Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15136
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Azevedo, Nathalia de | |
dc.date.accessioned | 2023-11-20T01:12:55Z | - |
dc.date.available | 2023-11-20T01:12:55Z | - |
dc.date.issued | 2021-10-14 | |
dc.identifier.citation | AZEVEDO, Nathalia de. Desenvolvimento de modelos de predição de atividade inibitória sobre a DNA Girase de micobactérias baseados em estudos de modelagem molecular. 2021. 100 f. Dissertação (Mestrado em Modalagem Matemática e Computacional) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 20210. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/15136 | - |
dc.description.abstract | Tuberculosis (TB) is a disease with high morbidity and mortality. In 2019, approximately 10 million people developed the disease, of which about 1.4 million people died. There are effective antibiotics against the bacteria that cause tuberculosis, Mycobacterium tuberculosis (MTB), but the increased incidence of TB cases resistant to these drugs has required efforts to discover new drugs capable of fighting the disease. Topoisomerases are enzymes that maintain DNA topology during replication, transcription and recombination. DNA gyrase is the only type II topoisomerase present in MTB, which is why it is an interesting target to be explored for the design of new drugs against TB. DNA gyrase is composed of two subunits, GyrA and GyrB and this project aims to use groups of compounds from the literature with activity data recorded on the GyrB subunit of mycobacterial DNA gyrase, in order to develop a model for the prediction of activity of MTB DNA gyrase inhibitors to be applied in future virtual screening procedures. To achieve this goal, molecular modeling and multiple linear regression methods were combined to build prediction models of inhibitory activity (pIC50) for series of compounds present in the literature with inhibitory data on the inhibition of GyrB of M. smegmatis DNA gyrase. Good models were obtained, verified through internal validation with the LOO (Leave One Out) cross validation method. The results of the cross-validation were expressed by the correlation coefficient of the cross-validation (Q2) and the standard deviation of the cross-validation (SPRESS). The model's prediction statistics are expressed by the multiple correlation coefficient R2 EXT and the root mean square of the prediction error (RMSEP). | eng |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Mycobacterium tuberculosis | por |
dc.subject | Docagem molecular | por |
dc.subject | Descritores moleculares | por |
dc.subject | Regressão linear múltipla | por |
dc.title | Desenvolvimento de modelos de predição de atividade inibitória sobre a DNA Girase de micobactérias baseados em estudos de modelagem molecular | por |
dc.title.alternative | Development of inhibitory activity prediction models on mycobacterial DNA Gyrase based on molecular modeling studies | eng |
dc.type | Dissertação | por |
dc.contributor.advisor1 | Sant'Anna, Carlos Mauricio Rabello de | |
dc.contributor.advisor1ID | https://orcid.org/0000-0003-1989-5038 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2087099684752643 | por |
dc.contributor.advisor-co1 | Silva, Felipe Leite Coelho Da | |
dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-7090-5716 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/9601624302826678 | por |
dc.contributor.referee1 | Sant'Anna, Carlos Mauricio Rabello de | |
dc.contributor.referee1ID | https://orcid.org/0000-0003-1989-5038 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/2087099684752643 | por |
dc.contributor.referee2 | Gregório, Ronaldo Malheiros | |
dc.contributor.referee2ID | https://orcid.org/0000-0003-2229-0523 | por |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/4502104424266743 | por |
dc.contributor.referee3 | Silva, Alexandre Sousa da | |
dc.contributor.referee3ID | https://orcid.org/0000-0002-5573-4111 | por |
dc.contributor.referee3ID | 278.613.148-04 | por |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/4763659817918925 | por |
