pereira- Junior P P; Nascimento J H M; Reis L C. Administration of an anabolic steroid during the adolescent phase changes the behavior, cardiac autonomic balance and fluid intake in male adult rats. Physiology & Behavior 126 (2014) 15–24. OLIVEIRA, Grazielle Pereira de. Efeitos do uso decanoato de nandrolona em ratos submetidos ao treinamento físico. 2008. Tese de Doutorado. Universidade de São Paulo. OLIVEIRA, MC de S. et al. Fundamentos teóricos-práticos e protocolos de extração e de amplificação de DNA por meio da técnica de reação em cadeia de polimerase. Embrapa Pecuária Sudeste-Livro científico (ALICE), 2007. OLSEN R W. Analysis of c-Aminobutyric Acid (GABA) Type A Receptor Subtypes Using Isosteric and Allosteric Ligands. Neurochem Res. July 2014 ONAKOMAIYA, Marie M.; HENDERSON, Leslie P. Mad men, women and steroid cocktails: a review of the impact of sex and other factors on anabolic androgenic steroids effects on affective behaviors. Psychopharmacology, v. 233, n. 4, p. 549-569, 2016. OSBORNE-MAJNIK, Amber; FU, Qi; LANE, Robert H. Epigenetic mechanisms in fetal origins of health and disease. Clinical obstetrics and gynecology, v. 56, n. 3, p. 622, 2013. PELEG-RAIBSTEIN, Daria; LUCA, Edlira; WOLFRUM, Christian. Maternal high-fat diet in mice programs emotional behavior in adulthood. Behavioural brain research, v. 233, n. 2, p. 398-404, 2012 PELLOW, Sharon et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of neuroscience methods, v. 14, n. 3, p. 149- 167, 1985. PIACENTINO D; Kotzalidis G D; Del Casale A; Aromantario, M R; Pomara C; Girard P; Sani G. Anabolic-androgenic Steroid use and Psychopathology in Athletes. A Systematic Review. Current Neuropharmacology, 2015, 13, 101-121 PIERETTI, Stefano et al. Brain nerve growth factor unbalance induced by anabolic androgenic steroids in rats. Medicine and science in sports and exercise, v. 45, n. 1, p. 29-35, 2013. PITTA, José Cássio do Nascimento. Transtornos de ansiedade. RBM rev. bras. med, v. 68, n. 12, 2011. PITTS, Matthew W. Barnes maze procedure for spatial learning and memory in mice. Bio-protocol, v. 8, n. 5, 2018. PLANT, Tony M. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamopituitary– gonadal axis. Journal of endocrinology, v. 226, n. 2, p. T41-T54, 2015. POPE JR, Harrison G. et al. Adverse health consequences of performance-enhancing drugs: an Endocrine Society scientific statement. Endocrine reviews, v. 35, n. 3, p. 341- 375, 2014. RAINER, Quentin et al. Chronic nandrolone decanoate exposure during adolescence affects emotional behavior and monoaminergic neurotransmission in adulthood. Neuropharmacology, v. 83, p. 79-88, 2014. RAMOS, Renato Teodoro. Transtornos de ansiedade. RBM rev. bras. med, v. 66, n. 11, 2009. RANG, H.P; DALE, M.M. Farmacologia. Editora Elsevier, 8a edição, 2016. REIN, Benjamin; MA, Kaijie; YAN, Zhen. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nature Protocols, v. 15, n. 10, p. 3464-3477, 2020 RF SILVA, Fernando et al. The Anabolic Androgenic Steroid Testosterone Propionate Decreases Recognition Memory in Adult Male Rats. Current Psychopharmacology, v. 2, n. 3, p. 247-253, 2013. RICCI, L. A., Morrison, T. R., & Melloni, R. H. (2013). Adolescent anabolic/androgenic steroids: Aggression and anxiety during exposure predict behavioral responding during withdrawal in Syrian hamsters (Mesocricetus auratus). Hormones and behavior, 64(5), 770-780. RICHETTO, Juliet et al. Prenatal versus postnatal maternal factors in the development of infection-induced working memory impairments in mice. Brain, behavior, and immunity, v. 33, p. 190-200, 2013. RIVAS-ARANCIBIA, Selva; VAZQUEZ-PEREYRA, Francisca. Hormonal modulation of extinction responses induced by sexual steroid hormones in rats. Life sciences, v. 54, n. 21, p. PL363-PL367, 1994. RIYAHI, Javad et al. Multigenerational effects of paternal spatial training are lasting in the F1 and F2 male offspring. Behavioural Pharmacology, p. 10.1097, 2022. ROCHA, Madalena; AGUIAR, Fátima; RAMOS, Helena. O uso de esteroides androgênicos anabolizantes e outros suplementos ergogênicos – uma epidemia silenciosa. Revista Portuguesa de Endocrinologia, Diabetes e Metabolismo, v. 9, n. 2, p. 98-105, 2014. ROCHA, Vanessa de Moraes et al. Efeito do esteroide anabolico nandrolona sobre o nivel de ansidade em ratos. 