Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15143
Full metadata record
DC FieldValueLanguage
dc.creatorOliveira, Poliana de Araujo
dc.date.accessioned2023-11-20T01:14:16Z-
dc.date.available2023-11-20T01:14:16Z-
dc.date.issued2016-07-25
dc.identifier.citationOLIVEIRA, Poliana de Araujo. Avaliação do potencial anti-nociceptivo e antiinflamatório do ácido pipérico. 2016. 68 f. Dissertação (Mestrado Multicêntrico em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/15143-
dc.description.abstractDrugs currently used in pain and inflammation are responsible for a large number of adverse effects, due to chronic use, producing in the patients a decrease of symptoms, but not an overall improvement in quality of life, therefore it is of extreme importance to search for new drugs. Piperine is the main active compound of black pepper (Piper nigrum), known in Brazil as black pepper, popularly used by several beneficial effects. Studies in vitro and in vivo show that piperine has functional involvement in antidepressant, hepatoprotective, anti-metastatic antiparasitic, antithyroid, immunomodulatory, anti-inflammatory and analgesic effects. To improve the selectivity and potency, molecular changes were made in the piperine, obtaining the piperic acid. The objective of this study was to evaluate, through of models of acute and chronic pain, and inflammation; a potential nociceptive and anti-inflammatory compound. In the model of writhing induced by acetic acid was observed a percentage inhibition of writhes of 77,9% compared to the control, in the highest dose tested (10mg / kg). In the formalin test, the compound inhibited both phases of the test, wich the dose of 10mg/kg The inhibitory effect was 30% in stage 1 and stage 2 at 67%. The increase in the latency time in tail flick test had an earlier action compared to morphine and the piperic acid increased the latency time in 58% in 80min time in relation to baseline. We investigated the possible pathways involved in the mechanism of action of the compound by prior administration of antagonists in the tail flick test. We found that the muscarinic antagonist, atropine, was able to completely inhibit the effect of the compound, demonstrating the involvement of the cholinergic pathway in the mechanism of action. The opioid and nitrergic pathways and the potassium channel ATPdependent are not involved in the mechanism of action, since these antagonists do not inhibit the effect of the compound. The compound was able to inhibit capsaicin-induced nociception, capsaicina is agonist TRPV1, in 45,34% demonstrating the involvement of TRPV1. The von Frey test evaluate allodynia after chronic constriction of the sciatic nerve. In this test, the compound did not show antinociceptive activity with the doses tested. The open field test was used to determine the influence of the compound on the animal's mobility, and we observe that the action of the compound did not interfere on animal's motor performance. The antiinflammatory activity was evaluated in models of inflammation induced by carrageenan. In the paw oedema test, the compound significantly reduced the oedema at doses of 5 and 10 mg/kg. In the air pouch test, we found that the leukocyte migration was reduced, as well as the production of TNF-α and IL-1β. The piperic acid was shown to be selective for COX-1 in the assessment of enzymatic activity of COX-1 and COX-2. We suggest that the effects of piperine can be mediated primarily through the portion of the molecule related to piperic acideng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectpiperineeng
dc.subjectpiperic acideng
dc.subjectnociceptioneng
dc.subjectpiperinapor
dc.subjectácido pipéricopor
dc.subjectnocicepçãopor
