Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/14013
Full metadata record
DC FieldValueLanguage
dc.creatorVarela, João Bosco
dc.date.accessioned2023-11-20T00:07:54Z-
dc.date.available2023-11-20T00:07:54Z-
dc.date.issued2016-02-24
dc.identifier.citationVARELA, João Bosco. Influência dos métodos de conservação sobre a recuperação e a frequência de amplificação de marcadores mitocondriais e nuclueares de carrapatos das espécies Amblyomma Parvum e Amblyomma Sculptum (Acari: Ixodidae). 2016. 60 f. Dissertação (Mestrado em CIÊNCIAS VETERINÁRIAS). Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14013-
dc.description.abstractThe study of ticks and tick-borne disease is increasingly dependent upon the use of molecular biological techniques that are employed in pathogen detection and for the accurate identification of ticks, particularly immature stages. The successful application of molecular methods, principally the polymerase chain reaction (PCR), can only be achieved if the DNA present in the tick was effectively preserved and could be extracted efficiently. The current study compared three fixatives (RNAlater, zinc salts (ZN) and isopropanol) for the ability to preserve the nuclear and mitochondrial (mt) DNA of larvae and nymphs of Amblyomma parvum and larvae of Amblyomma scultptum. DNA was extracted from ticks at times between 72h to 12 months post fixation using a phenol-chloroform procedure and examined using PCR assays for nuclear (internal transcribed spacer 2; ITS2) and mitochondrial (12S rDNA, subunit 1 of cytochrome c oxidase (COI) and D-loop) sequences. The efficiency of amplification was analyzed quantitatively (number of samples which produced amplicon) and qualitatively (relative intensity of bands observed on agarose gels). It was observed that the ITS2 sequence could be amplified in the majority (93,39%, n= 283/303) of the samples, in each of the three fixatives, although qualitative differences were observed, particularly with A. sculptum preserved in ZN. In contrast, fixation in isopropanol effectively abolished the ability to amplify the mitochondrial marker sequences of A. parvum and also resulted in inferior amplification (qualitative), of the D-loop target with A. sculptum. Those effects were observed in samples fixed for as little as 72h. The detrimental effects of isopropanol were also observed in samples extracted using an alkaline lysis method (Hotshot). Samples of A. parvum larvae preserved in RNAlater for 30 months showed an amplification efficacy of 100% in the ITS2 and COI assays, irrespective of the extraction method. Mitochondrial sequences are a central component of the majority of molecular studies of ticks. The findings of this study indicate that isopropanol should be avoided as a fixative for immature stages of ticks. Instead, the use of RNAlater is recommended in order to permit the consistent recovery of amplifiable mtDNAeng
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDNA mitocondrialeng
dc.subjectAmblyomma parvumeng
dc.subjectAmblyomma sculptumeng
dc.subjectmitochondrial DNAeng
dc.subjectnuclear DNAeng
dc.subjectpreservationeng
dc.subjectDNA nuclearpor
dc.subjectpreservaçãopor
dc.subjectPCRpor
dc.titleInfluência dos métodos de conservação sobre a recuperação e a frequência de amplificação de marcadores mitocondriais e nuclueares de carrapatos das espécies Amblyomma Parvum e Amblyomma Sculptum (Acari: Ixodidae)por