dc.creator.ID | 125.312.877-44 | por |
dc.creator.Lattes | http://lattes.cnpq.br/2188052817305282 | por |
dc.description.resumo | A tuberculose (TB) é uma doença que apresenta elevadas morbidade e mortalidade. Em 2019, aproximadamente 10 milhões de pessoas desenvolveram a doença, das quais cerca de 1,4 milhão de pessoas morreram. Existem antibióticos efetivos contra a bactéria causadora da tuberculose, Mycobacterium tuberculosis (MTB), mas o aumento da incidência de casos de TB resistente a esses medicamentos tem exigido esforços para se descobrir novos medicamentos capazes de combater a doença. As topoisomerases são enzimas que mantêm a topologia do DNA durante a replicação, transcrição e recombinação. A DNA girase é a única topoisomerase tipo II presente no MTB, sendo por isso um alvo interessante a ser explorado para o planejamento de novos medicamentos contra a TB. A DNA girase é composta por duas subunidades, GyrA e GyrB e este projeto tem como objetivo usar grupos de compostos da literatura com dados de atividade registrados sobre a subunidade GyrB da DNA girase de micobatérias para se desenvolver um modelo para a predição da atividade para ser aplicado em futuros procedimentos de triagem virtual. Para atingir esse objetivo, foram combinados métodos de modelagem molecular e regressão linear múltipla para se construir modelos de predição de atividade inibitória (pIC50) para séries de compostos presentes na literatura com dados de inibição sobre a GyrB da DNA girase de M. smegmatis. Foram obtidos bons modelos, verificados através de validação interna com o método de validação cruzada LOO (Leave One Out). Os resultados da validação cruzada foram expressos pelo coeficiente de correlação da validação cruzada (Q2) e pelo desvio-padrão da validação cruzada (SPRESS). As estatísticas de previsão do modelo são expressas pelo coeficiente de correlação múltipla R2 EXT e pela raiz quadrada média do erro de previsão (RMSEP). | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Exatas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Modelagem Matemática e Computacional | por |
dc.relation.references | ALCÁCER, L. Introdução à Química quântica computacional. Rio de Janeiro. Editora: IST Press, Lisboa, 2007. 305p. (Ensino da Ciência e da Tecnologia, 20) AGGARWAL, C. C.; Análise Outlier. Springer New York, 2017, doi: http://dx.doi.org/10.1007/978-3-319-47578-3_1 ALVES, VINICIUS M.; BRAGA, RODOLPHO C.; MURATOV, EUGENE N. E ANDRADE, HORTA C. QUIMIOINFORMÁTICA: UMA INTRODUÇÃO. Quím. Nova, São Paulo, v. 41, n. 71 2, pág. 202-212, fevereiro de 2018. https://doi.org/10.21577/0100-4042.20170145 ANDRES, E. et al. Vitamin B12 (Cobalamin) Deficiency in Elderly Patients. Canadian Medical Association Journal, v. 171, p. 251-259, 2004. AUBRY A, FISHER LM, JARLIER V, CAMBAU E. First functional characterization of a singly expressed bacterial type II topoisomerase: the enzyme from Mycobacterium tuberculosis. Biochem Biophys Res Commun. 2006 Sep 15;348(1):158-65. doi: 10.1016/j.bbrc.2006.07.017. Epub 2006 Jul 13. PMID: 16876125. BARREIRO, E. J.; FRAGA, C. A. M.; RODRIGUES, C. R.; MIRANDA, A.L.P. Estratégias em Química medicinal para o planejamento de fármacos. Revista Brasileira de Ciências Farmacêuticas, v. 37, n. 3, 2001. BARREIRO, E. J.; FRAGA, FRAGA, C. A. M. Química Medicinal-: As bases moleculares da ação dos fármacos. Artmed Editora, 2014. BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal–As Bases Farmacológicas da Ação dos Fármacos. (3aEd.). Artmed, 2015. BASTOS, Francisco de Assis Amaral. Estatística e Probabilidade. 1a Edição, Fortaleza, 2015. BAUM, C.; WIGGINS, V. BPAGAN: Stata module to perform Breusch-Pagan test for heteroskedasticity. 