2006. RODRIGUIZ, Ramona M. et al. Aberrant responses in social interaction of dopamine transporter knockout mice. Behavioural brain research, v. 148, n. 1-2, p. 185-198, 2004. ROJAS-ORTIZ, Y. A., Rundle-González, V., Rivera-Ramos, I., & Jorge, J. C. (2006). Modulation of elevated plus maze behavior after chronic exposure to the anabolic steroid 17α-methyltestosterone in adult mice. Hormones and behavior, 49(1), 123-128. ROTH, Kevin A.; KATZ, Richard J. Stress, behavioral arousal, and open field activity— a reexamination of emotionality in the rat. Neuroscience & Biobehavioral Reviews, v. 3, n. 4, p. 247-263, 1980. SAAVEDRA-RODRÍGUEZ, Lorena; FEIG, Larry A. Chronic social instability induces anxiety and defective social interactions across generations. Biological psychiatry, v. 73, n. 1, p. 44-53, 2013. SALVADOR, A. et al. Lack of effects of anabolic-androgenic steroids on locomotor activity in intact male mice. Perceptual and motor skills, v. 88, n. 1, p. 319-328, 1999. SANDHU, K. V.; YANAGAWA, Y.; STORK, O. Transcriptional Regulation of Glutamic Acid Decarboxylase in the Male Mouse Amygdala by Dietary Phyto‐ Oestrogens. Journal of neuroendocrinology, v. 27, n. 4, p. 285-292, 2015. SCHWARTZER, Jared J.; RICCI, Lesley A.; MELLONI JR, Richard H. Interactions between the dopaminergic and GABAergic neural systems in the lateral anterior hypothalamus of aggressive AAS-treated hamsters. Behavioural Brain Research, v. 203, n. 1, p. 15-22, 2009. SECO, Sandra; MATIAS, Alexandra. Origem fetal das doenças do adulto: revisitando a teoria de barker Fetal origins of adult disease: revisiting barkers theory. Acta Obstet Ginecol Port, v. 3, n. 3, p. 158-168, 2009. SEIBENHENER, Michael L.; WOOTEN, Michael C. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. JoVE (Journal of Visualized Experiments), n. 96, p. e52434, 2015. SEIDMAN, Stuart N.; SPATZ, Erica; ROOSE, Steven P. Testosterone replacement therapy for hypogonadal men with major depressive disorder: a randomized, placebocontrolled clinical trial. The Journal of clinical psychiatry, v. 62, n. 6, p. 20806, 2001. SELAKOVIC, Dragica et al. The impact of hippocampal sex hormones receptors in modulation of depressive-like behavior following chronic anabolic androgenic steroids and exercise protocols in rats. Frontiers in behavioral neuroscience, v. 13, p. 19, 2019. SHAHIDI, Nasrollah T. A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids. Clinical therapeutics, v. 23, n. 9, p. 1355- 1390, 2001. SIEVER, Larry J. Neurobiology of aggression and violence. American journal of psychiatry, v. 165, n. 4, p. 429-442, 2008. SILVA, Paulo Rodrigo Pedroso da; DANIELSKI, Ricardo; CZEPIELEWSKI, Mauro Antônio. Esteróides anabolizantes no esporte. Revista Brasileira de Medicina do Esporte, v. 8, p. 235-243, 2002. SILVERMAN, Jill L. et al. Behavioural phenotyping assays for mouse models of autism. Nature Reviews Neuroscience, v. 11, n. 7, p. 490-502, 2010. SINGEWALD, Nicolas. Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping.Neuroscience & Biobehavioral Reviews, v. 31, n. 1, p. 18-40, 2007. SKINNER, Michael K. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics, v. 6, n. 7, p. 838-842, 2011 SOUBRY, Adelheid. Epigenetic inheritance and evolution: a paternal perspective on dietary influences. Progress in biophysics and molecular biology, v. 118, n. 1-2, p. 79-85, 2015. STERU, Lucien et al. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology, v. 85, n. 3, p. 367-370, 1985. SZYF, Moshe. Nongenetic inheritance and transgenerational epigenetics. Trends in molecular medicine, v. 21, n. 2, p. 134-144, 2015. THIBLIN, Ingemar et al. Increased dopaminergic and 5‐hydroxytryptaminergic activities in male rat brain following long‐term treatment with anabolic androgenic steroids. British journal of pharmacology, v. 126, n. 6, p. 1301-1306, 1999. TREIT, Dallas; MENARD, Janet; ROYAN, Cary. Anxiogenic stimuli in the elevated plus-maze. Pharmacology biochemistry and behavior, v. 44, n. 2, p. 463-469, 1993. TYEBJI, Shiraz; HANNAN, Anthony J.; TONKIN, Christopher J. Pathogenic infection in male mice changes sperm small RNA profiles and transgenerationally alters offspring behavior. Cell Reports, v. 31, n. 4, p. 107573, 2020. VANAVESKI, Taavi et al. PGC-1α signaling increases GABA (A) receptor subunit α2 expression, GABAergic neurotransmission and anxiety-like behavior in mice. Frontiers in Molecular Neuroscience, v. 14, p. 588230, 2021. VERMEULEN, A. Longacting steroid preparations. Acta Clinica Belgica, v. 30, n. 1, p. 48-55, 1975 VIEIRA, Gilberto Cavalheiro. Admirável mundo novo: epigenética. Evolução Biológica: da pesquisa ao ensino. Porto Alegre, Editora Fi, p. 177-212, 2017. VILLOTA-SALAZAR, Nubia Andrea; MENDOZA-MENDOZA, Artemio; GONZÁLEZ-PRIETO, Juan Manuel. Epigenetics: from the past to the present. Frontiers in Life Science, v. 9, n. 4, p. 347-370, 2016. WALKER, Elizabeth Reisinger; MCGEE, Robin E.; DRUSS, Benjamin G. Mortality in mental disorders and global disease burden implications: a systematic review and metaanalysis. JAMA psychiatry, v. 72, n. 4, p. 334-341, 2015. WALSH, Roger N.; CUMMINS, Robert A. The open-field test: A critical review. Psychological bulletin, v. 83, n. 3, p. 482, 1976. WIMMER, M. E. et al. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Molecular psychiatry, v. 22, n. 11, p. 1641, 2017. YANAI, Shogo et al. Gene expression and functional abnormalities in XX/Sry Leydig cells. Scientific reports, v. 11, n. 1, p. 1-13, 2021 YANG, P., Jones, B. L., & Henderson, L. P. (2005). Role of the α subunit in the modulation of GABA A receptors by anabolic androgenic steroids. Neuropharmacology, 49(3), 300-316. YEE, Benjamin K. et al. GABAA receptors containing the α5 subunit mediate the trace effect in aversive and appetitive conditioning and extinction of conditioned fear. European Journal of Neuroscience, v. 20, n. 7, p. 1928-1936, 2004. ZHAO, Wen-Long et al. Autism-like behaviors and abnormality of glucose metabolism in offspring derived from aging males with epigenetically modified sperm. Aging (Albany NY), v. 12, n. 19, p. 19766, 2020. ZHOU, Rong et al. Persistent overexpression of DNA methyltransferase 1 attenuating GABAergic inhibition in basolateral amygdala accounts for anxiety in rat offspring exposed perinatally to low-dose bisphenol A. Journal of psychiatric research, v. 47, n. 10, p. 1535-1544, 2013. ZHU, Chunting et al. Involvement of epigenetic modifications of GABAergic interneurons in basolateral amygdala in anxiety-like phenotype of prenatally stressed mice. International Journal of Neuropsychopharmacology, v. 21, n. 6, p. 570-581, 2018. ZOGHBI, Huda Y.; BEAUDET, Arthur L. Epigenetics and human disease. Cold Spring Harbor perspectives in biology, v. 8, n. 2, p. a019497, 2016. ZOTTI, Margherita et al. Chronic nandrolone administration induces dysfunction of the reward pathway in rats. Steroids, v. 79, p. 7-13, 2014 | por |
dc.subject.cnpq | Fisiologia | por |
dc.subject.cnpq | Farmacologia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/73399/2022%20-%20Raphael%20da%20Silva%20Lau.Pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6628 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-05-25T15:57:49Z No. of bitstreams: 1 2022 - Raphael da Silva Lau.Pdf: 2601928 bytes, checksum: 9053d212f643708dbe5777d3e72f5bfb (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-05-25T15:57:49Z (GMT). No. of bitstreams: 1 2022 - Raphael da Silva Lau.Pdf: 2601928 bytes, checksum: 9053d212f643708dbe5777d3e72f5bfb (MD5) Previous issue date: 2022-10-13 | eng |
Appears in Collections: | Mestrado Multicêntrico em Ciências Fisiológicas |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Raphael da Silva Lau.Pdf | 2.54 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.