dc.title.alternativeInfluence of conservation methods upon retrieval and amplification fequency of mitochondrial and nuclear markers from Amblyomma parvum and Amblyomma sculptum ticks (Acari: Ixodidae)eng
dc.typeDissertaçãopor
dc.contributor.advisor1McIntosh, Douglas
dc.contributor.advisor1ID5404662719por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5166697605343047por
dc.contributor.referee1Santos, Huarrisson Azevedo
dc.contributor.referee2Ogrzewalska, María Halina
dc.creator.ID426.722.588-56por
dc.creator.Latteshttp://lattes.cnpq.br/8655177239707359por
dc.description.resumoO estudo de carrapatos e doenças transmitidas por eles é cada vez mais dependente da utilização de técnicas de biologia molecular que são empregadas na detecção de patógenos, e a acurada identificação desses artrópodes, em particular os estágios imaturos. A aplicação bem-sucedida dos métodos moleculares, principalmente, a reação em cadeia da polimerase (PCR), só pode ser alcançada se o DNA presente no carrapato foi eficazmente preservado e extraído de forma eficiente. O estudo comparou três fixadores (RNAlater, sais de zinco (ZN) e isopropanol) avaliando a sua capacidade de preservar DNA mitocondrial (mtDNA) e nuclear de larvas e ninfas de Amblyomma parvum e larvas de Amblyomma scultptum. O DNA foi extraído dos carrapatos, em tempos entre 72h e 12 meses após a fixação por meio da técnica de fenol-clorofórmio e lise alcalina (“Hot Shot”) e examinadas usando ensaios de PCR para sequências nucleares (espaçador interno transcrito 2; ITS2) e mitocondriais (12S rDNA, subunidade 1 do citocromo c oxidase (COI) e D-loop). A eficiência de amplificação foi analisada quantitativamente (número de amostras que produziram “amplicon”) e qualitativamente (intensidade relativa das bandas observadas em géis de agarose). Foi observado que a sequência ITS2 foi amplificada na maioria (93,39%, n= 283/303) das amostras em cada um dos três fixadores, embora tenham sido observadas diferenças qualitativas, particularmente com A. sculptum preservado em ZN. Em contraste, a fixação em isopropanol afetou negativamente a capacidade de amplificar as sequências dos marcadores mitocondriais de A. parvum e também resultou na amplificação inferior (qualitativa), do alvo D-loop com A. sculptum. Esses efeitos foram observados em amostras fixadas por apenas 72 horas. Os efeitos prejudiciais de isopropanol também foram observados igualmente em amostras extraídas usando um método de lise alcalina (“HotShot”). As amostras de larvas de A. parvum preservadas em RNAlater durante 30 meses, mostrou uma eficácia de amplificação de 100% nos ensaios para ITS2 e COI, independentemente do método de extração usado. Sequências mitocondriais são um componente central da maioria das pesquisas moleculares com carrapatos. Os resultados deste estudo indicam que isopropanol deve ser evitado como um fixador para fases imaturas de carrapatos. Em vez disso, o uso de RNAlater é recomendado, a fim de permitir a recuperação consistente de mtDNA amplificávepor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.referencesAGUIAR, D. M. et al. Prevalence of Ehrlichia canis (Rickettsiales: Anaplasmataceae) in dogs and Rhipicephalus sanguineus (Acari: Ixodidae) ticks from Brazil.Journal of medical entomology, v. 44, n.1, p. 126-132, 2007. ALVES, A.D.S. et al. Seroprevalence of Rickettsia spp. in Equids and Molecular Detection of ‘Candidatus Rickettsia amblyommii’in Amblyomma cajennense Sensu Lato Ticks From the Pantanal Region of Mato Grosso, Brazil. Journal of Medical Entomology, v. 51, n. 6, p. 1242-1247, 2014. AMMAZZALORSO, A.D. et al. To beat or not to beat a tick: Comparison of DNA extraction methods from ticks (Ixodes scapularis) (No. e1042). PeerJ PrePrints, p. 1-17, 2015. ANDERSON, John F.; MAGNARELLI, Louis A. Biology of Ticks. Infectious Disease Clinics of North America, v. 22, n. 2, p. 195–215, 2008. DE ARMAS, Y.; RODRÍGUEZ, M.M.; BISSET, J.A., Modificacion de un método de extracción de ADN genómico de Aedes aegypti (Diptera: Culicidae). Revista Colombiana de Entomologia, v. 31, n. 2, p. 203–206, 2005. BEATI, Lorenza; KEIRANS, James E. