Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/13974
Full metadata record
DC FieldValueLanguage
dc.creatorFlorencio, Melissa Cristina Moraes
dc.date.accessioned2023-11-20T00:06:58Z-
dc.date.available2023-11-20T00:06:58Z-
dc.date.issued2016-02-24
dc.identifier.citationFLORENCIO, Melissa Cristina Moraes. Efeito do produto natural 2'',3''-diidrochnaflavona sobre Trypanosoma cruzi, cepa Y. 2016.52 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13974-
dc.description.abstractTrypanosoma cruzi is the causative agent of Chagas disease which affects 8 million people in Latin America. Due to parasite high capacity to evade host immune system, and low efficacy combined to serious side effects to patients caused by available drugs against Chagas disease, the identification of alternative therapeutics is essential. Brazilian flora exhibits an immense diversity of metabolites that could fill these requirements. 2’’,3’’-dihydrochnaflavone is a biflavonoide extracted from Luxemburgia nobilis. In the present work, we investigated the action of 2’’,3’’-dihydrochnaflavone against T. cruzi (Y strain). Our experiments showed that this compound is effective against parasite epimastigotes forms, presenting IC50 value of 2.5 μM after 96 h of treatment. The effect of the compound didn’t show dose-dependent effect at the tested concentrations. Morphological alterations were also detected in treated parasites such as mitochondrial swelling and lipid bodies accumulation observed by electronic microscopy. We investigated the lipid intensity in epimastigotes treated with 7.5 μM of the biflavonoid for 4 days by Nile Red fluorescence labeling either by fluorometric quantification or fluorescence microscopy, but there was no significant difference compared to untreated parasites. We also observed that if the tested drugs affected intracellular amastigotes forms in Balb/c mice peritoneal macrophages infection assays. Treatment of infected macrophages with 2.5 and 5 μM of the biflavonoid for 120h led to association index (percentage of infected macrophages multiplied by the mean number of amastigotes per macrophage) reduction of 72% and 85%, respectively. Nonetheless, these drugs concentrations were harmless to mice enriched population of lymphocytes as demonstrated by Trypan Blue exclusion test assay and mice peritoneal macrophages as demonstrated by Trypan Blue and XTT assays after 120h of treatment. These results indicate that 2'', 3''- dihydroochnaflavone exhibits the potential to become a new treatment proposal against Chagas' disease by presenting a low IC50 and for not being toxic to host cells. The mechanisms of action of this compound are not totally clarified, being a new field to be explored. Our data, together with other works of chemotherapy using natural products open up new possibilities for developing novel treatments with fewer side effects and less toxicity, but effective against the parasiteeng
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDoença de Chagaspor
dc.subjectLuxemburgia nobilispor
dc.subjectBiflavonoidepor
dc.subjectChagas diseaseeng
dc.subjectLuxemburgia nobiliseng
dc.subjectBiflavonoideng
dc.titleEfeito do produto natural 2'',3''-diidrochnaflavona sobre Trypanosoma cruzi, cepa Ypor
dc.title.alternativeEffect of the natural product 2',3'-dihydrochnaflavone on Trypanosoma cruzi, strain Yeng
dc.typeDissertaçãopor
dc.contributor.advisor1Silva, Lucia Helena Pinto da
