Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/13760
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Bernardo, Aline Rodrigues | |
dc.date.accessioned | 2023-11-19T23:56:14Z | - |
dc.date.available | 2023-11-19T23:56:14Z | - |
dc.date.issued | 2013-03-07 | |
dc.identifier.citation | BERNARDO, Aline Rodrigues. Efeito da piperina sobre células B murinas e no modelo Lúpus Eritematoso Sistêmico (LES) induzido por pristane em camundongos BALB/c. 2013. 65 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2013. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/13760 | - |
dc.description.abstract | The B lymphocytes are involved in humoral immune response. They have the capacity to differentiate into plasma cells producing of antibodies with high specificity against pathogens and in memory cells. However, genetic, environmental and hormonal factors may be responsible by dysregulation for the immune system, which becomes unable to prevent or eliminate the body's auto-reactive B cells producing autoantibodies. The pathogenic role of B cells has received considerable attention after establishing treatment of autoimmune diseases. Piperine, the main constituent of the fruit of black pepper (Piper nigrun Linn.) and long pepper (P. longum Linn.) has various physiological effects, including on immune function in normal and transformed cells, giving possibilities in its therapeutic use . The overall goal of our study was to evaluate in vitro the ability of piperine in modulating the response of purified splenic B cells from mice of BALB/c mice, and in vivo, the effect of piperine on the model of autoimmunity, Systemic Lupus Erythematosus (SLE), as well as its effect on the response to thymus-dependent and thymus-independent antigens. The cytotoxic effect of differents concentrations of the piperine was evaluated by XTT method and the concentrations of 15 μM, 3 μM and 1 μM of piperine were selected to the experiments in vitro. We found that 15 μM dose of piperine was able to inhibit proliferation of splenic B cells purified by route BCR and TLR4, the secretion of IgM by route BCR and expression of co-stimulatory molecule CD86 by route TLR4 and BCR. The dose of piperine 3 μM was only able to inhibit the expression of co-stimulatory molecule CD86. In the evaluation of piperine on the model SLE observed that doses of piperine (2.25mg/kg and 4.5mg/kg) did not prevent development of the typical signs of the disease as lipogranulomas formation, joint swelling, immune complex deposition in the glomerulus kidney and splenomegaly. Only the dose 4.5mg/kg of piperine reduced proteinuria of animals at the SLE. In response to thymus-dependent antigens and thymus-independent piperine (2.25mg/kg and 4.5 mg/kg) did not affect the levels of serum IgG at 14th and 21th days and the serum levels of IgM to 7th and 14th days, respectively. Based on these results, we can conclude only that piperine modulates murine B cells in vitro, with no effect on the development of SLE. | eng |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil. | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Linfócito B | por |
dc.subject | Lúpus Eritematoso Sistêmico | por |
dc.subject | Piperina | por |
dc.subject | B-Lymphocyte | eng |
dc.subject | Systemic Lupus Erythematosus | eng |
dc.subject | Piperine | eng |
dc.title | Efeito da piperina sobre células B murinas e no modelo Lúpus Eritematoso Sistêmico (LES) induzido por pristane em camundongos BALB/c | por |
dc.title.alternative | Effect of piperine on murine B cells and model Systemic Lupus Erythematosus (SLE) induced by pristane in BALB/c | eng |
dc.type | Tese | por |
dc.contributor.advisor1 | Danelli, Maria das Graças Miranda | |
dc.contributor.advisor1ID | 758.643.637-15 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7414712085904286 | por |
