Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/14096
Full metadata record
DC FieldValueLanguage
dc.creatorCorval, Amanda Rocha da Costa
dc.date.accessioned2023-11-20T00:10:31Z-
dc.date.available2023-11-20T00:10:31Z-
dc.date.issued2019-02-19
dc.identifier.citationCORVAL, Amanda Rocha da Costa. Caracterização da tolerância de diferentes propágulos de Metarhizium spp. à radiação UV-B e avaliação da virulência de conídios expostos contra larvas de Rhipicephalus microplus. 2019. 42 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14096-
dc.description.abstractMetarhizium anisopliae sl. is one of the most commonly used entomopathogenic fungi in the control of agricultural pests and has also shown promising results in tick tests, especially Rhipicephalus microplus. However, these agents may suffer from abiotic factors, such as high temperatures, fluctuations of humidity and UV-B radiation. In this way, the present work analyzed ten native isolates of Metarhizium spp., with the aim of: 1) verify the tolerance to the UV-B of the isolates, being in aqueous suspensions or oil-in-water emulsions; 2) to verify the tolerance to UV-B of the different propagules of these isolates; 3) to verify the viability of conidia in the soil after UV-B radiation; 4) to evaluate the mortality of R. microplus larvae after exposure of fungi to UV-B. The propagules (conidia, blastospores and microsclerotia) were exposed to UV-B radiation with a total dose of 4.0 kJ m-2 . Conidia suspended in water or oil-water emulsions were evaluated for germination 24 h and 48 h after exposure to UV-B. Conidia adsorbed on different soil types were evaluated for the presence of colony forming units (CFU) after seven days. Blastospores and microsclerotia were evaluated for the presence of CFUs (colony forming units) 72 h and 6 days after exposure to UV-B, respectively. We did not observe a pattern in the tolerance of the different propagules of Metarhizium spp., as the oil did not always protect the conidia of the irradiation. Our results suggest that the different types of soil tested provided UV-B protection to the isolates of Metarhizium spp., except for LCMS05, when adsorbed on soil type I. As for blastospores, LCMS05 was the only isolate that obtained moderate tolerance to irradiation (63.2% germination). Three isolates (LCMS05, LCMS08 and LCMS10) were more tolerant to UV-B when presented in the form of microsclerotia, with a CFC rate above 85%, but only the LCMS10 isolate was statistically equal to the non-exposed control, reaching the same number of CFUs. In the bioassay to verify the mortality of R. microplus larvae after exposure of the fungi to UV-B irradiation, the tested isolates (LCMS03 and LCMS08), although not showing statistical differences each other, obtained good results and showed potential to control R. microplus larvae. The data on UV-B tolerance of the same fungal isolate observed for different propagules, or the same fungal propagule exposed to UV-B in different circumstances, reveal important information not only on the relevance of the intrinsic tolerance of each isolate, but also different propagules of the same fungus. As far as we know, this is the first work analyzing the tolerance to UV-B of different propagules of the same fungal isolate. This study aims to support future research on the discovery of promising fungal isolates and propagules for biological control.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectCarrapato dos bovinospor
dc.subjectFungos entomopatogênicospor
dc.subjectFatores abióticospor
dc.subjectCattle tickeng
dc.subjectEntomopathogenic fungieng
dc.subjectAbiotic factorseng
dc.titleCaracterização da tolerância de diferentes propágulos de Metarhizium spp. à radiação UV-B e avaliação da virulência de conídios expostos contra larvas de Rhipicephalus micropluspor