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters,Journal of Parasitology, v. 87, n. 1, p. 32-48, 2001. BEATI, L. Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the Cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evolutionary Biology,v. 13, n. 1, p. 267, 2013. BECKSTEAD, Jay H. A simple technique for preservation of fixation-sensitive antigens in paraffin-embedded tissues. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, v. 42, n. 8, p. 1127–1134, 1994. BISANTI, M.; GANASSI, S.; MANDRIOLI, M. Comparative analysis of various fixative solutions on insect preservation for molecular studies. Entomologia Experimentalis et Applicata, v. 130, n. 3, p. 290–296, 2009 BURGER, T.D., SHAO, R. and BARKER, S.C. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Molecular Phylogenetics & Evolution, v. 76, p. 241-253, 2014 CHAN Cynthia Tak Wan. Comparative analysis of microsatellite and mitochondrial geneticvariations in Ixodes scapularis. Tese de Mestrado, Georgia Southern University, 2012. 50 CHEN Z., et al. Tick-borne pathogens and associated co-infections in ticks collected from domestic animals in central China. Parasite & Vectors, v. 7, n. 1, p.237, 2014 CORN et al., First at-large record of Amblyomma parvum (Acari: Ixodidae) in the United States, Systematic & Applied Acarology, n. 17, v. 1, p. 3-6, 2012. CORRIVEAU, M., UPPSTROM, K.; KLOMPEN, H. Effect of eight storage modes on DNA preservation. Trends in Acarology, p. 553–556, 2010. Available at: http://link.springer.com/chapter/10.1007/978-90-481-9837-5_95. CROWDER, C. D. et al. Extraction of total nucleic acids from ticks for the detection of bacterial and viral pathogens. Journal of Medical Entomology, v. 47, n. 1, p. 89–94, 2010. CRUICKSHANK, Robert H. Molecular markers for the phylogenetics of mites and ticks. Systematic & Applied Acarology, v. 7, p. 3–14, 2002 DABERT, Miroslawa. DNA markers in the phylogenetics of the Acari. Biological Letters, v. 43, n. 2, p. 97–107, 2006 DANTAS-TORRES, Filipe. Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasites & vectors, v. 3, p. 26, 2010 DANTAS-TORRES, F; CHOMEL, B.B.; OTRANTO, D. Ticks and tick-borne diseases: A One Health perspective. Trends in Parasitology, v. 28, n. 10, p. 437–446, 2012. Available at: http://dx.doi.org/10.1016/j.pt.2012.07.003. DANTAS-TORRES, F.; ONOFRIO, V.C.; BARROS-BATTESTI, D.M. The ticks (Acari : Ixodida : Argasidae , Ixodidae) of Brazil. Systematic & Applied Acarology, v. 14, p. 30–46, 2009. DAPSON, R.W.Fixation for the 1990's: a review of needs and accomplishments. Biotechnic &histochemistry, v. 68, n. 2, p. 75-82, 1993. DEDKOV, V.G., et al. Prevalence of Kemerovo virus in ixodid ticks from the Russian Federation. Ticks and Tick-borne Diseases. v. 5, n. 6, p. 651-655, 2014. DILLON, N.; AUSTIN, A.D; BARTOWSKY, E. Comparison of preservation techniques for DNA extraction from hymenopterous insects. Insect molecular biology, v. 5, n. 1, p. 21–24, 1996. DOUGLAS, Michael P.; ROGERS, Scott O. DNA damage caused by common cytological fixatives. Mutation Research, v. 401, n. 1, p. 77–88, 1998. DOWELL, F.E.; NOUTCHA, A.E.M.; MICHEL, K. Short Report : The Effect of Preservation Methods on Predicting Mosquito Age by Near Infrared Spectroscopy. American Journal of Tropical Medicine and Hygiene, v. 85, n. 6, p. 1093–1096, 2011. DUONG, A. et al. Reproductive and developmental toxicity of formaldehyde : A systematic review. Mutation Research, v. 728, n. 3, p. 118–138, 2011. Available at: http://dx.doi.org/10.1016/j.mrrev.2011.07.003. 