dc.titleAvaliação do potencial anti-nociceptivo e antiinflamatório do ácido pipéricopor
dc.title.alternativeEvaluation of the potential nociceptive and anti-inflammatory of piperic acideng
dc.typeDissertaçãopor
dc.contributor.advisor1Marinho, Bruno Guimarães
dc.contributor.advisor1ID7707727738por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2685794388394484por
dc.contributor.referee1Cortes, Wellington da Silva
dc.contributor.referee2Nascimento, Carlos Giovani de Oliveira
dc.creator.ID133.821.657-08por
dc.creator.Latteshttp://lattes.cnpq.br/6772336757185397por
dc.description.resumoOs fármacos atualmente utilizados em dor e inflamação são responsáveis por um grande número de efeitos adversos, e devido ao uso crônico, fazem com que o paciente tenha uma diminuição dos sintomas, mas não uma total melhoria da qualidade de vida, sendo assim é de extrema importância a busca por novos fármacos. A piperina é o principal composto ativo da pimenta preta (Piper nigrum), mais conhecida no Brasil como pimenta do reino, popularmente utilizada por diversos efeitos benéficos. Estudos in vitro e in vivo demonstram que a piperina tem envolvimento funcional como antidepressivo, hepatoprotetor, antiparasitário antimetastático, antitiroidiano, imunomodulador, anti-inflamatório e analgésico. A fim de produzir melhora em sua seletividade e potência, alterações moleculares foram realizadas na piperina, obtendo-se então o Ácido pipérico. O objetivo deste trabalho foi avaliar, através da execução de modelos experimentais de dor aguda, crônica e inflamação, o potencial farmacológico antinociceptivo e anti-inflamatório do composto. No modelo de contorções abdominais induzidas por ácido acético foi verificada um percentual de inibição das contorções de 77,9% comparado ao controle, na maior dose testada (10mg/kg). No modelo da formalina o composto inibiu ambas as fases do modelo, com a dose de 10mg/kg o efeito inibitório chegou a 30% na 1º fase e 67% na 2º fase. O aumento do tempo de latência no modelo de retirada de cauda com o composto foi alcançado mais precocemente do que a morfina, o ACP aumentou o tempo de latência em 58% no tempo de 80 min comparado a linha de base na maior dose testada. Investigamos as possíveis vias envolvidas no mecanismo de ação do composto através da administração prévia de antagonistas, no modelo de retirada de cauda. Verificamos que o antagonista de receptores muscarínicos, atropina, foi capaz de inibir completamente o efeito do composto, demonstrando a participação da via colinérgica no mecanismo de ação. As vias opioide, nitrérgica e o canal de potássio dependente de ATP parecem não estar envolvidas no mecanismo de ação, visto que os antagonistas destas vias não inibiram o efeito do composto. O composto inibiu a nocicepção induzida pela capsaicina, que é agonista de receptores TRPV1 em 45,34%, demonstrando envolvimento de TRPV1. No modelo de Von Frey avaliamos a alodinia após a constrição crônica do nervo ciático. Neste modelo, o composto não demonstrou atividade antinociceptiva nas doses testadas. O modelo de campo aberto foi usado para verificar a influência do composto sobre a mobilidade do animal, e observamos que o mesmo não interfere no desempenho motor do animal. A atividade anti-inflamatória foi avaliada em modelos de inflamação induzido por carragenina. No modelo de edema de pata, o composto reduziu o edema em 75% na dose de 10mg/kg. No modelo da bolsa de ar subcutânea verificamos que a migração leucocitária foi reduzida assim como a produção de TNF-α e IL-1β. O ácido pipérico demonstrou ser seletivo para COX-1, na avaliação da atividade enzimática de COX-1 e COX-2. Podemos sugerir que os efeitos da piperina podem ser mediados através da porção da molécula referente ao ácido pipérico.