1999. BAXTER, K.; HORN, E.; GAL-EDD, N.; ZONNO, K.; O’LEARY, J.; TERRY, P. F.; TERRY, S. F. An end to the myth: there is no drug development pipeline. Science translational medicine, v. 5, n. 171, p. 171cm1, 6 fev. 2013. BERMAN, H. M.; WESTBROOK, J.; FENG, Z.; GILLILAND, G.; BHAT, T. N.; WEISSIG, H.; SHINDYALOV, I. N. & BOURNE, P. E. The Protein Data Bank. Nucleic Acids Res., v. 28, p. 235-242, 2000. (www.rcsb.org). BHARTI, D. R; HEMROM, A.J.; LYNN, A.M. GCAC: sistema de fluxo de traba-lho da galáxia para construção de modelos preditivos para triagem virtual. BMC Bioinformatics 19, 550 (2019) doi: 10.1186 / s12859-018-2492-8] BORN, M. E OPPENHEIMER, J. R. ZUR Quantentheorie der Molekeln. Ann. Phys., v.84, p.457-484, 1927. 72 BROADHURST, D., GOODACRE, R., JONES, A., ROWLAND, J. J., KELL, D. B.: Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal. Chim. Acta 348, 1997. BROOIJMANS, N. E KUNTZ, I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., v. 32, p. 335-373, 2003. BUGG, T. D. H. Introduction to Enzyme and Coenzyme Chemistry: Second Edition, 3o ed; John Wiley & Sons: West Sussex, 2012. BURKERT, U.; Allinger, N. L.; Molecular Mechanics; ACS Monograph No.177; Washington, D. C. 1982. @article{doi:10.1128/ecosalplus.ESP-0010-2014. BUSH G. N., EVANS-ROBERTS K., MAXWELL A. LOVETT S. T. DNA Topoisomerases. EcoSal Plus. volume 6, number 2. 2015. doi 10.1128/ecosalplus.ESP 0010-2014 BUSSAB, W. O. – Análise de Variância e de Regressão. Atual Editora, São Paulo, 1988. CAMPOS, H. S. Mycobacterium tuberculosis resistente: de onde vem a resistência? Bol. Pneumol. Sanit., Rio de Janeiro, v. 7, n. 1, p. 51-64, jun. 1999. CARVALHO, I. Introdução à modelagem molecular de fármacos no curso experimental de química farmacêutica. Quim. Nova, 2003. CCDC GOLD-Protein Ligand Docking Software. Available at: http://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/ (Accessed January 22, 2020). CHAMPOUX J. J. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001. doi: 10.1146/annurev.biochem.70.1.369. PMID: 11395412 CHAUDHARI, K.; SURANA, S.; JAIN, P.; PATEL, H. M. Mycobacterium Tuberculosis (MTB) GyrB inhibitors: An attractive approach for developing novel drugs against TB. European Journal of Medicinal Chemistry 2016. [https://doi.org/10.1016/j.ejmech.2016.08.034] COHEN, N. C. Guidebook on Molecular Modeling in Drug Design. 1. ed.California: Academic Press, 1996. 73 CONSONNI, V.; TODESCHINI, R. Molecular descriptors. In: PUZYN, T.; LESZCZYNSKI, J.; CRONIN, M. T. (Eds.). Recent Advances in QSAR Studies. Dordrecht: Springer, 2010. p. 29. CRONIN, M. T. Quantitative structure-activity relationships (QSARs) -- aplications and methodology. In: PUZYN, T.; LESZCZYNSKI, J.; CRONIN, M. T. (Eds.). Recent Advances in QSAR Studies. Dordrecht: Springer, 2010. p. 3–11. CUNHA, U. S; MACHADO, S. A.; FIGUEIREDO, A. F. Uso de análise exploratória de dados e de regressão robusta na avaliação do crescimento de espécies comerciais de terra firme da Amazônia. Revista Árvore [online]. 2002, v. 26, n. 4, pp. 391-402. Disponível em: <https://doi.org/10.1590/S0100-67622002000400001> DEARDEN, J. C.; CRONIN, M. T. D.; KAISER, K. L. E. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR and QSAR in environmental research, v. 20, n. 3-4, p. 241–66, jan. 2009. DELANO, Warren Lyford et al. PyMOL. 2002. DELCISTIA, C. N. Modelagem molecular aplicada ao estudo de reações de inibição enzimática com aplicação potencial no controle de Leishmania amazonensis. Tese de Doutorado. UFRRJ. 2010. De Ruiter, A.; Oostenbrink, C. Free energy calculations of protein-ligand interactions. Curr. Opin. Chem. Biol. 2011, 15 (4), 547–552 DOI: 10.1016/j.cbpa.2011.05.021. DE SA ALVES, F., BARREIRO, E., & MANSSOUR FRAGA, C. (2009). From Nature to Drug Discovery: The Indole Scaffold as a 'Privileged Structure' Mini-Reviews in Medicinal Chemistry, 9 (7), 782-793. doi: 10.2174 / 138955709788452649 DESPOTOPOULOU, C., KLIER, L., & KNOCHEL, P. Synthesis of Fully Substituted Pyrazoles via Regio- and Chemoselective Metalations. Organic Letters, 11(15), 3326–3329. (2009) doi:10.1021/ol901208d DEWAR, M. J. S. et al. Development and use of quantum mechanical molecular model.76.AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, v. 107, n. 13, p. 3902–3909, 1985. DEWAR, M. J. S.; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Society of Chemistry, v. 99, n. 15, 74 p. 4899–4907, 1977. DIAS, R. & AZEVEDO Jr., W. F. Molecular docking algorithms. Curr. Drug Targets, v. 9, p. 1040-1047, 2008. DIMASI JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003 Mar;22(2):151-85. doi: 10.1016/S0167- 6296(02)00126-1. PMID: 12606142. DRAPER, N. R.; Smith, H.; Applied Regression Analysis. John Wiley & Sons; New York, 1981. ELDRIDGE, M. D. et al. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, v. 11, n. 5, p. 425–445, 1997. FERNANDES, G. F. S.; CHIN, C. M.; SANTOS, J. L.; potenciais alvos moleculares para o desenvolvimento de novos fármacos antituberculose. Quím. Nova, São Paulo, v. 40, n. 5, 2017. FERREIRA, M. M. C.; MONTANARI, C. A.; GAUDIO, A. C. Seleção de variável em QSAR. Química Nova, v. 25, n. 3, pág. 439-448, 2002. FERREIRA, R. S; GLAUCIUS, O.; ANDRICOPULO, A. D. Integração das técnicas de triagem virtual e triagem biológica automatizada em alta escala: oportunidades e desafios em P&D de fármacos. Quím. Nova, São Paulo, v. 34, n. 10, p. 1770-1778, 2011. FORINA, M., LANTERI, S., CERRATO OLIVEROS, M.C., PIZARRO MILLAN, C.: Selection of useful predictors in multivariate calibration. Anal. Bioanal. Chem. 380, 2004. FORRELAND, M., KLEPP, L., GIOFFRÉ, A., GARCÍA, J., MORBIDONI, H., SANTANGELO, M., CATALDI, A. E BIGI, F. (2013). Virulence factors of the Mycobacterium tuberculosis complex. Virulence, 4, pp. 2-49. FRAGOSO T.P.; CARNEIRO J.W.; VARGAS M.D. Aminequinone-hydroxylquinoneimine tautomeric equilibrium revisited: molecular modeling study of the tautomeric equilibrium and substituent effects in 4-(4-R-phenylamino)naphthalene-1,2-diones. J Mol Model. 2010 May;16(5):825-30. doi: 10.1007/s00894-009-0579-x. Epub 2009 Sep 13. PMID: 19756783. FRALEY, C., RAFTERY, A. How many clusters? Which clustering method? Answers via 75 model-based cluster analysis. Comp. J. 41, 1998. FRANCO, DAIANA P. ET AL. A importância das cumarinas para a química medicinal e o desenvolvimento de compostos bioativos nos últimos anos. química nova [online]. 2021, v. 44, n. pp. 180-197. Epub 07 Maio 2021. ISSN 1678-7064. https://doi.org/10.21577/0100- 4042.20170654. FRANK, I. E., TODESCHINI, R.: The Data Analysis Handbook. Elsevier, Amsterdam, the Netherlands, 1994. FRIEDMAN, L. M.; FURBERG, C. D.; DEMETS, D. L. Fundamentals of Clinical Trials. 4. ed. New York, NY: Springer, 2010. FUKUI, K., YONEZAWA, T., & SHINGU, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. The Journal of Chemical Physics, 20(4), 722–725. (1952). doi:10.1063/1.1700523 FUKUI, K., YONEZAWA, T., NAGATA, C., & SHINGU, H. Molecular Orbital Theory of Orientation in Aromatic, Heteroaromatic, and Other Conjugated Molecules. The Journal of Chemical Physics, 22(8), 1433–1442. (1954). doi:10.1063/1.1740412 FURNIVAL, G. M., WILSON, R. W. Regressions by leaps and bounds. Technometrics 16, 1974. GAUDIO, A. C.; ZANDONADE, E. Proposição, validação e análise dos modelos que correlacionam estrutura química e atividade biológica. Quím. Nova, São Paulo, v. 24, n. 5, p. 658-671, Oct. 2001. Available from https://doi.org/10.1590/S0100-40422001000500013. GOHLKE, H.; HENDLICH, M.; KLEBE, G. Knowledge-based scoring function to predict protein-ligand interactions. Journal of Molecular Biology, v. 295, n. 2, p. 337-356, 2000. GROISMAN, E., OCHMAN, H. (1997). How to become a pathogen. Trends in Microbiology. 1997, 2, pp. 289-93. GUHA, R.; VAN DRIE, J. H. Structure-activity landscape index: identifying and quantifying activity cliffs. Journal of chemical information and modeling, v. 48, n. 3, p. 646–58, mar. 2008. GUIDO, R. V. C. Planejamento de inibidores da enzima gliceraldeído-3-fosfato desidrogenase de Trypanosoma cruzi: biologia estrutural e química medicinal. Universidade de São Paulo, 76 2008. GIESEN, D., HAWKINS, G., LIOTARD, D. et al. A universal model for the quantum mechanical calculation of free energies of solvation in non-aqueous solvents. Theor. Chem. Acc. 98, 85– 109 (1997). https://doi.org/10.1007/s002140050283 GUNSTEREN, V. W. F. .; BERENDSEN, H. JC. Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angewandte Chemie International Edition in English, v. 29, n. 9, p. 992-1023, 1990. GUPTA, RR, KUMAR, M., & GUPTA, V. Heterocyclic Chemistry. (1998). doi: 10.1007 / 978-3- 642-72276-9 HANSCH, C.; FUJITA, T.; J. Am. Chem. Soc. 1964, 86, 1616. HÄRMARK, L.; VAN GROOTHEEST, A. C. Pharmacovigilance: methods, recent developments, and future perspectives. European journal of clinical pharmacology, v. 64, n. 8, p. 743–52, ago. 2008. HOAGLAND, D. T.; Liu, J.; Lee, R. B.; Lee, Richard E. New agents for the treatment of drug- resistant Mycobacterium tuberculosis. Advanced Drug Delivery Reviews 2016. HOERL, A. E., KENNARD, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 1970. HOESKULDSSON, A. PLS regression methods. Journal Chemometrics. V. 2, 1988. HOFMANN, M., GATU, C., KONTOGHIORGHES, E. J. Efficient algorithms for computing the best subset regression models for large-scale problems. Computat. Stat. Data Anal. 52, 2007, 16–29 HOFFMANN, R. Análise de regressão: uma introdução à Econometria. 4a ed. São Paulo: Hucitec, 2006. HOUSE, J. E. Fundamentals of Quantum Chemistry, Elsevier, San Diego, 2004. HUANG, H.; YU, H.; CHEN, C.; HSU, C.; CHEN, H. LEE, K.; TSAI, F. & CHEN, C. Y. Current developments of computer-aided drug design. J. Taiwan Inst Chem. Eng., v. 41, n. 6, p. 623- 635, 2010. 77 IUPAC. Compendium of Chemical Terminology, 2a ed. (o "Livro de Ouro"). Compilado por AD McNaught e A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Versão online (2019-) criada por SJ Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook. JELESAROV, I.; BOSSHARD, H. R. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit. 1999 Jan-Feb;12(1):3-18. doi: 10.1002/(SICI)1099- 1352(199901/02)12:1<3::AID-JMR441>3.0.CO;2-6. PMID: 10398392. JOHNSON, R. A. e WICHERN, Dean W. Applied Multivariate Statistical Analysis. Englewwod Cliffs, NJ: Prentice Hall, 1988. JOHNSON, D.S. et al. Discovery of PF-04457845: A Highly Potent, Orally Bioavailable, and Selective Urea FAAH Inhibitor. ACS Med. Chem. Lett.; v. 2, p. 91-96, 2011. doi: 10.1021/ml100190t. PMID: 21666860; PMCID: PMC3109749. JONES, G. et al. Development and Validation of a Genetic Algorithm for Flexible. Docking. Journal of Molecular Biology, v. 267, n. 3, p. 727-748, 1997. JORGENSEN, W.; The many roles of computation in drug discovery. Science. 2004 Mar 19;303(5665):1813-8. doi: 10.1126/science.1096361. PMID: 15031495. JORGENSEN, W.; Efficient Drug Lead Discovery and Optimization. Accounts of chemical research, (2009). KASHYAP, A.; Kumar, P. S.; Silakari, O. In silico designing of domain B selective gyrase inhibitors for effective treatment of resistant tuberculosis. Tuberculosis, v. 112, P. 83-88, 2018. ISSN 1472-9792. KAMSRI, P.; Punkvang, A.; Hannongbua, S.; Suttisintong, K.; Kittakoop, P.; Spencer, P.; Mulholland, A.J.; Pungpo, P. In silico study directed towards identification of the key structural features of GyrB inhibitors targeting MTB DNA gyrase: HQSAR, CoMSIA and molecular dynamics simulations, SAR and QSAR in Environmental Research, 30:11, 775-800, (2019). DOI: 10.1080/1062936X.2019.1658218 KIRALJ, Rudolf; FERREIRA, Márcia. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. Journal of the Brazilian Chemical Society, v. 20, n. 4, p. 770-787, 2009. 78 KITCHEN, D. B. et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews in Drug Discovery, v. 3, n. 11, p. 935-949, 2004. KORB, O.; STÜTZLE, T.; EXNER, T. E. Empirical Scoring Functions for Advanced Protein- Ligand Docking with PLANTS. Journal of chemical information and modeling, v. 49, n. 1, p. 84–96, 2009. KRAMER, R.: Chemometric Techniques for Quantitative Analysis. Marcel Dekker, New York, 1998. KROEMER, R.T. Structure-based drug design: Docking and scoring. Current protein and peptide science, 2007. KROGSGAARD-LARSEN, P.; Strømgaard, K.; Madsen, U. Textbook of drug design and discovery., 4oed; CRC Press: Boca Raton, 2002. KUBINYI, H.; QSAR: Hansch Analysis and Related Approaches. In: Methods and Principles in Medicinal Chemistry; R. Mannhold, P. Krogsgaard-Larsen e H. Timmerman Eds.; Vol. 1; VCH; Weinheim, 1993. KUMAR, K.; Abubakar I. Clinical implications of the global multidrug-resistant tuberculosis epidemic. Clinical Clinic, Journal of Royal College of Physicians of London. 