51 VAN ESSEN, H.F. et al. Alcohol based tissue fixation as an alternative for formaldehyde : influence on immunohistochemistry. Journal of clinical pathology, v. 63, n. 12, p. 1090–1095, 2010. FACCINI-MARTÍNEZ, Á.A. et al. Rickettsia rickettsii in Amblyomma patinoi Ticks, Colombia. Emerging Infectious Diseases, v. 21, n. 3, p. 2010–2012, 2015. FERON, V.J. et al. Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutation Research, v. 259, n. 3, p. 363–385, 1991. FUKATSU, Takema. Acetone preservation: A practical technique for molecular analysis. Molecular Ecology, v. 8, n. 11, p. 1935–1945, 1999. FUKUHARA, H. Relative proportions of mitochondrial and nuclear DNA in yeast under various conditions of growth. European Journal of Biochemistry, v. 11, n. 1, p. 135-139, 1969. GERARDI, M. et al. Comparing feeding and reproductive parameters of Amblyommaparvum tick populations (Acari : Ixodidae) from Brazil and Argentina on various host species. Veterinary Parasitology, v. 197, n. 1, p. 312–317, 2013. Available at: http://dx.doi.org/10.1016/j.vetpar.2013.06.018. GILLESPIE, J.W. et al. Evaluation of Non-Formalin Tissue Fixation for Molecular Profiling Studies. American Journal of Pathology, v. 160, n. 2, p. 449–457, 2002. GOETZE, Erica.; JUNGBLUTH, Michelle J. Acetone preservation for zooplankton molecular studies. Journal of Plankton Research, v. 35, n. 5, p. 972–981, 2013. GU, X. et al. The complete mitochondrial genome of the scab mite Psoroptes cuniculi (Arthropoda: Arachnida) provides insights into Acari phylogeny. Parasites & vectors, v. 7, n. 340, p. 1-10, 2014. GUGLIELMONE, A.A. et al. Ticks (Ixodidae) on humans in South America. Experimental & Applied Acarology, v. 40, n. 2, p. 83–100, 2006. GUGLIELMONE, A.A. et al. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: A list of valid species names. Zootaxa, v. 28, n. 2528, p. 1–28, 2010. GUO, W. et al. DNA Extraction Procedures Meaningfully Influence qPCR-Based mtDNA Copy Number Determination. Mitochondrion, v. 9, n. 4, p. 261–265, 2009. GURDEBEKE, Shirley; MAELFAIT, Jean-Pierre. Pitfall Trapping in Population Genetics Studies: Finding the Right “Solution”. Journal of Arachnology, v. 30, n. 2, p. 255–261, 2002. GUY, E.C.; STANEK, G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. Journal of Clinical Pathology, v. 44, n. 7, p .610-611, 1991. 52 HALOS, L. et al. Short note Determination of an efficient and reliable method for DNA extraction from ticks. Veterinary Research, v. 35, n. 6, p. 709–713, 2004. HEBERT, P.D. et al., Identification of Birds through DNA Barcodes. PLoS Biology. v. 2, n. 10, p. 312, 2004. HERNANDEZ, R. et al. Identification of a point mutation in an esterase gene in different populations of the southern cattle tick, Boophilus microplus. Insect Biochemistry and Molecular Biology, v. 30, n. 10, p. 969–977, 2000. HILL, C.; GUTIERREZ, J. A method for extraction and analysis of high quality genomic DNA from ixodid ticks. Medical and Veterinary Entomology, v. 17, n. 2, p. 224–227, 2003. HUMAIR, P.F., et al., Molecular identification of bloodmeal source in Ixodes ricinus ticks using 12S rDNA as a genetic marker. Journal of Medical Entomology, v. 44, n. 5, p. 869-880, 2007. HOPWOOD, D. Cell and tissue fixation, 1972-1982. Histochemical Journal, v. 17, n. 4, p. 389–442, 1985. HOWAT, William J.; WILSON, Beverly A. Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods, v. 70, n. 1, p. 12-19, 2014. HUBBARD, M.J.; CANN, K.J.; WRIGHT, D.J.M. Validation and rapid extraction of nucleic acids from alcohol-preserved ticks. Experimental and Applied Acarology, v. 19, n. 8, p. 473–478, 1995. IATA180. International Aviation. Disponível em <http://www.spnhc.org/media/assets/SPNHC_Newsletter_2011_V25_N1.pdf>, acesso em 02 de Julho de 2015. INCA. Instituto nacional de Câncer. Disponível em <http://www1.inca.gov.br/conteudo_view.asp?id=795>, Acesso em 01 de Julho de 2015. KIERNAN, John A., 2000. Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: What they are and what they do . Microscopy Today, v. 1, n. 5, p. 8–12, 2000. KING, J.R.; PORTER, S.D. Recommendations on the use of alcohols for preservation of ant specimens (Hymenoptera , Formicidae). Insectes Sociaux, v. 51, n. 2, p. 197–202, 2004. LABRUNA, M.B. et al. Notes on parasitism by Amblyomma humerale (Acari: Ixodidae) in the state of Rondônia, western Amazon, Brazil. Journal of medical entomology, v. 39, n. 6, p. 814–817, 2002. LABRUNA, M.B. et al. New Records and Laboratory-Rearing Data for Ixodes schulzei (Acari :Ixodidae) in Brazil. Journal of Medical Entomology, v. 40, n.1, p. 116–118, 2003. 53 LABRUNA, M.B. et al. Infection by Rickettsia bellii and “Candidatus Rickettsia amblyommii” in Amblyomma neumanni ticks from Argentina. Microbial Ecology, v. 54, n. 1, p. 126–133, 2007. LOMMANO, E., et al. Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks and Tick-Borne Diseases, v. 5, n. 6, p. 871-882, 2014. LONDOÑO, A. et al. Infection of Amblyomma ovale by Rickettsia sp strain Atlantic rainforest , Colombia. Ticks and Tick-borne Diseases, v. 5, n. 6, p. 672–675, 2014. LUGARINI, C. et al. Ticks and Tick-borne Diseases Rickettsial agents in avian ixodid ticks in northeast Brazil. Ticks and Tick-borne Diseases, v. 6, n.3, p. 364–375, 2015. Available at: http://dx.doi.org/10.1016/j.ttbdis.2015.02.011. LV, J. et al. Assessment of four DNA fragments (COI , 16S rDNA , ITS2 , 12S rDNA) for species identification of the Ixodida (Acari: Ixodida). Parasites & Vectors, v. 7, n. 1, p. 1–11, 2014. LYKIDIS, D. et al. Novel zinc-based fixative for high quality DNA, RNA and protein analysis. Nucleic Acids Research, v. 35, n. 12, e85, 2007. MARTINS, T.F. et al. Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: Descriptions, redescriptions, and identification key. Ticks and Tick-borne Diseases, v. 1, n. 2, p. 75–99, 2010. MANGOLD, A.J.; BARGUES, M.D.; MAS-COMA, S. Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitology research, v. 84, n. 6, pp.478-484, 1998. MATHISON, Blaine A.; PRITT, Bobbi S. Laboratory identification of arthropod ectoparasites. Clinical Microbiology Reviews, v. 27, n. 1, p. 48–67, 2014. MELO, A.L.T. et al. Seroprevalence and risk factors to Ehrlichia spp. and Rickettsia spp. in dogs from the Pantanal Region of Mato Grosso State, Brazil. Ticks and Tick-borne Diseases, v. 2, n. 4, p. 213–218, 2011. MELO, A.L.T. et al. Rickettsia parkeri infecting free-living Amblyomma triste ticks in the Brazilian Pantanal. Ticks and Tick-borne Diseases, v. 6, n. 3, p. 237–241, 2015. MIETHING, F. et al. Effect of fixation to the degradation of nuclear and mitochondrial DNA in different tissues. Journal of Histochemistry and Cytochemistry, v. 54, n. 3, p. 371–374, 2006. MOELANS, C.B. et al. Formaldehyde substitute fixatives: effects on nucleic acid preservation. Journal of Clinical Pathology, v. 64,n. 11, p. 960–967, 2011. MOREAU, C.S. et al. DNA preservation: A test of commonly used preservatives for insects. Invertebrate Systematics, v. 27, n. 1, p. 81–86, 2013. 