dc.title.alternativeCharacterization of the tolerance of different propagules of Metarhizium spp. to UV-B radiation and evaluation of the virulence of conidia exposed against Rhipicephalus microplus larvaeeng
dc.typeDissertaçãopor
dc.contributor.advisor1Gôlo, Patrícia Silva
dc.contributor.advisor1ID058.507.577-83por
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-1854-7488por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3935275742919097por
dc.contributor.advisor-co1Fernandes, Éverton Kort Kamp
dc.contributor.advisor-co1ID071.248.587-20por
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0001-7062-3295por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2135541732341157por
dc.contributor.referee1Gôlo, Patrícia Silva
dc.contributor.referee1ID058.507.577-83por
dc.contributor.referee1IDhttps://orcid.org/0000-0003-1854-7488por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3935275742919097por
dc.contributor.referee2Moraes, Aurea Maria Lage de
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8851565681632879por
dc.contributor.referee3Bittencourt, Vânia Rita Elias Pinheiro
dc.contributor.referee3IDhttps://orcid.org/0000-0001-8473-8501por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3888832724995864por
dc.creator.ID096.480.377-10por
dc.creator.IDhttps://orcid.org/0000-0001-6926-7916por
dc.creator.Latteshttp://lattes.cnpq.br/6637801991603948por
dc.description.resumoMetarhizium anisopliae sl. é um dos fungos entomopatogênicos mais utilizados no controle de pragas agrícolas e tem apresentado, também, resultados promissores em testes contra carrapatos, especialmente Rhipicephalus microplus. Porém, estes agentes podem sofrer com fatores abióticos, como altas temperaturas, flutuações de umidade e radiação UV-B. Desta maneira, o presente trabalho analisou dez isolados nativos de Metarhizium spp., com o objetivo de: 1) verificar a tolerância à UV-B dos isolados, estando eles em suspensões aquosas ou emulsões óleo-água; 2) verificar a tolerância à UV-B dos diferentes propágulos destes isolados; 3) verificar a viabilidade de conídios no solo após ação da radiação UV-B; 4) avaliar a mortalidade de larvas de R. microplus após exposição dos fungos à UV-B. Os propágulos (conídios, blastosporos e microescleródios) foram expostos à radiação UV-B com dose total de 4,0 kJ m-2 . Conídios suspensos em água ou em emulsões óleo-água foram avaliados quanto à germinação 24h e 48h após exposição à UV-B. Conídios adsorvidos em diferentes tipos de solo foram avaliados quanto à presença de unidades formadoras de colônias (UFC) após sete dias. Blastosporos e microescleródios foram avaliados quanto à presença de UFC (unidades formadoras de colônias) 72h e 6 dias após exposição à UV-B, respectivamente. Não observamos um padrão na tolerância dos diferentes propágulos de Metarhizium spp., assim como o óleo nem sempre protegeu os conídios da irradiação. Nossos resultados sugerem que os diferentes tipos de solo testados forneceram proteção à UV-B aos isolados de Metarhizium spp., exceto ao LCMS05, quando adsorvido no solo tipo I. Quanto aos blastosporos, LCMS05 foi o único isolado que obteve tolerância moderada à irradiação (63,2% de germinação). Três isolados (LCMS05, LCMS08 e LCMS10) foram mais tolerantes à UV-B, quando apresentados sob a forma de microescleródios, com taxa de UFC superior a 85%, porém somente o isolado LCMS10 foi estatisticamente igual ao controle não exposto, atingindo o mesmo número de UFC. No bioensaio para verificação da mortalidade de larvas de R. microplus após exposição dos fungos à irradiação UV-B, os isolados testados (LCMS03 e LCMS08) mesmo não apresentando diferenças estatísticas entre si, obtiveram bons resultados e demonstraram potencial para controlar larvas de