dc.contributor.advisor-co1 | Peçanha, Ligia Maria Torres | |
dc.contributor.referee1 | Lima, Débora Decote Ricardo de | |
dc.contributor.referee2 | Lima, Célio Geraldo Freire de | |
dc.contributor.referee3 | Silva, Viveca Antonia Giongo Galvão da | |
dc.contributor.referee4 | Paiva, Luciana Souza de | |
dc.creator.ID | 084.847.817-71 | por |
dc.creator.Lattes | http://lattes.cnpq.br/5870295905751041 | por |
dc.description.resumo | Os linfócitos B estão envolvidos na resposta imune humoral e têm capacidade de se diferenciar em células plasmáticas produtoras de anticorpos de alta especificidade contra patógenos e em células de memória. No entanto, fatores genéticos, ambientais e hormonais podem ser responsáveis pela desregulação do sistema imune, o qual se torna incapaz de impedir ou eliminar do organismo as células B autorreativas produtoras de autoanticorpos. O papel patogênico da célula B vem recebendo considerável atenção após estabelecimento de tratamentos das doenças autoimunes. A piperina, principal constituinte dos frutos da pimenta preta (Piper nigrun Linn.) e da pimenta longa (P. longum Linn.), possui diversos efeitos fisiológicos, inclusive sobre as funções imunes em células normais e transformadas, conferindo possibilidades no seu uso terapêutico. O objetivo geral de nosso estudo foi avaliar in vitro, a capacidade da piperina em modular a resposta de células B esplênicas purificadas de camundongos da linhagem BALB/c, e in vivo, o efeito da piperina sobre o modelo de autoimunidade, Lúpus Eritematoso Sistêmico (LES), como também seu efeito sobre as resposta a antígeno timo-dependente e timo-independente. O efeito citotóxico de diferentes concentrações de piperina foi avaliado pelo método de XTT e as concentrações de 15 μM, 3 μM e 1 μM de piperina foram selecionadas para os experimentos in vitro. Verificamos que a dose 15 μM de piperina foi capaz de inibir a proliferação das células B esplênicas purificadas, pelas via TLR4 e BCR, a secreção de IgM, pela via BCR e a expressão da molécula coestimulatória CD86, pelas vias TLR4 e BCR. A dose 3 μM de piperina, foi capaz de inibir apenas a expressão da molécula co-estimulatória CD86. Na avaliação da piperina sobre o modelo LES observamos que as doses de piperina (2,25mg/Kg e 4,5mg/Kg) não impediram o desenvolvimento de sinais característicos da doença como, formação de lipogranulomas, edema articular, deposição de imunocomplexo nos glomérulos renais e esplenomegalia. Apenas a dose 4,5mg/Kg de piperina reduziu a proteinúria dos animais no modelo LES. Na resposta a antígenos Timo-dependente e Timo-independente a piperina (2,25mg/Kg e 4,5mg/Kg) não afetou os níveis de IgG séricos aos 14° e 21° dias e os níveis séricos de IgM aos 7° e 14° dias, respectivamente. Com base nesses resultados, podemos concluir que a piperina modulou apenas as células B murinas in vitro, não tendo efeito sobre o desenvolvimento do LES. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Veterinária | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | por |
dc.relation.references | ____. In natural products. In: IKAN, R. A laboratory guide. 2. ed. New York: Academic, 1991. p.233-238. ACHTMAN, A.H.; PKEN, U.E.H.; BERNERT, C.; LIPP, M. CCR7-deficient mice develop atypically persistent germinal centers in response to thymus-independent type 2 antigens. Journal of Leukocyte Biology, v.85, n.3, p.409-417, 2009. ALLMAN, D.; LINDSLEY, R.C.; DEMUTH, W.; RUDD, K.; SHINTON, S.A.; HARDY, R.R. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. Journal of immunology, v.167, n.12, p.6834-6840, 2001. ALLMAN, D.; PILLAI, S. Peripheral B cell subsets. Current opinion in immunology, v.20, n.2, p.149-157, 2008. ALMQVIST, N.; MÅRTENSSON, I.L. The pre-B cell receptor; selecting for or against autoreactivity. Scandinavian journal of immunology, v.76, n.3, p.256262, 2012. AMUR, S.; PAREKH, A.; MUMMANENI, P. Sex differences and genomics in autoimmune diseases. Journal of autoimmunity, v.38, p.J254-J265, 2012. ANOLIK, J.H. B Cell Biology and Dysfunction in SLE. Bulletin of the NYU Hospital for Joint Diseases, v.65, n.3, p.182-186, 2007. ARAÚJO-JÚNIOR, J.X.; CUNHA, E.V.L. DA; CHAVES, M.C.; GRAY, A.I. piperdardina, a piperidine alkaloid from piper tuberculatum. Phytochemistry, v.44, p.559-561, 1997. ARBUCKLE, M.R.; MCCLAIN, M.T.; RUBERTONE, M.V.; SCOFIELD, R.H.; DENNIS, G.J.; JAMES, J.A.; HARLEY, J.B. Development of Autoantibodies before the Clinical Onset of Systemic Lupus Erythematosus. The new england journal of medicine, v.349, p.1526- 1533, 2003. ATAL, C.K.; DUBEY, R.K.; SINGH, J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. Journal of Pharmacology and Experimental Therapeutics, v.232, n.1, p.258-262, 1985. BADMAEV, V.; MAJEED, M.; PRAKASH, L. Piperine derived from black pepper increases the plasma levels of coenzyme Q10 following oral supplementation. The Journal of Nutritional Biochemistry, v.11, n.2, p.109-113, 2000. BAE, G-S.; JONG-JIN KIM, J-J.; PARK, K-C.; KOO, B.S.; JO, I-J.; CHOI, S.B.; LEE, C.H.; JUNG, W-S.; CHO, J-H.; HONG, S-H.; SONG, H-J; SHIN, Y.K.; PARK, S-J. Piperine Inhibits Lipopolysaccharide-induced Maturation of Bone-marrow-derived Dendritic Cells Through Inhibition of ERK and JNK Activation. Phytotherapy research, v.26, p1893-1897, 2012. 54 BAE, G-S.; KIM, M-S.; JEONG, J.; LEE, H-Y.; PARK, K-C.; KOO, B.S.; KIM, B-J.; KIM, T-H.; LEE, S.H.; HWANG, S-Y.; SHIN, Y.K.; SONG, H-J.; PARK, S-J. Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases. Biochemical and Biophysical Research Communications, v.410, p.382-388, 2011. BAE, G-S.; KIM, M-S.; JUNG, W-S.; SEO, S-W.; YUN, S-W.; SUNG GYU KIM, S.G.; PARK, R-K.; KIM, E-C.; SONG, H-J.; PARK, S-J. Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. European Journal of Pharmacology, v.642, p.154-162, 2010. BALÁZS, M.; MARTIN, F.; ZHOU,T.;KEARNEY, J.F. Blood Dendritic Cells Interact with Splenic Marginal Zone B Cells to Initiate T-Independent Immune Responses. Immunity, v.17, p.341–352, 2002. BANG, J.S.; OH DA, H.; CHOI, H.M.; SUR, B.J.; LIM, S.J.; KIM, J.Y.; YANG, H.I.; YOO, M.C.; HAHM, D.H.; KIM, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis research & therapy, v.11, n.2, p.R49, 2009. BANO, G.; AMLA, V.; RAINA, R.K.; ZUTSHI, U.; CHOPRA, C.L. The effect of piperine on pharmacokinetics of phenytoin in healthy volunteers. Planta Medica, v.53, n.6, p.568– 569, 1987 BANO, G.; RAINA, R.K.; ZUTSHI, U.; BEDI, K.L.; JOHRI, R.K.; SHARMA, S.C. Effect of piperine on bioavailability and pharmacokinetics of propranolol and theophylline in healthy volunteers. European journal of clinical pharmacology, v.41, n.6, p.615-617, 1991. BAUMGARTH, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nature Reviews Immunology, v.11, p.34-46, 2011. BEKEREDJIAN-DING, I.; JEGO, G. Toll-like receptors – sentries in the B-cell response. Immunology, v.128, p.311–323, 2009. BENTO, C.A.; MELO, M.B.; PREVIATO, J.O.; MENDONÇA-PREVIATO, L.; PEÇANHA, L.M. Glycoinositol phospholipids purified from Trypanosoma cruzi stimulate Ig production in vitro. Journal of immunology, v.157, p.4996-5001, 1996. BETTELLI, E.; NICHOLSON, L.B.; KUCHROO, V.K. IL-10, a key effector regulatory cytokine in experimental autoimmune encephalomyelitis. Journal of autoimmunity, v.20, n.4, p.265-267, 2003. BIELLA, C. DE A.; SALVADOR, M.J.; DIAS, D.A.; DIAS-BARUFFI, M.; PEREIRACROTT, L.S. Evaluation of immunomodulatory and anti-inflammatory effects and phytochemical screening of Alternanthera tenella Colla (Amaranthaceae) aqueous extracts. Memórias do Instituto Oswaldo Cruz, v.103, n.6, p.569-577, 2008. BOEGLIN, E.; SMULSKI, C.R.; BRUN, S.; MILOSEVIC, S.; SCHNEIDER, P.; FOURNEL, S. Toll-like receptor agonists synergize with CD40L to induce either proliferation or plasma cell differentiation of mouse B cells. Plos one, v.6, n.10, p.e25542, 2011. 