2015. Clinical Medicine 2015 Vol 15, No 6: s37–s42. DOI: https://doi.org/10.7861/clinmedicine.15-6-s37 KUNTZ, I.D. et al. Geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, v.161, p.269-288. 1982. KUNTZ, I. D. Structure-based strategies for drug design and discovery. Science, v. 257, n. 5073, p. 1078-1082, 1992. LAVECCHIA, A. & DI GIOVANNI, C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem., v. 20, n. 23, p. 2839-2860, 2013. LI, Bo‐Jian; CHIANG, Chih‐Chia; HSU, Ling‐Yih. QSAR Studies of 3, 3′‐(Substituted‐ Benzylidene)‐Bis‐4‐Hydroxycoumarin, Potential HIV‐1 Integrase Inhibitor. Journal of the Chinese Chemical Society, v. 57, n. 4A, p. 742-749, 2010. LIMA, V., BONATO, V., LIMA, K., SANTOS, S., SANTOS, R., GONÇALVES, E., BRANDÃO, L. RODRIGUES, J. E SILVA, C. (2001). Role of trehalose dimycolate in recruitment of cells 79 and modulation of production of cytokines and no in tuberculosis. Infection and Immunity, 69, p. 5305. LINDOSO, J.A.L.; Lindoso, A.A.B.P. - Neglected tropical diseases in Brazil. Rev. Inst. Med. trop. S. Paulo, 51(5): 247-253, 2009. LOMBARDINO, J. G.; LOWE, J. A. The role of the medicinal chemist in drug discovery--then and now. Nature reviews. Drug discovery, v. 3, n. 10, p. 853–62, out. 2004. MACALINO, S. J. Y.; GOSU, V.; HONG, S. & CHOI, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., v. 38, n. 9, p. 1686-1701, 2015 MAGGIORA, G. M. On outliers and activity cliffs--why QSAR often disappoints. Journal of chemical information and modeling, v. 46, n. 4, p. 1535, 2006. MALLOWS, C. L.: Technometrics 15, 1973, 661–675. Some comments on Cp MCGEE, P. Clinical trials on the move. Drug discovery & development, v. 9, n. 6, p. 16–22, 2006. MEDAPI, B.; Renuka, J.; Saxena, S.; Sridevi, J.P; Medishetti, R.; Kulkarni, P.; YOGEESWARI, P.; SRIRAM, D.; Design and synthesis of novel quinoline–aminopiperidine hybrid analogues as Mycobacterium tuberculosis DNA gyraseB inhibitors, Bioorganic & Medicinal Chemistry, Volume 23, Issue 9, Pages 2062-2078, ISSN 0968-0896. 2015. https://doi.org/10.1016/j.bmc.2015.03.004. MELO, JÚLIO O. F. et al. Heterociclos 1,2,3-triazólicos: histórico, métodos de preparação, aplicações e atividades farmacológicas. Química Nova [online]. 2006, v. 29, n. 3, pp. 569-579. Disponível em: <https://doi.org/10.1590/S0100-40422006000300028>. Epub 25 Maio 2006. ISSN 1678-7064. https://doi.org/10.1590/S0100-40422006000300028. MENDOZA, L. Phase 0 clinical trials will overcome stagnation of anticancer drug development? Klinická onkologie : casopis Ceské a Slovenské onkologické spolecnosti, v. 24, n. 2, p. 143–5, jan. 2011. MIKUSOVÁ K, SLAYDEN RA, BESRA GS, BRENNAN PJ. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother. 1995 Nov;39(11):2484-9. doi: 10.1128/AAC.39.11.2484. 80 MOOJI, W. T. M.; VERDONK, M. L. General and Targeted Statistical Potentials for Protein- Ligand Interactions. PROTEINS: Structure, Function, and Bioinformatics, v. 61, n. 2, p. 272- 287, 2005. MOPAC2016, JAMES J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA. 2016. MORGON, N. H.; COUTINHO, K. Métodos de química teórica e modelagem molecular. São Paulo. Livraria da física, 2007. MUKAKA, Mavuto M. A guide to appropriate use of correlation coefficient in medical research. Malawi medical journal, v. 24, n. 3, p. 69-71, 2012. NETER, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. Applied Linear Statistical Models (4th edition). Boston: McGraw-Hill. (1996). OECD. Principles for the validation, for regulatory purposes, of (Quantitative) Structure-Activity Relationship models. (2004). Disponível em: <http://www.oecd.org/chemicalsafety/risk- assessment/37849783.pdf> OPREA, T. I. Chemoinformatics in drug discovery. Weinheim: Wiley-VCH, p.493. 