54 MOREIRA, A.S. et al. Bumblebee (Hymenoptera: Apidae) sample storage for a posteriori molecular studies: Interactions between sample storage and DNA-extraction techniques. European Journal of Entomology, v. 110, n. 3, p. 419–425, 2013 MTAMBO, J. et al. Comparison of preservation methods of Rhipicephalus appendiculatus (Acari: Ixodidae) for reliable DNA amplification by PCR. Experimental and Applied Acarology, v. 38, n. 2-3, p. 189–199, 2006. MUGNAINI, E.; DAHL, A.L. Zinc-aldehyde fixation for light-microscopic immunocytochemistry of nervous tissues. Journal of Histochemistry & Cytochemistry, v. 31, n. 12, p. 1435-1438, 1983. NAGY, Zoltán Tamás. A hands-on overview of tissue preservation methods for molecular genetic analyses. Organisms Diversity and Evolution, v. 10, n. 1, p. 91–105, 2010. NAVA, S.; MANGOLD, A.J.; GUGLIELMONE, A.A. The natural hosts for larvae and nymphs of Amblyomma neumanni and Amblyomma parvum (Acari: Ixodidae). Experimental & Applied Acarology, v. 40, n. 2, p. 123–131, 2006. NAVA, S. et al. Distribution, hosts, 16S rDNA sequences and phylogenetic position of the Neotropical tick Amblyomma parvum (Acari : Ixodidae). Annals of Tropical Medicine and Parasitology, v. 102, n. 5, p. 409–425, 2008. NAVA, S. et al. Reassessment of the taxonomic status of Amblyommacajennense (Fabricius , 1787) with the description of three new species , Amblyomma tonelliae n . sp ., Amblyomma interandinum n . sp . and Amblyomma patinoi n . sp ., and reinstatement of Amblyomma mixtum, and Amblyomma sculptum (Ixodida: Ixodidae). Ticks and Tick-borne Diseases, 5, pp.252–276, 2014. NIERI-BASTOS, F.A. et al. Candidatus Rickettsia andeanae , a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes. Memorias do Instituto Oswaldo Cruz, v. 109, n. 2, p. 259–261, 2014. OGRZEWALSKA, M., UEZU, A.; LABRUNA, M.B. Ticks (Acari: Ixodidae) infesting wild birds in the Atlantic Forest in northeastern Brazil , with notes on rickettsial infection in ticks. Parasitology Research, v. 108, n. 3, p. 665–670, 2011. OGRZEWALSKA, M. et al. Ticks (Acari: Ixodidae) Infesting Birds in an Atlantic Rain Forest Region of Brazil Ticks. Journal of Medical Entomology, v. 46, n. 5, p. 1225–1229, 2009. OGRZEWALSKA, M. et al. Effect of forest fragmentation on tick infestations of birds and tick infection rates by Rickettsia in the Atlantic Forest of Brazil. EcoHealth, v. 8, n. 3, p. 320–331, 2011. OGRZEWALSKA, M. et al. Epidemiology of Brazilian spotted fever in the Atlantic Forest, state of São Paulo, Brazil. Parasitology, v. 139, n. 10, p. 1283–1300, 2012 55 OLEGÁRIO, M.M.M. et al. Life cycle of the tick Amblyomma parvum Aragão, 1908 (Acari: Ixodidae) and suitability of domestic hosts under laboratory conditions. Veterinary Parasitology, v. 179, n. 1, p. 203–208, 2011 ONOFRIO, V.C. et al. Diagnoses of and illustrated key to the species of Ixodes Latreille, 1795 (Acari: Ixodidae) from Brazil. Systematic Parasitology, v. 72, n. 2, p. 143–157, 2009. PACHECO, R.C. et al. Detection of a novel spotted fever group rickettsia in Amblyomma parvum ticks (Acari: Ixodidae) from Argentina. Experimental and Applied Acarology, v. 43, n. 1, p. 63–71, 2007. PACHECO, R.C. et al. Rickettsial Infection in Ticks (Acari: Ixodidae) Collected on Birds in Southern Brazil. Journal of Medical Entomology, v. 49, n. 3, p. 710–716, 2012. PACHECO, R.C. et al. Coxiella burnetii in Ticks, Argentina. Emerging Infectious Diseases, v. 19, n. 2, p. 344–345, 2013. PANGRÁCOVÁ et al., Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasites & Vectors, v. 6, p. 238, 2013 PECKLE, M. et al. Molecular epidemiology of Theileria equi in horses and their association with possible tick vectors in the state of Rio de Janeiro, Brazil. Parasitology Research, v. 112, n. 5, p. 2017–2025, 2013. PICHON, B. et al., Detection and identification of pathogens and host DNA in unfed host-seeking Ixodes ricinus L.(Acari: Ixodidae). Journal of Medical Entomology, v. 40, n. 5, p. 723-731, 2003. POST, R.J.; FLOOK, P.K.; MILLEST, A. L. Methods for the preservation of insects for DNA studies. Biochemical Systematics and Ecology, v. 21, n. 1, p. 85–92, 1993. RAKE, Adrian V. Isopropanol preservation of biological samples for subsequent DNA extraction and reassociation studies. Analytical biochemistry, v. 48, n. 2, p. 365–368, 1972. RAMOS, V.N. et al. Diseases Ticks on humans in the Pantanal wetlands , Brazil. Ticks and Tick-borne Diseases, v. 5, n. 5, p. 497–499, 2014. REEVES, W.K.; UTTER, C.M; DURDEN, L. Rickettsial pathogens and arthropod vectors of medical and veterinary significance on Kwajalein Atoll and Wake Island. Micronesica, v. 43, n. 1, p. 07–113, 2012. REIF, K.E. et al. Prevalence and infection load dynamics of Rickettsia felis in actively feeding cat fleas. PLoS ONE, v. 3, n. 7, e2805, 2008. RIJPKEMA, S. et al., Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Experimental & Applied Acarology, v. 20, n. 1, p. 23-30, 1996. 56 RODRÍGUEZ, I. et al. An Alternative and Rapid Method for the Extraction of Nucleic Acids from Ixodid Ticks by Potassium Acetate Procedure. Brazilian Archives of Biology and Technology, v. 57, n. 4, p. 542–547, 2014. SANGIONI, L.A. et al. Rickettsial Infection in Animals and Brazilian Spotted Fever Endemicity. Emerging Infectious Diseases, v. 11, n. 2, p. 265 – 270, 2005. SANTOLIN, I.D.A.C.; FAMADAS, K.M.; MCINTOSH, D. Detection and identification of Rickettsia agents in ticks collected from wild birds in Brazil by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Revista Brasileira de Medicina Veterinaria, v. 35, n. 2, p. 68–73, 2013 SANTOS, H.A. et al., 2013. Molecular epidemiology of the emerging zoonosis agent Anaplasma phagocytophilum ( Foggie , 1949 ) in dogs and ixodid ticks in Brazil. Parasites & vectors, v. 6, n. 1, pp.348, 2013. SARAIVA, D.G. et al. Rickettsia amblyommii Infecting Amblyomma auricularium Ticks in Pernambuco, Northeastern Brazil: Isolation, Transovarial Transmissin and Transstadial Perpetuation. Vector-Borne and Zoonotic Diseases, v. 13, n. 9, p. 615-618, 2013. SCHANDER, C.; HALANYCH, K.M. DNA, PCR and formalinized animal tissue– a short review and protocols. Organisms, Diversity & Evolution, v. 3, n. 3, p. 195–205, 2003. SIKULU, M., et al. Evaluating RNA later® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species. Malaria Journal, v. 10, n. 1, p. 1, 2011 SOUZA, C.E.; PINTER, A.; DONALISIO, M.R. Major Article Risk factors associated with the transmission of Brazilian spotted fever in the Piracicaba river basin, State of São Paulo, Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 48, n. 