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma Multicêntrico de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesALAM M.B., RAHMAN M.S., HASAN M., KHAN M.M., NAHAR K., SULTANA S. Antinociceptive and antioxidant activities of the Dillenia indica Bark. Int. J. Pharmacol., 8 (4): 243–251. 2012. ALBUQUERQUE, REGINALDO; NETTO, AUGUSTO PIMAZONI. Diabetes ebook – diabetes na prática clínica. Mod 4 cap 14, Sociedade Brasileira De Diabetes, 2007 ALMEIDA, T.F.; ROIZENBLATT, S.; TUFIK, S. Afferent pain pathways: a neuroanatomical review. Brain Res. 1000: 40-56, 2004. ASANNO, T.; DOHI, S.; LIDA, H. Antinociceptive action of epidural K+ATP channel openers via interaction with morphine and NA α2-adrenergic agonist in rats. Anesthesiology, v. 90, p. 1146-1151, 2000. ASANO.T.; DOHI S.; IIDA H. Antinociceptive action of epidural KATP+channel openers via interaction with morphine and α2-adrenergic agonists in rats. Anesth. Analg., 90 pp. 1146–1151. 2000 Austin, P. J., Wu, A., Moalem-Taylor, G. Chronic Constriction of the Sciatic Nerve and Pain Hypersensitivity Testing in Rats. J. Vis. Exp. (61), e3393, doi:10.3791/3393 (2012). BACK, S.K., KIMA, M.A., KIMB, H.J., LEE, J., SUNG, B., YOON, Y., NA, H.S. Developmental characteristics of neuropathic pain induced by peripheral nerve injury of rats during neonatal period. Neuroscience research. 61: 412-419. 2008. BANSAL, S; BALA, M; SUTHAR, S.K;CHOUDHARY, S; BHATTACHARYA, S; BHARDWAJ, V; SINGLA, S; JOSEPH, A. Design and synthesis of novel 2-phenyl-5-(1, 3- diphenyl-1 H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2inhibitors with potent antiinflammatory activity. Eur. J. Med. Chem. 80:167- 174. 2014. BARON R, BINDER A, WASNER G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol;9:807–19. 2010. BARROS, H.M; TANNHAUSER, M.A; TANNHAUSER, S.L; TANNHAUSER, M. Enhanced detection of hyperactivity after drug withdrawal with a simple modification of the open-field apparatus. J Pharmacol Methods. 26(4):269-275, 1991 BEN-BASSAT, J; PERETZ, E; SULMAN, F. G. Analgesimetry and ranking of analgesic drugs by the receptacle method. Archs. Int. Pharmachodyn. Ther. 122: 434-447. 1959. 59 BERGH, M.S.; BUDSBERG, S.C. The Coxib NSAIDs: Potential Clinical and Pharmacologic Importance in Veterinary Medicine. Journal of Veterinary Internal Medicine, v.19, p. 633–643, 2005. BRASIL. Ministério da Saúde. Instituto Nacional de Câncer. Cuidados paliativos oncológicos: controle da dor. - Rio de Janeiro: INCA, 2001. Dísponível em: <http://www1.inca.gov.br/publicacoes/manual_dor.pdf>. Acesso em: 13/03/2016 BRASIL. Protocolo clínico e diretrizes terapêuticas de dor crônica. Edição revisada 2012. Disponível em: <http://portal.saude.gov.br/portal/arquivos/pdf/pt_sas_1083_dor_ cronica_2012.pdf>. Acesso em 17/06/2015. BRUNEAU EG, AKAABOUNE M. Running to stand still: ionotropic receptor dynamics at central and peripheral synapses. Mol Neurobiol.;34(2):137-51 2006. BRUNTON, L.L. Goodman & Gilman: As Bases Farmacológicas da Terapêutica. 12ª ed. Rio de Janeiro: McGraw-Hill, 2012 BUKHARI IA, PIVAC N, ALHUMAYYD MS, MAHESAR AL, GILANI AH. The analgesic and anticonvulsant effects of piperine in mice. J Physiol Pharmacol. Dec;64(6):789-94. 2013. CATERINA MJ, LEFFLER A, MALMBERG AB, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science;288(5464):306-13. 2000. CHONPATHOMPIKUNLERT P, WATTANATHORN J, MUCHIMAPURA S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food and Chemical Toxicology. Elsevier. Volume 48, Issue 3, Pages 798–802. 2010. CHYAD A H; OMAR S I; AHMMED H; Study The Analgesic And Anti-Inflammatory Activity Of Zingiber Officinale Rhizome Extract Comparison With Ibuprofen In Male Mice. Kufa Journal For Veterinary Medical Sciences Vol. (7) No. (1) 2016 CLAPHAM D.E. TRP channels as cellular sensors Nature. 