R. microplus. Os dados sobre a tolerância à UV-B do mesmo isolado fúngico aqui observado para diferentes propágulos, ou o mesmo propágulo fúngico exposto à UV-B em diferentes circunstâncias, revelam informações importantes não apenas sobre a relevância da tolerância intrínseca de cada isolado, mas também variações que diferentes propágulos do mesmo fungo possuem. Até onde sabemos, este é o primeiro trabalho analisando a tolerância à UV-B de diferentes propágulos do mesmo isolado fúngico. Este estudo pretende auxiliar pesquisas futuras sobre a descoberta de isolados fúngicos e propágulos promissores para o controle biológico.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.referencesAHMED, S.I.; LEATHER, S.R. Suitability and potential of entomopathogenic microorganisms for forest pest management—some points for consideration. International Journal of Pest Management, v. 40, n. 4, p. 287-292, 1994. ALKHAIBARI, A.M.; CAROLINO, A.T.; YAVASOGLU, S.I.; MAFFEIS, T.; MATTOSO, T.C.; BULL, J.C.; SAMUELS, R.I.; BUTT, T.M. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae :attack on several fronts accelerates mortality. PLoS Pathogens, v. 12, n. 7, 2016. ALKHAIBARI, A.M.; CAROLINO, A.T.; BULL, J.C.; SAMUELS, R.I.; BUTT, T.M. Differential pathogenicity of Metarhizium blastospores and conidia against larvae of three mosquito species. Journal of Medical Entomology, v. 54, n. 3, 2017. ALVES, S. B. Controle microbiano de insetos. Piracicaba, SP: FEALQ, 1998, 1163p. ALVES, R.T.; BATEMAN, R.P.; PRIOR, C.; LEATHER, S.R. Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Protection, v. 17, p. 675-679, 1998. ANGELO, I.C.; FERNANDES, E.K.K.; BAHIENSE, T.C.; PERINOTTO, W.M.S.; MORAES, A.P.R.; TERRA, A.L.M.; BITTENCOURT, V.R.E.P. Efficiency of Lecanicillium lecanii to control the tick Rhipicephalus microplus. Veterinary Parasitology, v. 172, p. 317- 322, 2010. AW, K.M.S.; HUE, S.M. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi, v. 3, n. 30, 2017. BAHIENSE, T.C.; FERNANDES, E.K.K.; ANGELO, I.C.; PERINOTTO, W.M.S.; BITTENCOURT, V.R.E.P. Avaliação do potencial de controle biológico do Metarhizium anisopliae sobre Boophilus microplus em teste de estábulo. Revista Brasileira de Parasitologia Veterinária, v. 16, n. 4, p. 243-245, 2007. 31 BEHLE, R.W.; JACKSON, M.A.; FLOR-WEILER, L.B. Efficacy of a Granular Formulation Containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) Microsclerotia Against Nymphs of Ixodes scapularis (Acari: Ixoididae). Biological and Microbial Control, v. 106, n.1, p.57-63, 2013. BERNARDO, C.C, BARRETO L.P, e SILVA, C.d S.R., LUZ, C, ARRUDA, W, FERNANDES, E.K.K., Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus, Ticks and Tick-borne Diseases (2018), https://doi.org/10.1016/j.ttbdis.2018.06.001. BEYS DA SILVA, W.O.; SANTI, L.; SCHRANK, A.; VAINSTEIN, M.H. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. British Mycological Society, v. 114, p. 10-15, 2010. BIEGELMEYER, P.; NIZOLI, L.Q.; CARDOSO, F.F.; DIONELLO, N.J.L. Aspectos da resistência de bovinos ao carrapato Rhipicephalus (Boophilus) microplus. Archivos de zootecnia. V. 61, p. 1-11, 2012. BISCHOFF, J.F.; REHNER, S.A.; HUMBER, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, v. 101, n. 4, p. 512-530, 2009. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. Uso do fungo Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883, no controle do carrapato Boophilus microplus (Canestrini, 1887). Arquivo da Universidade Rural do Rio de Janeiro, v. 15, p. 197-202, 1992. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. Ação do fungo Metarhizium anisopliae sobre a fase não parasitária do ciclo biológico de Boophilus microplus. Rev. Univ. Rural, Sér. Ciênc. da Vida, v. 16, p. 49-55, 1994. BRAGA, G.U.L.; FLINT, S.D.; MESSIAS, C.L.; ANDERSON, A.J.; ROBERTS, D.W. Effect of UV-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycology Research, v. 105, n. 7, p. 874 – 882, 2001a. 32 BRAGA, G.U.L.; FLINT, S.D.; MILLER, C.D.; ANDERSON, A.J.; ROBERTS, D.W. Both Solar UVA and UVB Radiation Impair Conidial Culturability and Delay Germination in the entomopathogenic Fungus Metarhizium anisopliae. Photochemistry and Photobiology, v. 74, n. 5, p. 734-739, 2001b. BRAGA, G.U.L.; RANGEL, D.E.N.; FERNANDES, E.K.K.; FLINT, S.D.; ROBERTS, D.W. Molecular and physiological effects of environmental UV radiation on fungal conidia. Current Genetics, v.61, n. 3, p. 405-425, 2015. BRUCK, D.J. Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biological Control, v. 32, p. 155-163, 2004. CAMARGO, M.G.; GÔLO, P.S.; ANGELO, I.C.; PERINOTTO, W.M.S.; SÁ, F.A.; QUINELATO, S.; BITTENCOURT, V.R.E.P. Effect of oil-based formulations of acaripatogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, v. 188, p. 140 – 147, 2012. CAMARGO, M.G.; MARCIANO, A.F.; SÁ, F.A.; PERINOTTO, W.M.S.; QUINELATO, S.; GOLO, P.S.; ANGELO, I.C.; PRATA, M.C.A.; BITTENCOURT, V.R.E.P. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Veterinary Parasitology, v. 205, p. 271-276, 2014. CAMARGO, M.G.; NOGUEIRA, M.R.S.; MARCIANO, A.F.; PERINOTTO, W.M.S.; COUTINHO-RODRIGUES, C.J.B.; SCOTT, F.B.; ANGELO, I.C.; PRATA, M.C.A.; BITTENCOURT, V.R.E.P. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Veterinary Parasitology, v. 223, p. 38-42, 2016. COHEN, E.; JOSEPH, T.; KAHANA, F.; MAGDASSI, S. Photostabilization of an entomopathogenic fungus using composite clay matrices. Photochemistry and Photobiology, v. 77, p. 180-185, 2003. 33 COLEY-SMITH, J.R.; COOKE, R.C. Survival and germination of fungal sclerotia. In: Horsfall JG, Baker KF, Zentmyer GA (eds), Annual Review of Phytopathology. Annual Reviews Inc., Palo Alto, CA, USA, p. 65-92, 1971. FARGUES, J.; ROUGIER, M.; GOUJET, R.; SMITS, N.; COUSTERE, C.; ITIER, B. Inactivation of Conidia of Paecilomyces fumosoroseus by Near-Ultraviolet (UVB and UVA) and Visible Radiation. Journal of Invertebrate Pathology, v. 69, p. 70-78, 1997. FERNANDES, E.K.K.; COSTA, G.L.; SOUZA, E.J.; MORAES, A.M.; BITTENCOURT, V.R.E.P. Beauveria bassiana isolated from engorged females and tested against eggs and larvae of Boophilus microplus (Acari: Ixodidae). J Basic Microbiol, v. 43, n.5, 2003. FERNANDES, E.K.K.; KEYSER, C.A.; CHONG, J.P.; RANGEL, D.E.N.; MILLER, M.P.; ROBERTS, D.W. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. Journal of Applied Microbiology, v. 108, p. 115 – 128, 2010. FERNANDES, E.K.K.; ANGELO, I.C.; RANGEL, D.E.N.; BAHIENSE, T.C.; MORAES, A.M.L.; ROBERTS, D.W.; BITTENCOURT, V.R.E.P. An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Veterinary Parasitology, v. 182, p. 307-318, 2011. FERNANDES, E.K.K.; BITTENCOURT, V.R.E.P.; ROBERTS, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental Parasitology, v. 130, p. 300-305, 2012. FERNANDES, E.K.K.; RANGEL, D.E.N.; BRAGA, G.U.L.; ROBERTS, D.W. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Current Genetics, 2015. FERREIRA, L. L.; SOARES, S. F.; FILHO, J. G. O.; OLIVEIRA, T. T.; LÉON, A. A. P.; BORGES, L. M. F. Role of Rhipicephalus microplus cheliceral receptors in gustation and host differentiation. Ticks and Tick-borne Diseases. v. 6, p. 228-233, 2015. 