dc.contributor.advisor1ID037.500.287-90por
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-7085-8649por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0013386072339397por
dc.contributor.advisor-co1Lima, Patrícia Fampa Negreiros
dc.contributor.advisor-co1ID651.721.247-72por
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-3440-1622por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8327606827760440por
dc.contributor.referee1Lima, Patrícia Fampa Negreiros
dc.contributor.referee1ID651.721.247-72por
dc.contributor.referee1IDhttps://orcid.org/0000-0003-3440-1622por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8327606827760440por
dc.contributor.referee2Lima, Juliana Echevarria Neves de
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7914623918450915por
dc.contributor.referee3Chaves, Douglas Siqueira de Almeida
dc.contributor.referee3IDhttps://orcid.org/0000-0002-0571-9538por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1864237318361425por
dc.contributor.referee4Menna-Barreto, Rubem Figueiredo Sadok
dc.contributor.referee4IDhttps://orcid.org/0000-0002-1352-0641por
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3449332914008817por
dc.creator.ID125.365.537-52por
dc.creator.Latteshttp://lattes.cnpq.br/3381527239868582por
dc.description.resumoA doença de Chagas é causada pelo protozoário parasito Trypanosoma cruzi, uma doença negligenciada que afeta aproximadamente 8 milhões na América Latina. Dada a capacidade de o parasita de evadir o sistema imune do hospedeiro, a baixa eficiência dos tratamentos oferecidos e os sintomas e lesões debilitantes causados pela doença, é muito importante a busca por novas terapêuticas mais eficientes. A flora brasileira possui uma imensa diversidade de metabólitos secundários que podem apresentar ação antiparasitária. 2’’,3’’-di- idroochnaflavona é um biflavonoide extraído de Luxemburgia nobilis. No trabalho atual, investigamos o efeito de 2’’,3’’-Di-idroochnaflavona contra T. cruzi, cepa Y. Os resultados mostram que o composto tem ação contra o parasita apresentando IC50 de 2,5 μM para formas epimastigotas após 96 horas de tratamento. O composto não demonstrou efeito dose- dependente nas concentrações testadas. Formas epimastigotas tratadas com 2’’,3’’-Di- idroochnaflavona apresentaram alterações morfológicas como inchaço mitocondrial e acúmulo de corpos lipídicos, observadas por microscopia eletrônica. Não foram identificadas, no entanto, alterações na quantidade de lipídios nos parasitos tratados e marcados com Nile Red por quantificação de fluorescência e microscopia de fluorescência. Experimentos preliminares mostraram que a metaciclogênese in vitro é alterada na presença do composto. Em macrófagos peritoneais murinos de Balb/c, as formas amastigotas intracelulares foram afetadas pelo tratamento com a droga nas concentrações de 2,5 e 5 μM, com diminuição de 72 e 85%, respectivamente, no índice de associação entre os parasitas e as células hospedeiras. Nos ensaios citotóxicos, o composto não apresentou toxicidade para população enriquecida de linfócitos de camundongos pelo método de exclusão por azul de Trypan e para macrófagos peritoneais de camundongo pelo método de exclusão por azul de Trypan e XTT. Nossos resultados indicam que a 2’’,3’’-di-idroochnaflavona tem potencialidade para se tornar uma nova proposta de tratamento contra a doença de Chagas por apresentar um baixo IC50 e não ser tóxica. Os