4;426(6966):517-24. 2003. COGGESHALL, R.E., CARLTON, S.M.,. Receptor localization in the mammalian dorsal horn and primary afferent neurons. Brain Res. Rev. 24, 28–66. 1997. COLLIER, H.O.J.; L.C. DINNEEN; C.A. JOHNSON & C. SCHNEIDEr. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Brit. J. Pharmacol. 32(2): 295-310. 1968. 60 CRUNKHORN, R.; MEACOCK, S.C.R. Mediators of the inflammation induced in therat paw by carrageenin. Br. J. Pharmacol., v.42, p. 392-402, 1971 CRUVINEL, W.M et al. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev. Bras. Reumatol., São Paulo , v. 50, n. 4, p. 434-447, Aug. 2010 CRUVINEL; W. M.; MESQUITA JUNIOR, D.; ARAÚJO, J. A. P. Aspectos celulares e moleculares da inflamação. Revista Sinopse, São Paulo, v. 10, n. 3, p. 66-81, ago. 2008. CUNHA TM, VERRI WA, VIVANCOS GG, MOREIRA IF, REIS S, PARADA CA, CUNHA FQ, FERREIRA SH. An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res 37(3): 401 – 407, 2004. DICKENSON, A. Mechanisms of central hypersensitivity: excitatory amino acids mechanisms and their control. The pharmacology of pain. (ed M. J. D. Besson, A.), pp. 21- 41. Springer-Verlag, Berlim, 1997. DICKENSON, A H. Spinal cord pharmacoly of pain. British Journal of Anaesthesia, v. 75, n. 2, p. 193-200, 1995. DUARTE, D.B.; VASKO, M.R.; FEHRENBACHER, J.C. Models of inflammation: carrageenan air pouch. Current protocols in pharmacology. v. 56, p. 561-568, 2012. EL KOUHEN, R., SUROWY, C.S., BIANCHI, B.R, NEELANDS, TR.; MCDONALD HA NIFORATOs, w GOMTSYAN, Ai LEE, C.H., HONORE, P., SULLIVAN, J.P JARVIS, M F., FALTYNEK, C.R. A 425619[1-soquinolin 5-yl-3(4 trifluoromethylbenzyl ureal, a novel and selective transient receptor potential type v1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. The Journal pharmacology and Experimental Therapeutics, v. 314, n. 1, p. 400-409, 2005. FEIN, A. Nociceptores: As células que sentem dor. Petrov P, Francischi JN, Ferreira SH, et al. tradutores. Ribeirão Preto – SP: Dor On Line; 106 p. 2011.. Disponivel em: <http://www.dol.inf.br/nociceptores>. Acesso em 27/03/2016 FERREIRA SH.. Oedema and increased vascular permeability. In: Vane JR, Van Arman CG, editors. Handbook of experimental pharmacology. New York 7 Springer-Verlag; p. 75- 91. 1979. FERREIRA, W. S. Utilização da piperina como protótipo na síntese de novos antichagásicos da classe das 1,3,4-tiadiazólio-2-fenilaminas. Dissertação de Mestrado apresentado ao Instituto de Ciências Exatas- UFRRJ, p. 1- 197, 2006. 61 FERREIRA, W. S.; FRANKLIM, T. N.; LOPES, N. D.; DE LIMA, M. E. F. Piperina, seus Análogos e Derivados: Potencial como Antiparasitários. Rev. Virtual Quim., , 4 (3), 208- 224. 2012. FERREIRA, S. H., DUARTE, l.D., LORENZETTI, B.B. The molecular mechanism of action of peripheral morphine analgesia: stimulation of the cGMP system via nitric oxide release. Eur. J. Pharmacol., v. 201, p. 121-129, 1991 FILGUEIRAS, G. C.; SANTOS, M. A. S.; SANTANA, A. C.; HOMMA, A. K. O. Fontes de crescimento da produção de pimenta-do-reino no Estado do Pará no período de 1979 a 2001. Disponível em < http://www.sober.org.br/palestra/12/01O001.pdf> página 3. Acesso em 21/01/2016. FISCHER, L.G.; SANTOS, D.; SERAFIN, C.; MALHEIROS, A.; MONACHE, F.D.; MONACHE, G.D.; FILHO, V.C.; SOUZA, M.M. Further Antinociceptive Properties of Extracts and Phenolic Compounds from Plinia glomerata (Myrtaceae) Leaves. Biol. Pharm. Bull. 31(2) 235—239, 2008. FISCHER, M., CARLI, G., RABOISSON, P., AND REEH, P. The interphase of the formalin test. Pain 155, 511–521. (2014). FITZGERALD, G.A; RICCIOTTI, E. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol.; 31(5): 986–1000, 2011. GALLUZZI KE. Managing neuropathic pain. J Am Osteopath Assoc;107:ES39-48. 