Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/15111
Full metadata record
DC FieldValueLanguage
dc.creatorSilva, Fábio Cardozo da
dc.date.accessioned2023-11-20T01:12:33Z-
dc.date.available2023-11-20T01:12:33Z-
dc.date.issued2014-09-18
dc.identifier.citationSILVA, Fábio Cardozo da. Tratamento e preenchimento de falhas de séries de dados meteorológicos utilizando workflows científicos paralelos em ambientes de GPU. 2014. 53 f. Dissertação (Mestrado em Modelagem Matemática e Computacional). Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2014.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/15111-
dc.description.abstractDespite of the growing importance of researches in the field of Meteorology, especially those that handle large volumes of data focused on studies of hidrological resources, difficulties the handle datasets are increasing. Researchers are developing great efforts to obtain and store high quality data in their repositories. This dissertation aims to present a computational proposal capable to compute meteorological data and add quality control to long times series of data. The artifacts conceived and developed in this work are based on the e-Science vision. We used high performance processing features and scientific workflows to aid to automate the process of scientific research in Meteorology. Furthermore, this work integrates VisTrails scientific workflows with parallel computing environments using GPU and CUDA programming. The integration was guided to extend the capability of handling large volumes of hihg quality meteorological data. Other features of this work are the discussions about performance gains of the proposal and the representation of (raw and curated) data and retrospective provenance generated by the computational experiments according to PROV-DM specification. The main results of this work are. 87,7% of detection of errors and failures replacemente were achieved using 77 meteorological stations. We can conclude that the fusion of E-Sceince vision with CUDA parallel computing approach is viable to deal with large volumes of meterological and climatological data.eng
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMeteorologiapor
dc.subjectClimatologiapor
dc.subjecte-Ciênciapor
dc.subjectProveniênciapor
dc.subjectWorkflows Científicospor
dc.subjectHidrologiapor
dc.subjectComputação paralelapor
dc.subjectMeteorologyeng
dc.subjectClimatologyeng
dc.subjecte-Scienceeng
dc.subjectProvenanceeng
dc.subjectScientific Workflowseng
dc.subjectHidrologeng
dc.subjectParalel Computingeng
dc.titleTratamento e preenchimento de falhas de séries de dados meteorológicos utilizando workflows científicos paralelos em ambientes de GPUpor
dc.typeDissertaçãopor
dc.contributor.advisor1Cruz, Sérgio Manuel Serra da
dc.contributor.advisor1ID848.488.637-91por
dc.contributor.advisor-co1Vieira, Priscila Machado Lima
dc.contributor.referee1Cruz, Sérgio Manuel Serra da
dc.contributor.referee2Goldschmidt, Ronaldo Ribeiro
dc.contributor.referee3Lyra, Gustavo Bastos
dc.creator.ID082.278.207-35por
dc.creator.Latteshttp://lattes.cnpq.br/2034219453382798por
dc.description.resumoJuntamente com a crescente importância das pesquisas na área de meteorologia e climatologia, principalmente as que manipulam grandes volumes de dados voltados aos estudos dos recursos hídricos, surgem as dificuldades para que os pesquisadores dessas áreas obtenham e armazenem dados de alta qualidade em seus repositórios. Este trabalho tem como objetivo apresentar uma proposta na área computacional capaz de processar dados meteorológicos agregando controle de qualidade a longas séries históricas de dados em hidrologia. Os artefatos deste trabalho são baseados na visão da e-Science, utilizando workflows científicos em ambientes de processamento de alto desempenho que tem por finalidade automatizar parte das etapas de pesquisas científicas em meteorologia. Além disso, este trabalho propõe a integração de workflows científicos desenvolvidos na plataforma VisTrails com a computação paralela em ambientes GPU utilizando códigos CUDA. Essa integração visa ampliar a capacidade de manipulação de grandes volumes de dados hidrológicos. Outra característica desse trabalho são a apresentação dos ganhos de desempenho da solução computacional e a representação dos dados relativos à proveniência retrospectiva dos experimentos segundo os moldes da especificação PROV-DM. Como um dos principais resultados temos o índice de identificação e correção de falhas de 87,7%, nos testes realizados com 77 estações, o que representa um ganho precioso de tempo na preparação de dados nas pesquisas da área. Com isso pode-se concluir que a combinação da visão da e-Ciência associada a tecnologia de computação paralela CUDA, além de viável, se torna uma alternativa no tratamento de grandes volumes de dados na área de Meteorologia e Climatologia.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Modelagem Matemática e Computacionalpor
dc.subject.cnpqMatemáticapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/11543/2014%20-%20F%c3%a1bio%20Cardozo%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/16888/2014%20-%20F%c3%a1bio%20Cardozo%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/23202/2014%20-%20F%c3%a1bio%20Cardozo%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/29578/2014%20-%20F%c3%a1bio%20Cardozo%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/35952/2014%20-%20F%c3%a1bio%20Cardozo%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/42348/2014%20-%20F%c3%a1bio%20Cardozo%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/48730/2014%20-%20F%c3%a1bio%20Cardozo%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/55180/2014%20-%20F%c3%a1bio%20Cardozo%20da%20Silva.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3124
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2019-11-28T19:55:31Z No. of bitstreams: 1 2014 - Fábio Cardozo da Silva.pdf: 2429209 bytes, checksum: 16885cae90a97ecd6143fa286cc437e5 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2019-11-28T19:55:31Z (GMT). No. of bitstreams: 1 2014 - Fábio Cardozo da Silva.pdf: 2429209 bytes, checksum: 16885cae90a97ecd6143fa286cc437e5 (MD5) Previous issue date: 2014-09-18eng
Appears in Collections:Mestrado em Modelagem Matemática e Computacional

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2014 - Fábio Cardozo da Silva.pdfDocumento principal2.37 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.