mecanismos de ação desse composto ainda não foram totalmente esclarecidos, apresentando um amplo campo a ser aprofundado. Nossos dados, juntos com outros trabalhos de quimioterapia com produtos de origem natural abrem uma nova possibilidade de desenvolvimento de um tratamento com menos efeitos colaterais e menos tóxico, porém eficiente contra o parasitopor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.referencesABDEL-SATTAR, E., MAES, L., SALAMA, M. M. In Vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytotherapic Reasearch, v. 24, p. 1322–1328, 2010. ADADE, C.M., CONS, B.L., MELO, P.A., SOUTO-PADRÓN, T. Effect of Crotalus viridis viridis snake venom on the ultrastructure and intracelular survival of Trypanosoma cruzi. Parasitology, 138,46–58, 2010. ADADE, A.M., CHAGAS, G.S.F., SOUTO-PADRÓN, T. Apis melífera venom induces different cell death pathways in Trypanosoma cruzi. Parasitology, 139,1444– 1461, 2012. AVILA, J.L.; AVILA, A. Exp. Parasitol, 51, 204, 1981 AUFDERHEIDE, A. C., SALO, W., MADDEN, M., STREITZ, J., BUIKSTRA, J., GUHL, F., ARRIAZA, B., RENIER, C., WITTMERS JR, L. E., FORNACIARI, G., ALLISON, M:, A 9,000-year record of Chagas’ disease. Proc Natl Acad Sci, v. 101, p. 2034–2039, 2014. AYO, C. M.,1 DALALIO, M. M. O., VISENTAINER, J. E. L, REIS, P. G., SIPPERT, E. A., JARDULI, L. R., ALVES, H. V., SELL, A., M. Genetic Susceptibility to Chagas Disease: An Overview about the Infection and about the Association between Disease and the Immune Response Genes. BioMed Research International ID 284729, 2013. BARRETT, M. P., BRUCHMORE, R. J. S., STICH, A., LAZZARI, J. O., FRASH, A. C., CAZZULO, J. J., KRISHNA, S.: The trypanosomiasis. Lancet, v. 362, p. 1469-1480, 2003. BRAND, G. D., LEITE, J. R., SILVA, L. P., ALBUQUERQUE, S., PRATES, M. V., AZEVEDO, R. B., CARREGARO, V., SILVA, J. S., BRANDÃO, R. A., BLOCH, C. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta. Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells. J. Biol. Chem., v. 277, 2002. BRICEÑO-LEÓN, R: Chagas disease and globalization of the Amazon. Cad Saude, v. 23, p. 33-40, 2007. CAMPOS, F.R., JANUARIO, A.H., ROSAS, L.V., NASCIMENTO, S.K., PEREIRA, P.S., FRANCA, S.C., CORDEIRO, M.S., TOLDO, M.P., ALBUQUERQUE, S. Trypanocidal activity of extracts and fractions of Bertholletia excelsa. Fitoterapia 76:26–29, 2005. CDC. http://www.cdc.gov/globalhealth/ntd/index.html, acesso em 2013. CHAGAS, C. Nova tripanozomiaze humana. Estudos sobre a morfolojia e o ciclo evolutivo de Schizotrypanum cruzi n. gen., n. sp., ajente etiológico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz, Rio de Janeiro, v. 1, p. 159–218, 1909. CONCEPCION, J.L.; GONZALEZ-PACANOWSKA, D.; URBINA, J.A. Arch. Biochem. Biophys., 352, 114, 1998 CONTRERAS, L.M.; VIVAS, J.; URBINA, J.A. Biochem. Pharmacol., 53, 697, 1997. 36 COURA, J. R.. Chagas disease: what is known and what is needed - A background article. Mem Inst Oswaldo Cruz, Rio de Janeiro, v. 102, p. 113-122, 2007. COURA, J.R., DIAS, J. C. P. Epidemiology, control and surveillance of Chagas disease - 100 years after its discovery. Mem Inst Oswaldo Cruz, v. 104 (Suppl. I), p. 31-40, 2009 COURA, J. R., VIÑAS, P. A. Chagas disease: a new worldwide challenge. Nature, v. 465, 2010. COURA, J. R. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions - A comprehensive review. Mem Inst Oswaldo Cruz, Rio de Janeiro, V. 110(3), p. 277-282, Maio, 2015. CUNHA-NETO, E., DURANTI, M., GRUBER, A., ZINGALES, B., DE MESSIAS, I.. Autoimmunity in Chagas disease cardiopathy: biological relevance of a cardiac myosin- specific epitope crossreactive to na immunodominant Trypanosoma cruzi antigen. Proc Natl Acad Sci, v. 92, p. 3541–3545, 1995. DANIEL, J.F.S., ALVES, C.C.F.., GRIVICICH, I., DA ROCHA, A.B., CARVALHO, M.G. Antitumor activity of biflavonoids from Ouratea and Luxemburgia on human cancer cell lines. Indian J. Pharmacol. 39: 184-186, 2007. DIAS, J. C. P., SCHOFIELD, C. J. The evolution of Chagas disease (American trypanosomiasis) control after 90 years since Carlos Chagas discovery. Mem Inst Oswaldo Cruz, v. 94 (Suppl. I), p. 103-121, 1999. ENGEL, J.C.; DOYLE, P.S.; PALMER, J.; HSIEH, I.; MCKERROW, J.H. J. Cell. Sci., 111, 597, 1998. FERREIRA, L. F., JANSEN, A. M., ARAÚJO, A: Chagas disease in prehistory. An Acad Bras Cienc, v. 83, p. 1041–1044, 2011. FLORES-LÓPEZ, C. A., MACHADO, C. A.: Analyses of 32 loci clarify phylogenetic relationships among Trypanosoma cruzi lineages and support a single hybridization prior to human contact. PLoS Trop Negl Dis, v. 5, 2011. FREIRE-DE-LIMA, L., RIBEIRO, T.S., ROCHA, G.M., BRANDÃO, B.A., ROMEIRO, A., MENDONÇA-PREVIATO, L., PREVIATO, J.O., FREIRE-DE-LIMA, M.E., CARVALHO, T.M.U., HEISE, N.. The toxic effects of piperine agains Trypanosoma cruzi: ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms. Parasitol Res 102:1059–1067, 2008. GARCIA, E. S., RATCLIFFE, N. A., WHITTEN, M. M., GONZALEZ, M .S., AZAMBUJA, P. Exploring the role of insect host factors in the dynamics of Trypanosoma cruzi-Rhodnius prolixus interactions. J Insect Physiol, v. 53, p. 11 21, 2007. GARZON, S. A. C.; LORGA, A. M.; JACOB, J .L. B. In Anais Congresso Internacional sobre Doença de Chagas. Rio de Janeiro, pp.106-110, 1979. 37 GEBREKRISTOS, H. T., BUEKENS, P. Mother-to-Child Transmission of Trypanosoma cruzi. Journal of the Pediatric Infectious Diseases Society, Vol. 3, Suppl 1, p. 36–40, 2014. HAMILTON, P. B., TEIXEIRA, M. M. G., STEVENS, J. R: The evolution of Trypanosoma cruzi: the ‘bat seeding’ hypothesis. Trends Parasitol, v. 28, p. 136–141, 2012. IZUMI, E., UEDA-NAKAMURA, T., DIAS FILHO, B. P., VEIGA JUNIOR, V., F., NAKAMURA, C. V. Natural products and Chagas’ disease: a review of plant compounds studied for activity against Trypanosoma cruzi. Nat. Prod. Rep., V. 28, N. 809, 2011. JIMENEZ, V. Dealing with environmental challenges: mechanisms of adaptation in Trypanosoma cruzi. Res Microbiol, v.165(3), p. 155–165, 2013. JIMENEZ-COELLO, M., GUZMAN-MARIN, E., PEREZ-GUTIERREZ, S., POLANCO- HERNANDEZ, G. M., ACOSTA-VIANA, K. Y. Antitrypanosomal activity of Senna villosa in infected balb/c mice with Trypanosoma cruzi during the sub acute phase of infection. Afr J Tradit Complement Altern Med, v. 8(S), p. 164-169, 2011. JONES, A. J., GRKOVIC, T., SYKES, M. L., AVERY, V. M. Trypanocidal Activity of Marine Natural Products. Mar. Drugs, v. 11, p. 4058-4082, 2013. KELLY, J.M.; TAYLOR, M.C.; SMITH, K.; HUNTER, K.J.; FAIRLAMB, A.H. European Journal of Biochemistry, 218, 29, 1993. KRETTLI, A. U., BRENER, Z. Resistance against Trypanosoma cruzi associated to anti- living trypomastigote antibodies. J Immunol, v. 128, p. 2009–2012, 1982. KIERSZENBAUM, F. Chagas’ disease and the autoimmunity hypothesis. Clin Microbiol Rev., v. 12(2), p. 210–223, 1999. LENZI, H. L., JANSEN, A. M., DEANE MP. The recent discovery of what might be a primordial escape mechanism for Trypanosoma cruzi. Mem Inst Oswaldo Cruz, Rio de Janeiro, v.79, p. 13-18, 1984. LEON, J. S., ENGMAN, D. M. The significance of autoimmunity in the pathogenesis of Chagas heart disease. Front Biosci. V. 8, p.315–322, 2003. LEUNG, Y. Y., HUI, L. L KRAUS, V. B. Colchicine Update on Mechanisms of Action and Therapeutic Uses, Seminars in Arthritis and Rheumatism, doi.org/10.1016/j. semarthrit. 