2007. G.P. AHERN, Activation of TRPV1 by the satiety fator oleoylethanolamide, J. Biol. Chem. 278 30429–30434. 2003. GERNOT KATZER Pepper (Piper nigrum L.). Disponível em: http://gernot-katzers-spicepages. com/engl/Pipe_nig.html, 2015. Acesso em 21/01/2016 GREGORY, N.S; HARRIS, A.L; ROBINSON, C.R; DOUGHERTY, P.M, FUCHS, P.N, SLUKA, K.A. An overview of animal models of pain: disease models and outcome measures. J Pain.14(11), 2013. HAAS, P. J.; VAN STRIJP, J. Anaphylatoxins: their role in bacterial infection and inflammation. Immunologic Research, v. 37, n. 3, p. 161-75, 2007. HABERBERGER, R., SCHOLZ, A., KUMMER, W., KRESS, M., M2-receptor subtype does not mediate muscarine-induced increases in [Ca2+]i in nociceptive neurons of rat dorsal root ganglia. J. Neurophysiol. 84, 1934–1941. Hagihira, S., Senb. 2000. 62 HALEY JE, DICKENSON AH, SCHACHTER M. Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology. ;31:251– 258. 1992. HARIZI, H. et al. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends in molecular medicine, v. 14, n. 10, p. 461-9, 2008. HENRIQUES, M.G.; SILVA, P.M.; MARTINS, M.A.; FLORES, C.A.; CUNHA, F.Q.;ASSUREY-FILHO, J.;CORDEIRO, R.S. Mouse paw edema. A new model for inflammation? Braz. J. Med. Biol. Res., v.20, n.2, p.243-249, 1987 HÖGLUND, A.U., BAGHDOYAN, H.A.,. M2-, M3- and M4- but not M1-muscarinic receptor subtypes are present in rat spinal cord. J. Pharmacol. Exp. Ther. 281, 470–477. 1997. HUNSKAAR S, HOLE K.. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30: 103–14. 1987. JAIN, M.; PARMAR, H.S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflammation research. v.60, p. 483-491, 2011. JENSEN K, ANDERSEN HO, OLESEN J, LINDBLOM U. Pressurepain threshold in human temporal region. Evaluation of a new pressure algometer. Pain 25(3): 313 – 323, 1986. JONES BJ, ROBERTS DJ. The quantiative measurement of motor inco-ordination in naive mice using an acelerating rotarod. J Pharm Pharmacol. 20(4): 302-304. 1968. JULIUS D, BASBAUM AI. Molecular mechanisms of nociception. Nature. ;413:203–210. 2001. JULIUS, D. TRP Channels and Pain Annu Rev Cell Dev Biol. v. 29, p. 355-84, 2013. JUTEL, M. et al. Histamine, histamine receptors and their role in immune pathology. Clinical & Experimental Allergy, v. 39, n. 12, p. 1786-800, 2009. KIRTEKAR, K.R.; BASU, B.D. Indian Medical Plants. 2nd. ed., Halit Mohan Basu Publicashions, Allahabad, India: p. 28- 2130, 1994. KOSTER R, ANDERSON M, DE BEER EJ. Acetic acid for analgesic screening. Federation Proceedings. v. 18, p. 412. 1959. 63 KUHR, F. et al. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors. Neuropeptides, v. 44, n. 2, p. 145-54, 2010. KUMAR, S., SINGHAL, V., ROSHAN, R., SHARMA, A., REMBHOTKAR, G.W., HOSH, B.,. Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappaB and IkappaB kinase activation. Eur. J. Pharmacol. 575, 177–186. 2007. KUMAR, VINAY et al. Robbins, patologia básica. Rio de Janeiro : Elsevier,. 928 p. 2013. KWAK, J.Y.; JUNG, J.Y.; HWANG, S.W.; LEE, W.T. A capsaicina-receptor antagonista capsazepine, reduces inflammation-induced hyperalgesic responses in the rat: evidence for na endogenous capsaicina-loke substance. Neuroscience. V86, n.2, p. 619-626, 1998 LAMPIASI N1; FODERÀ D; D'ALESSANDRO N; CUSIMANO A; AZZOLINA A; TRIPODO C;, FLORENA AM; MINERVINI MI; NOTARBARTOLO M; MONTALTO G; CERVELLO M. The selective cyclooxygenase-1 inhibitor SC-560 suppresses cell proliferation and induces apoptosis in human hepatocellular carcinoma cells. Int J Mol Med;17(2):245-52. 