2005. OREN, I. et al. Synthesis and Antimicrobial Activity of Some Novel 2,5-and /or 6-Substituted Benzoxazole and Benzimidazole Derivatives. European Journal of Pharmaceutical Sciences, v. 7, p. 153-160, 1998 PEREIRA, D. A. & WILLIAMS, J. A. Origin and evolution of high throughput screening. Br. J. Pharmacol., v. 152, n. 1, p. 53-61, 2007. PEREIRA, D. H.; LA PORTA, F. A.; SANTIAGO, R. T.; GARCIA, D. R.; RAMALHO, T. C. Novas Perspectivas sobre o Papel dos Orbitais Moleculares de Fronteira no Estudo Da Reatividade Química: Uma Revisão. Rev. Virtual Quim., 2016, 8 (2), 425-453. PIOVESAN, M. F.; LABRA, M. E. Institutional change and political decision-making in the creation of the Brazilian National Health Surveillance Agency. Cadernos de Saúde Pública, v. 23, n. 6, p. 1373–1382, jun. 2007. 81 PHRMA. Pharmaceutical research and manufacturers of America, 2013 biopharmaceutical research industry profile. Washington, DC: [s.n.]. Disponível em: <http://www.phrma.org/profiles-reports>. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. RADÜNZ, L.L. et al. Rendimento extrativo de cumarina de folhas de guaco (Mikania glomerata Sprengel) submetidas a diferentes temperaturas de secagem. Revista Brasileira de Plantas Medicinais [online]. 2012, v. 14, n. 3, pp. 453-457. Disponível em: <https://doi.org/10.1590/S1516-05722012000300005>. Epub 03 Dez 2012. ISSN 1983-084X. https://doi.org/10.1590/S1516-05722012000300005. REECE, R. J.; MAXWELL, A. DNA gyrase: structure and function. Critical Reviews in Biochemistry and Molecular Biology, v. 26, n. 3-4, p. 335-375, 1991. REDDY, K. I.; Srihari, K.; Renuka, J.; Sree, K. S.; Chuppala, A.; Jeankumar, V. U.; Sridevi, J. P; Babu, K. S.; Yogeeswari, P.; Sriram, D.; An efficient synthesis and biological screening of benzofuran and benzo[d]isothiazole derivatives for Mycobacterium tuberculosis DNA GyrB inhibition, Bioorganic & Medicinal Chemistry, Volume 22, Issue 23, Pages 6552-6563, ISSN 0968-0896, 2014. https://doi.org/10.1016/j.bmc.2014.10.016. REGNSTROM, J.; KOENIG, F.; ARONSSON, B.; REIMER, T.; SVENDSEN, K.; TSIGKOS, S.; FLAMION, B.; EICHLER, H.-G.; VAMVAKAS, S. Factors associated with success of market authorisation applications for pharmaceutical drugs submitted 113 to the European Medicines Agency. European journal of clinical pharmacology, v. 66, n. 1, p. 39–48, janeiro. 2010. RENUKA, J.; INDRASENA, K.; SRIHARI, K.; ULLAS, V.; SHRAVAN, M.; PADMA, J.; YOGEESWARI, P.; SUDHAKAR, K.; SRIRAM, D.; Bioorg. Med. Chem. 2014, 22, 4924 RODRIGUES, R. P.; MANTOANI, S. P.; DE ALMEIDA, J. R.; PINSETTA, F. R. SEMIGUINI, E. P.; DA SILVA, V. B. & DA SILVA, C. H. P. Estratégias de triagem virtual no planejamento de fármacos. Rev. Virtual Química, v. 4, n. 6, p. 739-776, 2012. ROSSETTI, Maria Lúcia Rosa et al. Tuberculose resistente: revisão molecular. Revista de Saúde Pública [online]. 2002, v. 36, n. 4. Epub 30 Set 2002. ISSN 1518-8787. https://doi.org/10.1590/S0034-89102002000400021. 82 SANT'ANNA, C. M. R. Glossário de termos usados no planejamento de fármacos (recomendações da IUPAC para 1997). Química Nova, v. 25, n. 3, p. 505-512, 2002. SANT’ANNA, C. M. R., Métodos de modelagem molecular para estudo e planejamento de compostos bioativos: Uma introdução. 2009. Rev. Virtual Quim., 2009, 1 (1), 49‐57. SANTOS, V., GONSALVES, A., & ARAÚJO, C. Abordagem didática para o desenvolvimento de moléculas bioativas: regra dos cinco de lipinski e preparação de heterociclo 1,3,4-oxadiazol em forno de micro-ondas doméstico. química nova. (2017).. https://doi.org/10.21577/0100- 4042.20170135 SCOTTI, L.; SCOTTI, M.; Cardoso, C.; Pauletti, P.; Gamboa, I. C.; Bolzani, V. S.; Velasco, M. V. R.; Menezes, C. M. S.; FERREIRA, E. I. Modelagem molecular aplicada ao desenvolvimento de moléculas com atividade antioxidante visando ao uso cosmético. Revista Brasileira de Ciências Farmacêuticas, v. 43, n. 2, 2007. SCHENONE, M.; Dančík, V.; Wagner, BK.; Clemons, PA.; Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013 Apr;9(4):232-40. doi: 10.1038/nchembio.1199. PMID: 23508189; PMCID: PMC5543995. SILVER, N. O Sinal e o Ruído. Editora Intrinseca, 2013. SMITH, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clinical Microbiology, 16, pp. 463-496, (2003). STEINSKOG, D. J.; TJØSTHEIM, D. B.; KVAMSTØ, N. G. A cautionary note on the use of the Kolmogorov–Smirnov test for normality. Monthly Weather Review, v. 135, n. 3, p. 1151-1157, 2007. STEWART, J. J. P. Optimization of parameters for semi-empirical methods. Journal of Computational Chemistry, Colorado Springs, Colorado , v. 10, n. 2, p. 221-264, 1989. STEWART, J. J. P. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. Journal of Molecular Modeling, v. 10, n. 2, p. 155, 2004. https://doi.org/10.1007/s00894-004-0183-z STEWART, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and applications to 70 elements. Journal of Molecular Modeling, v. 13, n. 12, p. 1173-1213, 2007. 83 STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n. 1, p. 1-32, 2013. STONE, M., BROOKS, R. J. Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal component regression. J. R. Statist. Soc. B. 52, 1990. SUTORMIN D., RUBANOVA N., LOGACHEVA M., GHILAROV D., SEVERINOV K. Single- nucleotide-resolution mapping of DNA gyrase cleavage sites across the Escherichia coli genome. Nucleic acids research. Volume 47, 2018 https://doi.org/10.1093/nar/gky1222 TCHOUGRÉEFF, A.L. Hybrid Methods of Molecular Modeling. Ed. New York: springer, 2008. TIBSHIRANI, R. J. Regression shrinkage and selection via the lasso J. Royal Stat. Soc. B. 58, 1996. TILLMAN, John A. The power of the Durbin-Watson test. Econometrica: Journal of the Econometric Society, p. 959-974, 1975. The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC. TODESCHINI, R.; CONSONNI, V. Handbook of Molecular Descriptors, Willy. 2000. TROPSHA, A. Best practices for QSAR model development, validation, and exploitation. Molecular informatics, v. 29, n. 6-7, p. 476–488, 6 jul. 2010. UNGER, S. H.; HANSCH, C. Model building in structure-activity relations. Reexamination of adrenergic blocking activity of. beta.-halo-. beta.-arylalkylamines. Journal of medicinal chemistry, v. 16, n. 7, p. 745-749, 1973. VARMUZA, K.; FILZMOSER, P. Introduction to Multivariate Statistical Analysis in Chemometrics, New York: CRC Press, 2009. ISBN-10: 1420059475 e ISBN-13: 978- 1420059472. VERLI, H.; Barreiro, E. J. Um paradigma da química medicinal: a flexibilidade dos ligantes e receptores. Quím. Nova v.28, n.1, 2005. 84 WONG, Tzu-Tsung. Performance evaluation of classification algorithms by k-fold and leave- one-out cross validation. Pattern Recognition, v. 48, n. 9, p. 2839-2846, 2015. WORLD HEALTH ORGANIZATION. Global tuberculosis report 2020. Geneva; 2020. Licence: CC BY-NC-SA 3.0 IGO. WORLD HEALTH ORGANIZATION. Estimates of TB and MDR-TB burden are produced by WHO in consultation with countries 2019. WORLD HEALTH ORGANIZATION. The end TB strategy. Global strategy and targets for tuberculosis prevention, care and control after 2015. Geneva: WHO, 2015. XUE, L.; BAJORATH, J. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening, v. 3, n. 5, p. 363–72, out. 2000. YAO, L.; Evans, J.A; Rzhetsky, A. Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol. V. 27, 2009. | por |
dc.subject.cnpq | Matemática | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/74323/2021%20-%20Nathalia%20de%20Azevedo.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6827 | |
dc.originais.provenance | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-08-09T14:09:17Z No. of bitstreams: 1 2021 - Nathalia de Azevedo.pdf: 1979407 bytes, checksum: 6b4dfbd99ad1bcb0ec79b3e373a02305 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-08-09T14:09:17Z (GMT). No. of bitstreams: 1 2021 - Nathalia de Azevedo.pdf: 1979407 bytes, checksum: 6b4dfbd99ad1bcb0ec79b3e373a02305 (MD5) Previous issue date: 2021-10-14 | eng |
Appears in Collections: | Mestrado em Modelagem Matemática e Computacional |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021 - Nathalia de Azevedo.pdf | 2021 - Nathalia de Azevedo | 1.93 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.