2015. MARIN-NETO, J. A., RASSI, A.J.R, MACIEL, B.C., SIMOES, M.V., SCMIDT, A. Chagas heart disease. In: Yusuf, Cairns JA, Camm AJ, Fallen EL, Gersh BJ, eds. Evidence-based cardiology, 3rd edn. London: BMJ Books, 823-41, 2010. MESIA, G. K.,TONA, G. L., NANGA, T. H., CIMANGA, R. K., APERS, S., COS, P., MAES, L., L. PIETERS, L., VLIETINCK, A. J. J. Antiprotozoal and cytotoxic screening of 45 plant extracts from Democratic Republic of Congo Ethnopharmacol, v. 115, p. 409–415, 2008. 38 MENNA-BARRETO, R. F. S., SALOMÃO, K., DANTAS, A. P., SANTA-RITA, R. M., SOARES, M. J.,BARBOSA, H. S., DE CASTRO, S. L. Different cell death pathways induced by drugs in Trypanosoma cruzi: An ultrastructural study. Micron, v. 40, p.157–168, 2009. MEDINA, J.M., RODRIGUES, J.C., DE SOUZA, W., ATELLA, G.C., BARRABIN, H. Tomatidine promotes the inhibition of 24-alkylatedsterol biosynthesis and mitochondrial dysfunction in Leishmania amazonensis promastigotes. Parasitology, 139,1253–1265, 2010. MILES, M. A: The discovery of Chagas disease: progress and prejudice. Infect Dis Clin North Am, v. 18, p. 247260, 2004. MYLES, M. A. American Trypanosomiasis (Chagas’ disease). In Manson’s Tropical Diseases. 22nd edition. Edited by Cook GC, Zumla AI. London: W.B. Elsevier; 2009:1327– 1340. NAGAJYOTHI, F., MACHADO, F. S., BURLEIGH, B. A., JELICKS, L. A., SCHERER, P. E., MUKHERJEE, S., LISANTI, M. P., WEISS, L. M. Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol, v. 14, p.14:634–643, 2012. NOGUEIRA, N. P. A., MORGADO-DÍAZ, J. A., MENNA-BARRETO, R. F. S., PAES, M.C., DA SILVA-LÓPEZ, R. E. Effects of a marine serine protease inhibitor on viability and morphology of Trypanosoma cruzi, the agent of Chagas disease. Acta Tropica, v. 128, p. 27– 35, 2013. OLIVEIRA, M.M.C., CARVALHO, M.G., SILVA, C.J., WERLE, A. A new biflavonoid and others constituints from Luxemburgia nobilis (EUCHL), J. Bras Cham Soc; 13. 119-23, 2002. OLIVEIRA, M.M.C., CARVALHO, M.G., GRYNBERG, N.F., BRIOSO, O.S. A biflavonoid from Luxemburgia nobilis as inhibitor of DNA Topoisomerase. Planta Med; 71:1-3, 2005. PELIZZARO-ROCHA , K. J., VEIGA-SANTOS, P., LAZARIN-BIDOIA, D., UEDA- NAKAMURA, T., DIAS FILHO, B. P., XIMENES, V., F., SILVA, S. O., NAKAMURA, C. V. Trypanocidal action of eupomatenoid-5 is related to mitochondrion dysfunction and oxidative damage in Trypanosoma cruzi. Microbes and Infections, v. 13, p. 1018-1024, 2011. PIZZOLATTI, M. G., KOGA, A. H., GRISARD, E. C., STEINDEL, M Trypanocidal activity of extracts from Brazilian Atlantic rain forest plant species. Phytomedicine, v. 9, p. 422-426, 2002. PRATA, A: Evolution of the clinical and epidemiological knowledge about Chagas disease 90 years after its discovery. Mem Inst Oswaldo Cruz, Rio de Janeiro, v. 94, p. 81-88, 1999. REY, L. Bases da Parasitologia Médica. Guanabara Koogan, 2008. SANTORO, G.F., CARDOSO, M.G., GUIMARÃES, L.G.L., SALGADO, A.P.S.P., MENNA-BARRETO, R.F.S., SOARES, M.J. Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol Res (2007) 100:783– 790, 2006. 