2006. LANGENBACH, R; MORHAM, SG; TIANO, HF: Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacininduced gastric ulceration. Cell; 83: 483-492, 1995. LE BARS, D., GOZARIU, M., CADDEN, S. Animal models of nociception. Pharmacological Reviews, v. 53, p. 628-651, 2001. LI P, WILDING TJ, KIM SJ, CALEJESAN AA, HUETTNER JE, ZHUO M. Kainatereceptormediated sensory synaptic transmission in mammalian spinal cord. Nature;397(6715):161-4. 1999. LOESER, J. D.; TREEDE, R. D. The Kyoto protocol of IASP Basic Pain Terminology. Pain, v. 137, n. 3, p. 473-477, Jul 31 2008. LOHMANN AB; WELCH SP. ATP-gated K+ channel openers enhance opioid antinociception: indirect evidence for the release of endogenous opioid peptides. Eur J Pharmacol 385:119–127. 1999. LOPEZ RODRIGUEZ, ML; VISO, A, ORTEGA-GUTIERREZ, S. VR1 receptor modulators as potential drugs for neuropathic pain. Mini Reviews in Medicinal Chemistry, v. 3, n. 7, p. 729-748, 2003. MALEKI N., GARJANI A., NAZEMIYAH H., NILFOUROUSHAN N., EFTEKHAR SADAT A. T., ALLAMEH Z., AND HASANNIA N. Potent anti-inflammatory activities 64 of hydroalcoholic extract from aerial parts of Stachys inflata on rats. J. Ethnopharm. 75, 213-218. 2001. MALLMANN, ANTONIO PAULO - Aliados poderosos: natureza e ciência. Disponível em: http://www.icnews.com.br/2014.05.16/colunistas/opiniao-do-leitor/aliados-poderososnatureza- e-ciencia/. Acesso em: 16/11/2014 MAYORAL R; FERNÁNDEZ-MARTÍNEZ A, BOSCÁ L, MARTÍN-SANZ P. Prostaglandin E2 promotes migration and adhesion in hepatocellular carcinoma cells. Carcinogenesis. 26: 753-761. 2005. MCCLESKEY EW, GOLD MS. Ion channels of nociception. Annu Rev Physiol 1999;61:835-56. MILLAN MJ. Descending control of pain. Prog Neurobiol;66:355 – 474. 2002. MING-TATT L1, KHALIVULLA SI, AKHTAR MN, LAJIS N, PERIMAL EK, AKIRA A, ALI DI, SULAIMAN MR Anti-hyperalgesic effect of a benzylidene cyclohexanone analogue on a mouse model of chronic constriction injury-induced neuropathic pain participation of the kappa-opioid receptor and KATP. Pharmacol Biochem BehavDec;114-115:58-63. 2013. MONCADA, A., CENDAN, C.M., BAEYENS, J.M, DEL POZO, E. Effects of serine/threonine protein phosphatase inhibitors on morphine-induced antinociception in the tail flick test in mice. Eur J Pharmacol; 465: 53–60. 2003. NEWMANN, D. J.; CRAGG, G. M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 70, 461. 2007. NUGTEREN, D.H; HAZELHOF, E. Isolation and properties of intermediates in prostaglandin biosynthesis. Biochim. Biophys. Acta. 326: 448-461. 1973. OCANA, M; CENDRAN, C.M; COBOS, E.J; ENTRENA, J.M; BAEYENS, J.M. Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol; 500: 203– 19. 2004. OGA, SEIZI, et al. Fundamentos de Toxicologia. 2ª edição – São Paulo: Atheneu Editora, 2003. OLIVEIRA RRB, GÓIS RMO, SIQUEIRA JS, ALMEIDA JRGS, LIMA JT, NUNES XP, OLIVEIRA VR, SIQUEIRA JS, QUINTANS-JUNIOR LJ. Antinociceptive effect of the ethanolic extract of Amburana cearensis (Allemão) A.C. Sm., Fabaceae, in rodents. Braz J Pharmacogn 19(3): 672 – 676, 2009.. 65 PARK JJ, LEE J, KIM MA, et al. Induction of total insensitivity to capsaicin and hypersensitivity to garlic extract in human by decreased expression of TRPV1. Neuroscience Letters 411(2):87-91 · January 2007 PARMAR, V, S; JAIN, S, C; BISHT, K, S; JAIN, R; TANEJA, P; JHA, A; TYAGI, O, M; PRASAD, A, K; WENGEL, J; OLSEN, C, E; BOLL, P, M. Phytochemistry of the genus Piper. Phytochemistry, v. 46, n. 4, p.597-673, 1997. PEDERSEN SF1, OWSIANIK G, NILIUS B. TRP channels: an overview. Cell Calcium. ;38(3-4):233-52. 2005. PINHEIRO B, SILVA A, SOUZA G, FIGUEIREDO J, CUNHA F, LAHLOU S, DA SILVA JK, MAIA JG, SOUSA PJ. Chemical composition, antinociceptive and anti-inflammatory effects in rodents of the essential oil of Peperomia serpens (Sw.) Loud. J Ethnopharmacol 188: 479–486, 2011. PIRES, O. C.; TAQUEMASA, A. V.C.; AKISUE, G.; OLIVEIRA, F.; ARAUJO, C. E. P. Análise preliminar da toxicidade aguda e dose letal mediana (DL50) comparativa entre os frutos de Pimenta-do-Reino do Brasil (Schinus terebinthifolius Raddi) e Pimenta do Reino (Piper nigrum L.). Rev. Farmacêutica bonaerense, v. 23 n.2, p.176-82, 51. 