34 FRASER, D.P.; SHARMA, A.; FLETCHER, T.; BUDGE, S.; MONCRIEFF, C.; DODD, A.N.; FRANKLIN, K.A. UV-B antagonises shade avoidance and increases levels of the flavonoid quercetin in coriander (Coriandrum sativum). Scientific Reports, v.7, n.17758, 2017. FURLONG, J.; PRATA, M.C.A. Conhecimento básico para controle do carrapato-dosbovinos. In: FURLONG, J. (Org.). Carrapatos: problemas e soluções. Juiz de Fora: Embrapa Gado de Leite. p. 9-20, 2005. GARCIA, M.V.; MONTEIRO, A.C.; SZABÓ, M.P.J.; MOCHI, D.A.; SIMI, L.D.; CARVALHO, W.M.; TSURUTA, S.A.; BARBOSA, J.C. Effect of Metarhizium anisopliae fungus on off-host Rhipicephalus (Boophilus) microplus from tick-infested pasture under cattle grazing in Brazil. Veterinary Parasitology, v. 181, p. 267-273, 2011. GESSLER, N.N.; EGOROVA, A.S.; BELOZERSKAYA, T.A. Melanin Pigments of Fungi under Extreme Environmental Conditions (Review). Apllied Biochemistry and Microbiology, v.50, n.2, p.105-113, 2014. GHANIZADEH-KAZEROUNI, E.; FRANKLIN, C.E.; SEEBACHER, F. Living in flowing water increases resistance to ultraviolet B radiation. The Company of Biologists. V. 220, p. 582-587, 2017. GOBLE, T.A.; GARDESCU, S.; FISHER, J.J.; JACKSON, M.A.; HAJEK, A.E. Conidial production, persistence and pathogenicity of hydromulch formulations of Metarhizium brunneum F52 microsclerotia under forest conditions. Biological Control, 2016, doi: http://dx.doi.org/10.1016/j.biocontrol.2016.01.003. GRISI, L.; LEITE, R.C.; MARTINS, J.R.S.; BARROS, A.T.M.; ANDREOTTI, R.; CANÇADO, P.H.D.; LEÓN, A.A.P.; PEREIRA, J.B.; VILLELA, H.S. Reassessment of the potencial economic impact of cattle parasites in Brazil. Braz. J. Vet. Parasitol., Jaboticabal v.23, n.2, p.150-156, 2014. 35 HALLSWORTH, J.E.; MAGAN, N. Culture Age, Temperature, and pH Affect the Polyol and Trehalose Contents of Fungal Propagules. Applied Environmental Microbiology, v. 62, p. 2435-2442, 1996. HUMBER, R.A. Fungi: Identification. In: Manual Of Techniques In Insect Pathology, Academic Press, p. 153 – 185, 1997. IGNOFFO, C.M.; HOSTETTER, D.L.; SIKOROWSKI, P.P.; SUTTER, G.; BROOKS, W.M. Inactivation of Representative Species of Entomopathogenic Viruses, a Bacterium, Fungus, and Protozoan by an Ultraviolet Light Source. Environmental Entomology, v. 6, n. 3, p. 411-415, 1977. JACKSON, M.A.; JARONSKI, S.T. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. British Mycological Society, v.113, p. 842-850, 2009. JACKSON, M.A.; JARONSKI, S.T. Development of pilot-scale fermentation and stabilization processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneum strain F52. Biocontrol Science and Technology, v. 22, n. 8, p. 915- 930, 2012. JACKSON, M.A.; PAYNE, A.R. Liquid Culture Production of Fungal Microsclerotia. In: GLARE, T.T. and MORAN-DIEZ, M. E. (eds.) Microbial-Based Biopesticides: Methods and Protocols, Methods in Molecular Biology, New York, v. 1477, p. 71-83, 2016. JARONSKI, S.T. Soil Ecology of the Entomopathogenic Ascomycetes: A Critical Examination of What We (Think) We Know. In: EKESI, S. and MANIANIA, N.K., editors. Use of Entomopathogenic Fungi in Biological Pest management: Research Signpost, p. 91-144, 2007. JENKINS, G.I. Signal Transduction in responses to UV-B radiation. Annual Review of Plant Biology, v. 60, p. 407-431, 2009. 36 JENKINS, G.I. Photomorphogenic responses to ultraviolet-B light. Plant, Cell & Environment, doi: 10.1111/pce.12934, 2017 [Epub ahead of print] KIM, J.S.; JE, Y.H.; SKINNER, M.; PARKER, B.L. An oil-based formulation of Isaria fumosorosea blastospores for management of greenhouse whitefly Trialeurodes vaporariorum (Homoptera:Aleyrodidae). Pest Manag Sci, v. 69, p. 576-581, 2013. LANZA, L.M.; MONTEIRO, A.C.; MALHEIROS, E.B. População de Metarhizium anisopliae em diferentes tipos e graus de compactação do solo. Ciência Rural, v. 34, n. 6, p. 1757-1762, 2004. LECLERC, J-B, PINTO SILVA, J, DETRAIN, C. Impact of soil contamination on the growth and shape of ant nests. Royal Society open science, 5, 2018. LEEMON, D.M.; JONSSON, N.N. Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. Journal of Invertebrate Pathology, n. 97, p. 40-49, 2008. LEEMOM, D.M.; TURNER, L.B.; JONSSON, N.N. Pen studies on the control of cattle tick (Rhipicephalus (Boophilus) microplus) with Metarhizium anisopliae (Sorokin). Veterinary Parasitology, v. 156, p. 248-260, 2008. LONC, E.; GUZ-REGNER, K.; KIEWRA, D.; SZCZEPANSKA, A. Insight into tick biocontrol with special regard to fungi. Annals of Parasitology, v. 60, n. 3, p. 169-177, 2014. LOPES, R.B.; SOUZA, D.A.; ROCHA, L.F.N.; MONTALVA, C. LUZ, C.; HUMBER, R.A.; FARIA, M. The entomopathogenic genus Metarhizium has been defined morphologically by the presence of densely packed hymenia of candelabrum-like, broadly branched conidiophores with cylindrical to clavate phialides producing green conidia in prismatic columns to dense plates. Journal of Invertebrate Pathology, v.151, p. 165-168, 2018. LUZ, C.; D’ALESSANDRO, W.B.; RODRIGUES, J.; FERNANDES, E.K.K. Efficacy of water- and oil-in-water-formulated Metarhizium anisopliae in Rhipicephalus sanguineus eggs and eclosing larvae. Parasitology Research, 2015 37 MASCARIN, G.M.; KOBORI, N.N.; VITAL, R.C.J.; JACKSON, M.A.; QUINTELA, E.D. Production of microsclerotia by brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. World Journal Microbiology Biotechnology, 2013. MASCARIN, G.M.; BIAGGIONI LOPES, R.; DELALIBERA, I. JR.; KORT KAMP FERNANDES, E.; LUZ, C.; FARIA, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology, 2018. MILLER, M.E.; SHISHKOFF, N.; CUBETA, M.A. Thermal sensitivity of Calonectria henricotiae and Calonectria pseudonaviculata conidia and microsclerotia. Mycology, v. 110, n. 3, p. 546-558, 2018. MOCHI, D.A.; MONTEIRO, A.C., DE BORTOLI, S.A.; DÓRIA, H.O.S.; BARBOSA, J.C. Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied.) (Diptera: Tephritidae) in Soil with Different Pesticides. Neotropical entomology, v. 35, n. 3, p. 382-389, 2006. MOORE, D.; BRIDGE, P.D.; HIGGINS, P.M.; BATEMAN, R.P.; PRIOR, C. Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annual Applied Biology, v. 122, p. 605-616, 1993. MOSSA, A.T.W.; AFIA, S.I.; MOHAFRASH, S.M.M.; ABOU-AWAD, B.A. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). Environmental Science and Pollution Research, v.25, p. 10526-10537, 2017. NASCIMENTO, E.; SILVA, S.H.; MARQUES, E.R.; ROBERTS, D.W.; BRAGA, G.U.L. Quantification of Cyclobutane Pyrimidine Dimers Induced by UVB Radiation in Conidia of the Fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii. Photochemistry and Photobiology, v. 86, p. 1259-1266, 2010. 38 OJEDA-CHI, M.M.; RODRIGUEZ-VIVAS, R.I.; GALINDO-VELASCO, E.; LEZAMAGUTIÉRREZ, R. Laboratory and Field evaluation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) for the control of Rhipicephalus microplus (Acari: Ixodidae) in the Mexican tropics. Veterinary Parasitology, v. 170, p. 348-354, 2010. PAIXÃO, F.R.S.; MUNIZ, E.R.; BARRETO, L.P.; BERNARDO, C.C.; MASCARIN, G.M.; LUZ, C.; FERNANDES, E.K.K. Increased heat tolerance afforded by oil-based conidial formulations of Metarhizium anisopliae and M. robertsii. Biocontrol Science and Technology, DOI: 10.1080/09583157.2017.1281380, 2017. PAUL, N.D.; GWYNN-JONES, D. Ecological roles of solar UV radiation: towards an integrated approach. TRENDS in Ecology and Evolution, v. 18, n. 1, p. 48-55, 2003. PEREIRA-JUNIOR, R.R.; HUARTE-BENNET, C.; PAIXÃO, F.R.S.; ROBERTS, D.W.; LUZ, C.; PEDRINI, N.; FERNANDES, É.K.K. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. Journal of Applied Microbiology, v. 125, p. 159-171, 2018. PERINOTTO, W.M.S.; ANGELO, I.C.; GOLO, P.S.; QUINELATO, S.; CAMARGO, M.G.; SÁ, F.A.; BITTENCOURT, V.R.E.P. Susceptibility of different populations of ticks to entomopathogenic fungi. Experimental Parasitology. v.130, p. 257-260, 2011. POLAR, P.; KAIRO, M.T.K.; MOORE, D.; PEGRAM, R.; JOHN, S-A. Comparison of water, oils and emulsifiable adjuvant oils as formulating agents for Metarhizium anisopliae for use in control of Boophilus microplus. Mycopathologia, v. 160, p. 151 – 157, 2005. QUAITE, F.E., SUTHERLAND, B.M.; SUTHERLAND, J.C. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature, v. 358, p. 576–578, 1992. QUINELATO, S.; GOLO, P.S.; PERINOTTO, W.M.S.; SÁ, F.A.; CAMARGO, M.G.; ANGELO, I.C.; MORAES, A.M.L.; BITTENCOURT, V.R.E.P. Virulence potential of Metarhizium anisopliae s.l. isolates on Rhipicephalus (Boophilus) microplus larvae. Veterinary Parasitology, v. 190, p. 556-565, 2012. 39 RANGEL, D.E.N.; BRAGA, G.U.L.; FLINT, S.D.; ANDERSON, A.J.; ROBERTS, D.W. Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. Journal of Invertebrate Pathology,v. 87, p. 77- 83, 2004. RANGEL, D.E.N.; BRAGA, G.U.L.; ANDERSON, A.J.; ROBERTS, D.W. ) Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. Journal of Invertebrate Pathology, v. 90, p. 55-58, 2005. RANGEL, D.E.N.; ANDERSON, A.; BRAGA, G.U.L.; ROBERTS, D.W. Mutants and isolates of Metarhizium anisopliae are diverse in their relationship between conidial pigmentation and stress... Journal of Invertebrate Pathology, v. 93, p. 170-182, 2006. RANGEL, D.E.N.; ANDERSON, A,J.; ROBERTS, D.W. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycological Research, v. 112, p. 1362-1372, 2008. RANGEL, D.E.N.; FERNANDES, E.K.K.; BRAGA, G.U.L.; ROBERTS, D.W. Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiology Letters, v.315, p. 81-86, 2011. ROBERTS, D.W.; ST.LEGER, R. Metarhizium spp., Cosmopolitan Insect-Pathogenic Fungi: Mycological Aspects. Advances in applied microbiology, v. 54, 2004. RODRÍGUEZ, P. B. R.; CRUZ, R. R.; GARCÍA, D. I. D.; GUTIÉRREZ, R. H.; QUINTANILLA, R. E. L.; SAHAGUN, D. O.; CASTILLO, C. G.; ORTEGA, A. G.; RODRÍGUEZ, S. E. H.; CARDONA, A. V.; VELÁZQUEZ, M. M. Identification of immunogenic proteins from ovarian tissue and recognized in larval extracts of Rhipicephalus (Boophilus) microplus, through na immunoproteomic approach. Experimental Parasitology, v. 170, p. 227-235, 2016. 40 SAMISH, M.; REHACEK, J. Pathogens and predators of ticks and their potential in biological control. Annual Reviews Entomology, v. 44, p.159-182, 1999. SAMISH, M.; ROT, A.; MENT, D.; BAREL, S.; GLAZER, I.; GINDIN, G. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions. Veterinary Parasitology, v. 206, p. 258-266, 2014. SASAN, R.K. BIDOCHKA, M.J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, v. 99, n.1, p. 101 – 107, 2012. SCHRANK, A.; VAINSTEIN, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon, v. 56, p. 1267-1274, 2010. SHANG, Y.; DUAN, Z.; HUANG, W.; GAO, Q.; WANG, C. Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with na exogenous tyrosinase gene. Journal of Invertebrate Pathology´, V.109, p.105-109, 2012. SONG, Z.; ZHONG Q.; YIN, Y.; SHEN, L.; LI, Y.; WANG, Z. The high osmotic response and cell wall integrity pathways cooperate to regulate morphology, microsclerotia development, and virulence in Metarhizium rileyi. Scientific Reports, 2016. ST. LEGER, R.J. Studies on adaptations of Metarhizium anisopliae to life in the soil. Journal of Invertebrate Pathology, v. 98, p. 271-276, 2008. SUTHAPARAN, A.; PATHAK. R.; SOLHAUG, K.A.; GISLEROD, H.R. Wavelength dependent recovery of UV-mediated damage: tying up the loose ends of optical based powdery mildew management. Journal of Photochemistry & Photobiology, doi: 10.1016/j.jphotobiol.2017.12.018 [Epud ahead of print]. TIAGO, P.V.; OLIVEIRA, N.T.; LIMA, E.A.L.A. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects. Ciência Rural, v. 44, n. 4, p. 645-651, 2014. 