39 SHERLOCK I. A. Vetores. In Z Brener, ZA Andrade, M Barral Netto, Trypanosoma cruzi e doença de Chagas, 2nd ed., Guanabara Koogan, Rio de Janeiro, p. 21-40, 2000. STEVERDING, D. The history of Chagas disease. Parasites and Vectors, v. 7, n. 317, jul, 2014. SILVA-NETO, M. A. C., FAMPA, P., CAIAFFA, C. D., CARNEIRO, A. B., ATELLA, G. C. Cell Signaling During Trypanosoma cruzi Development in Triatominae. The Open Parasitology Journal, v. 4, p. 188-194, 2010. TEIXEIRA, T., TEIXEIRA, S. C., DA SILVA, C. V., DE SOUZA, M. A. Potential therapeutic use of herbal extracts in Trypanosomiasis. Pathogens and Global Health, v. 108, n. 1, 2014. TEMPONE, A. G., SARTORELLI, P., MADY, C., FERNANDES, F. Natural Products to Anti-trypanosomal Drugs: An Overview of New Drug Prototypes for American Trypanosomiasis. Cardiovascular & Hematological Agents in Medicinal Chemistry, v. 5, p. 222-235, 2007. URBINA, J.A.; VIVAS, J.; LAZARDI, K.; MOLINA, J.; PAYARES, G.; PIRAS, M.M.; PIRAS, R. Chemotherapy, 42, 294, 1996. URBINA, J.A. J. Mol. Med., 77, 332., 1999. URBINA J.A. Chemotherapy of Chagas Disease. Current Pharmaceutical Design, 8, 287-295, 2002. URBINA J.A. Ergosterol biosynthesis and drug development for Chagas disease. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 104(Suppl. I): 311-318, 2009. URBINA J.A. New Advances in the M anagement of a L ong-Neglected Disease. Clinical Infectious Diseases;49:1685–7, 2009. URBINA J.A. Specific chemotherapy of Chagas disease: Relevance, current limitations and new approaches. Acta Tropica 115 55–68, 2010. URBINA, J. A. Recent Clinical Trials for the Etiological Treatment of Chronic Chagas Disease: Advances, Challenges and Perspectives. Journal of Eukaryotic Microbiology, v. 0, p. 1–8, 2014. WALSH, J. F., MOLYNEUX, D. H., BIRLEY, M. H: Deforestation: effects on vector-borne disease. Parasitology, v. 206, p. 55-75,1993. WORLD HEALTH ORGANIZATION: Chagas disease (American trypanosomiasis). World Health Organ Fact Sheet 2014. ZINGALES, B., MILES, M. A., CAMPBELL, D. A., TIBAYRENC, M., MACEDO, A. M., TEIXEIRA, M. M. G., SCHIJMAN, A. G., LLEWELLYN, M. S., LAGES-SILVA, E., MACHADO, C. R., ANDRADE, S. G., STURM, N. R: The Revised Trypanosoma cruzi 40 subspecies nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol, v.12, p. 12:240–253, 2012. ZUMA, A. A., CAVALCANTI, D. P., ZOGOVICH, M., MACHADO, A. C. L., MENDES, I. C., THIRY, M., GALINA, A., DE SOUZA, W., MACHADO, C. M., MOTTA, M. C. M. Unveiling the effects of berenil, a DNA-binding drug, on Trypanosoma cruzi: implications for kDNA ultrastructure and replication. Parasitol Res, DOI 10.1007/s00436-014-4199-8, out, 2014.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71296/2016%20-%20Melissa%20Cristina%20Moraes%20Florencio.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6111
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-12-07T11:31:25Z No. of bitstreams: 1 2016 - Melissa Cristina Moraes Florencio.pdf: 1503666 bytes, checksum: 8369706825d3ad4c11123aef0864336f (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-12-07T11:31:25Z (GMT). No. of bitstreams: 1 2016 - Melissa Cristina Moraes Florencio.pdf: 1503666 bytes, checksum: 8369706825d3ad4c11123aef0864336f (MD5) Previous issue date: 2016-02-24eng
Appears in Collections:Mestrado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Melissa Cristina Moraes Florencio.pdf2016 - Melissa Cristina Moraes Florencio1.47 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.