1, p. 11–17, 2015. SPIGELMAN, M. et al. Long-term DNA survival in ethanol-preserved archival material. Annals of the Royal College of Surgeons of England, v. 83, n. 4, p. 283–284, 2001. SRINIVASAN, M., SEDMAK, D.; JEWELL, S. Content and Integrity of Nucleic Acids. American Journal of Pathology, v. 161, n. 6, p. 1961–1971, 2002. STOECKLE, B.C. et al.. Influence of arthropod sampling solutions on insect genotyping reliability. Entomologia Experimentalis et Applicata, v. 135, n. 2, p. 217–223, 2010 SZABÓ, M.P.J., PINTER, A.; LABRUNA, M.B. Ecology, biology and distribution of spotted-fever tick vectors in Brazil. Frontiers in cellular and infection microbiology, v. 3, p.27, 2013. TARRAGONA, E.L. et al., 2015. Rickettsia infection in Amblyomma tonelliae , a tick species from the Amblyomma cajennense complex. Ticks and Tick-borne Diseases, v. 6n. 2, p. 173–177, 2015. 57 TOLESANO-PASCOLI, G.V. et al. Ticks on birds in a forest fragment of Brazilian cerrado (savanna) in the municipality of Uberlândia , State of Minas Gerais , Brazil. Revista Brasileira de Parasitologia Veterinaria, v. 19, n. 4, p. 244–248, 2010. TOMASSONE, L. et al. Molecular Detection of Ehrlichia chaffeensis in Amblyomma parvum Ticks, Argentina. Emerging Infectious Diseases, v. 14, n. 12, p. 1953–1955, 2008. VINK, C.J. et al. The effects of preservatives and temperatures on arachnid DNA. Invertebrate Systematics, v. 19, n. 2, p. 99–104, 2005. YOSHIKAWA, H. et al. Mechanistic insights into protein precipitation by alcohol. International Journal of Biological Macromolecules, v. 50, n. 3, p. 865–871, 2012. ZAHNER, V.; LUCAROTTI, C.J.; MCINTOSH, D. Application of 16S rDNA-DGGE and plate culture to characterization of bacterial communities associated with the sawfly, Acantholyda erythrocephala (Hymenoptera, Pamphiliidae). Current microbiology, 57(6), pp.564-569, 2008. ZIMMERMANN, J. et al. DNA damage in preserved specimens and tissue samples: a molecular assessment. Frontiers in zoology, v. 5, n.18, p. 1-13, 2008.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5061/2016%20-%20%20Joao%20Bosco%20Varela.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/11855/2016%20-%20Jo%c3%a3o%20Bosco%20Varela.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19742/2016%20-%20Jo%c3%a3o%20Bosco%20Varela.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26061/2016%20-%20Jo%c3%a3o%20Bosco%20Varela.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32436/2016%20-%20Jo%c3%a3o%20Bosco%20Varela.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38850/2016%20-%20Jo%c3%a3o%20Bosco%20Varela.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45266/2016%20-%20Jo%c3%a3o%20Bosco%20Varela.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51648/2016%20-%20Jo%c3%a3o%20Bosco%20Varela.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58120/2016%20-%20Jo%c3%a3o%20Bosco%20Varela.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1365
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-01-11T12:09:07Z No. of bitstreams: 1 2016 - Joao Bosco Varela.pdf: 1890246 bytes, checksum: 359c15e2f52f2ea873d394cbbfa5479c (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-01-11T12:09:07Z (GMT). No. of bitstreams: 1 2016 - Joao Bosco Varela.pdf: 1890246 bytes, checksum: 359c15e2f52f2ea873d394cbbfa5479c (MD5) Previous issue date: 2016-02-24eng
Appears in Collections:Mestrado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - João Bosco Varela.pdfDocumento principal1.85 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.