2004. PRADEEP, C.R., KUTTAN, G., Effect of piperine on the inhibition of nitric oxide (NO) and TNF-α production. Immunopharmacol. Immunotoxicol. 25, 337–346. 2003. PRADEEP, C.R., KUTTAN, G., Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int. Immunopharmacol. 4, 1795–1803. 2004. RAMANA KV, TAMMALI R, REDDY ABM, BHATNAGAR A, SRIVASTAVA SK.. Aldose Reductase-Regulated Tumor Necrosis Factor- α Production Is Essential for High Glucose-Induced Vascular Smooth Muscle Cell Growth. Endocrinology. 148, n. 9, 4371- 4384. 2007. RASTOGI, R.P.; MEHROTA, B.N. Piperine. In: Compendium of Indian Medicial Plants. New Delhi: Publication and Information Directorate, Council of Scientific and Industrial Reseach, India, p. 59, 1991. REIS, G M L, AND I D G DUARTE. Baclofen, an Agonist at Peripheral GABABReceptors, Induces Antinociception via Activation of TEA-Sensitive Potassium Channels. British Journal of Pharmacology 149.6: 733–739. 2006 ROBBINS & COTRAN. Patologia: Bases patológicas das doenças. 8ª Edição. Rio de Janeiro: Elsevier, 2010. 1458 p. 66 ROBLES, L.I., BARRIOS, M., DEL POZO E., DORDAL, A., BAEYENS, J.M. Effects of KC channel blockers and openers on antinociception induced by agonists of 5-HT1A receptors. Eur J Pharmacol. 295:181–8. 1996. ROCHA E SILVA, M. O. Brief history of inflammation. Handbook of Experimental Pharmacology (eds J. R. Vane & S. H. Ferreira), pp. 6-25. Springer-Verlag, New York, 1978. SAKURADA, T., WAKO, K., SUGIYAMA, A., SAKURADA, C., TAN-NO, K., KISARA, K., Involvement of spinal NMDA receptors in capsaicin-induced nociception. Pharmacol. Biochem. Behav. 59, 339–345. 1998. SBED - Sociedade Brasileira de estudo da Dor. GARCIA, JOÃO BATISTA SANTOS. Dor Neuropática - Fascículo 2. 2010. Disponível em <http://www.sbed.org.br/sites/ arquivos/downloads/fasc_dor_neuropatica.pdf> Acesso em 12/02/2016. SCHESTATSKY, PEDRO. Definição, diagnóstico e tratamento da dor neuropática. Rev. HCPA & Fac. Med. Univ. Fed. Rio Gd. do Sul;28(3):177-187, 2008 SEITZER Z, DUBNER R, SHIR YA. A novel behavioral model of neurophatic pain disorders produced in rats by partial sciatic nerve injury. Pain. 43: 205-210. 1990. SHRIVASTAVA P, VAIBHAV K, TABASSUM R, KHAN A, ISHRAT T, KHAN MM, AHMAD A, ISLAM F, SAFHI MM, ISLAM F. Anti-apoptotic and anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson's rat model. Nutr Biochem. 24(4):680-7. 2013. SILVA, C. S.; SARAIVA, S. R. G. L.; JÚNIOR, R. G. O; ALMEIDA, J. R. G. S.; Modelos experimentais para avaliação da atividade antinociceptiva de produtos naturais: uma revisão. Rev. Bras. Farm. 94 (1): 18-23, 2013 SINGH, Y.N. Kava an overview. J. Ethanopharmacol., v. 37, p. 18-45,1992. SOJA, P. J.; TAEPAVARAPRUK, N.; PANG, W.; CAIRNS, B. E.; MCERLANE, S. A.; FRAGOSO, M. C. Transmission through the dorsal spinocerebellar and spinoreticular tracts: wakefulness versus thiopental anesthesia. Anesthesiology, v. 97, n. 5, p. 1178-88, 2002. SRINIVASAN, K. CRITIC. Black Pepper and its Pungent Principle-Piperine: A Review of Diverse Physiological Effects. Rev. Food Sci., 47, 735. 2007. STEPHEN D. ROPER TRPs in Taste and Chemesthesis Handb Exp Pharmacol.; 23: 827– 871. 2014. 67 SZALLASI A, CORTRIGHT DN, BLUM CA, EID SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. ;6(5):357-72. 2007. TASAKA, A.C. Anti-inflamatórios Não Esteroidais. In: SPINOSA, H.S. et al. Farmacologia Veterinária, 5. ed. São Paulo: Guanabara Koogan,. cap. 21, p. 245-259. 