41 TIRLONE, L.; KIM, T.K.; COUTINHO, M.L.; ALI, A.; SEIXAS, A.; TERMIGNONI, C.; MULENGA, A.; VAZ JR, I.S. The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect Biochemistry and Molecular Biology, v. 71, p. 12-28, 2016. TUPE, S.G.; PATHAN, E.K; DESHPANDE, M.V. Development of Metarhizium anisopliae as a Mycoinsecticide: From Isolation to Field Performance. Journal of Visualized Experiments (125), e55272, 2017. WANG, H.; LEI, Z.; REITZ, S.; LI, Y.; XU, X. Production of microsclerotia of the fungal entomopathogen Lecanicillium lecanii (Hypocreales: Cordycipitaceae) as a biological control agent against soil-dwelling stages of Frankliniella occidentalis (Thysanoptera: Thripidae). Biocontrol Science and Technology, v. 23, n. 2, p. 234 – 238, 2013. WEBSTER, A.; RECK, J.; SANTI, L.; SOUZA, U.A.; DALL’AGNOL, B.; KLAFKE, G.M.; BEYS-DA-SILVA, W.O.; MARTINS, J.R.; SCHRANK, A. Integrated control of an acaricide-resistant strain of the cattle tick Rhipicephalus microplus by applying Metarhizium anisopliae associated with cypermethrin and chlorpyriphos under field conditions. Veterinary Parasitology, v. 207, p. 302-308, 2015. WILLIAMSON, C.E.; ZEPP, R.G.; LUCAS, R.M.; MADRONICH, S.; AUSTIN, A.T.; BALLARÉ, C.L.; NORVAL, M.; SULZBERGER, B.; BAIS, A.F.; MCKENZIE, R.L.; ROBINSON, S.A.; HÄDER, D-P.; PAUL, N.D.; BORNMAN, J.F. Solar ultraviolet radiation in a changing climate. Nature Climate Change, v. 4, p. 434-441, 2014. YU, X.; HUO, L.; LIU, H.; CHEN, L.; WANG, Y.; ZHU, X. Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora. Microbiological Research. V.179, p.1-11, 2015. ZIMMERMANN, G. Effect of High Temperatures and Artificial Sunlight on the Viability of Conidia of Metarhizium anisopliae. Journal of Invertebrate Pathology, v. 40, p. 36-40, 1982. 42 ZIMMERMAN, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, v. 17, n. 9, p. 879-920, 2007. ZHOU, B-B.S.; ELLEDGE, S.J. The DNA damage response: putting checkpoints in perspective. Nature, v. 408, p. 433-439, 2000. ZHOU, R.; ZHOU, X.; FAN, A.; WANG, Z.; HUANG, B. Differential functions of two metalloproteses, Mrmep1 and Mrmep2, in growth, sporulation, cell wall integrity, and virulence in the filamentous fungi Metarhizium robertsii. Frontiers in microbiology, v. 9, n. 1528, 2018.por
dc.subject.cnpqMedicina Veterináriapor
dc.subject.cnpqParasitologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67732/2019%20-%20%20Amanda%20Rocha%20da%20Costa%20Corval.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5281
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2021-12-03T12:59:48Z No. of bitstreams: 1 2019 - Amanda Rocha da Costa Corval.pdf: 1207006 bytes, checksum: e125f8a731dc244d83b5bb27fc66aea4 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-12-03T12:59:49Z (GMT). No. of bitstreams: 1 2019 - Amanda Rocha da Costa Corval.pdf: 1207006 bytes, checksum: e125f8a731dc244d83b5bb27fc66aea4 (MD5) Previous issue date: 2019-02-19eng
dc.originais.provenanceItem withdrawn by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-02-21T12:06:03Z Item was in collections: Mestrado em Ciências Veterinárias (ID: 39) No. of bitstreams: 3 2019 - Amanda Rocha da Costa Corval.pdf.jpg: 3600 bytes, checksum: 25015b4f0d7a4e22cdde8bd033601ff5 (MD5) 2019 - Amanda Rocha da Costa Corval.pdf.txt: 121699 bytes, checksum: b9ff54680b21a268903bd8c151e13a14 (MD5) 2019 - Amanda Rocha da Costa Corval.pdf: 1207006 bytes, checksum: e125f8a731dc244d83b5bb27fc66aea4 (MD5)eng
dc.originais.provenanceItem reinstated by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-06-19T23:20:30Z Item was in collections: Mestrado em Ciências Veterinárias (ID: 39) No. of bitstreams: 3 2019 - Amanda Rocha da Costa Corval.pdf.jpg: 3600 bytes, checksum: 25015b4f0d7a4e22cdde8bd033601ff5 (MD5) 2019 - Amanda Rocha da Costa Corval.pdf.txt: 121699 bytes, checksum: b9ff54680b21a268903bd8c151e13a14 (MD5) 2019 - Amanda Rocha da Costa Corval.pdf: 1207006 bytes, checksum: e125f8a731dc244d83b5bb27fc66aea4 (MD5)eng
Appears in Collections:Mestrado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Amanda Rocha da Costa Corval.pdf2019 - Amanda Rocha da Costa Corval1.18 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.