2011. THEOHARIDES, T.C; ALYSANDRATOS, K.D; ANGELIDOU, A; DELIVANIS, D.A; SISMANOPOULOS, N; ZHANG, B; ASADI, S; VASIADI, M; WENG, Z; MINIATI, A; KALOGEROMITROS, D. Mast cells and inflammation. Biochimica et Biophysica Acta 1822, 21–33, 2012. TOLEDO, ITALO CORDEIRO - Síndrome da ardência bucal (SAB): avaliação de alterações nervosas periféricas em língua. Universidade Federal De Goiás - Programa de pós-graduação em odontologia. Dissertação de mestrado, 71f. 2014. TONUSSI CR, FERREIRA SH. Rat knee-joint carrageenin incapacitation test: an objective screen for central and peripheral analgesics. Pain; 48: 421-427. 1992. TRACEY KJ. The inflammatory reflex. Nature;.420(19/26):853-859. 2002. VIGIL SVG, DE LIZ R, MEDEIROS YS, FRÖDETS. Efficacy of tacrolimus in inhibiting inflammation caused by carrageenan in a murine model of air pouch. Transpl Immunol; 19:25-29. 2008. WALKER, K.M.; URBAN, L; MEDHURST, S.J; PATEL, S; PANESAR, M.; FOX, A.J.; MCINTYRE, P. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Therap., v. 304, n 1, p. 56-62, 2003 WALLACE, JL; BAK, A; MCKNIGHT, W; ASFAHA, S; SHARKEY, KA; MACNAUGHTON, WK. Cyclooxygenase 1 contributes to inflammatory responses in rats and mice: implications for gastrointestinal toxicity. Gastroenterology; 115:101-109, 1998 WESS, J.; DUTTAROY, A.; GOMEZA, J.; ZHANG, W.; YAMADA, M.; FELDER, C.C.; BERNARDINI, N.; REEH, P.W. Muscarinic receptor subtypes mediating central and peripheral antinociception studied with muscarinic receptor knockout mice: a review. Life Sci. 72: 2047-2054, 2003. WILLIAMS AC, CRAIG KD. Updating the definition of pain.Pain. 2016 May 18. [Epub ahead of print] 68 WOOLF CJ, MA Q. Nociceptors--noxious stimulus detectors. Neuron;55(3):353- 64. 2007. WOOLF CJ, MANNION RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet;353:1959–64. 1999. WOOLF CJ. What is this thing called pain? J Clin Invest.; 120(11): 3742-4. 2010. YUNG, K.K.L., LO, Y.L.,. Immunocytochemical localization of muscarinic m2 receptor in the rat spinal cord. Neurosci. Lett. 229, 81–84. 1997. ZHANG JM; AN J. Cytokines, inflammation, and pain. Int Anesthesiol Clin ;45:27-37. 2007. ZULAZMI NA; GOPALSAMY B; FAROUK AA; SULAIMAN MR; BHARATHAM BH; PERIMAL EK. Antiallodynic and antihyperalgesic effects of zerumbone on a mouse model of chronic constriction injury-induced neuropathic pain. Fitoterapia;105:215-21. 2015por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/6143/2016%20-%20Poliana%20de%20Araujo%20Oliveira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20928/2016%20-%20Poliana%20de%20Araujo%20Oliveira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/27303/2016%20-%20Poliana%20de%20Araujo%20Oliveira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/33668/2016%20-%20Poliana%20de%20Araujo%20Oliveira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/40036/2016%20-%20Poliana%20de%20Araujo%20Oliveira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/46438/2016%20-%20Poliana%20de%20Araujo%20Oliveira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/52860/2016%20-%20Poliana%20de%20Araujo%20Oliveira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/59278/2016%20-%20Poliana%20de%20Araujo%20Oliveira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2159
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-11-08T15:16:23Z No. of bitstreams: 1 2016 - Poliana de Araujo Oliveira.pdf: 1134800 bytes, checksum: 79b02bbcfb332c5fbb799d7840ccc773 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-11-08T15:16:23Z (GMT). No. of bitstreams: 1 2016 - Poliana de Araujo Oliveira.pdf: 1134800 bytes, checksum: 79b02bbcfb332c5fbb799d7840ccc773 (MD5) Previous issue date: 2016-07-25eng
Appears in Collections:Mestrado Multicêntrico em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Poliana de Araujo Oliveira.pdfDocumento principal1.15 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.