55 BOILARD, E.; NIGROVIC, P.A.; LARABEE, K.; WATTS, G.F.M.;1 COBLYN, J.; WEINBLATT, M.E.; MASSAROTTI, E.M.; REMOLD-O'DONNELL, E.; FARNDALE, R.W.; WARE, J.; LEE, D.M. Platelets Amplify Inflammation in Arthritis via Collagen- Dependent Microparticle Production. Science, v.327, n.5965, p.580-583, 2010. BONILLA, F.A.; HANS, C.; OETTGEN, H.C. Adaptive immunity. Journal of Allergy and Clinical Immunology, v.125, s.2, p. S33-S40, 2010. BOOTH, J.; WILSON, H.; JIMBO, S.; MUTWIRI, G. Modulation of B cell responses by Toll-like receptors. Cell and Tissue Research, v.343, p.131-140, 2011. BROWNE, E.P. Regulation of B-cell responses by Toll-like receptors. Immunology, v.136, p.370-379, 2012. BRUNSWICK, M.; FINKLELMAN, F.D.; HIGHET, P.F.; IMMAN, J.K.; DINTZIS, H.M.; MOND, J.J. Picogram quantities of anti-Ig antibodies couples to dextran induce B cell proliferation. Journal of immunology, v.140, p.3364-3372, 1988. CALVANI, N.; CARICCHIO, R.; TUCCI, M.; SOBEL, E.S.; SILVESTRIS, F.; TARTAGLIA, P.; RICHARDS, H.B. Induction of apoptosis by the hydrocarbon oil pristane: implications for pristane-induced lupus. Journal of immunology, v.175, n.7, p.4777-4782, 2005. CAMPOPIANO, J.C. Influência da ativação de macrófagos via receptor do tipo Toll (TLRs) na produção de fatores moduladores da sobrevivência de linfócitos T. 2010. 39p. Dissertação (Mestrado em Ciências) – Universidade de São Paulo, São Paulo, 2010. CARDOSO, V.S.; DE LIMA, C.A.R.; DE LIMA; M.E.F.; DORNELES, L.E.G.; FILHO, W.L.T.; LISBOA, R.S.; JUNIOR, D.S.G.; DIREITO, G.M.; DANELLI, M.G.G.M. Administração oral de piperina em frangos de corte. Ciência rural, v.39, n.5, p.1521-1256, 2009. CAREY, J.B.; MOFFATT-BLUE, C.S.; WATSON, L.C.; GAVIN, A.L.; FEENEY, A.J. Repertoire-based selection into the marginal zone compartment during B cell development. The journal of experimental medicine, v.205, n.9, p.2043-2052, 2008. CARRASCO, Y.R.; BATISTA, F.D. B cell recognition of membrane-bound antigen: an exquisite way of sensing ligands. Current Opinion in Immunology, v.18, n.3, p.286-91, 2006. CERUTTI, A.; PUGA, I.; COLS, M. New helping friends for B cells. European Journal of Immunology, v.42, p.1956-1968, 2012. CHAN, T.D.; GATTO, D.; WOOD, K.; CAMIDGE, T.; BASTEN, A.; BRINK, R. Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. Journal of immunology, v.183, n.5, p.3139-3149, 2009. 56 CHUCHAWANKUL, S.; KHORANA, N.; POOVORAWAN, Y. Piperine inhibits cytokine production by human peripheral blood mononuclear cells. Genetics and molecular research, v.11, n.1, p.617-27, 2012. CHUNG, J.B.; BAUMEISTER, M.A.; MONROE, J.G. Cutting edge: differential sequestration of plasma membrane-associated B cell antigen receptor in mature and immature B cells into glycosphingolipid-enriched domains. Journal of immunology, v.166, n.2, p.736- 740, 2001. CHUNG, J.B.; SATER, R.A.; FIELDS, M.L.; ERIKSON, J.; MONROE, J.G. CD23 defines two distinct subsets of immature B cells which differ in their responses to T cell help signals. International immunology, v.14, n.2, p.157-166, 2002. CHUNG, J.B; SILVERMAN, M.; MONROE, J.G. Transitional B cells: step by step towards immune competence. Trends in Immunology, v.24, n.6, p.342-348, 2003. CIPRIANI, P.; CARUBBI, F.; LIAKOULI, V.; MARRELLI, A.; PERRICONE,C.; PERRICONE, R.; ALESSE, E.; GIACOMELLI, R. Stem cells in autoimmune diseases: Implications for pathogenesis and future trends in therapy. Autoimmunity reviews, xxx, 2012. CLATZA, A.; BONIFAZ, L.C.; VIGNALI, D.A.A.; MORENO, J. CD40-Induced Aggregation of MHC Class II and CD80 on the Cell Surface Leads to an Early Enhancement in Antigen Presentation. Journal of immunology, v.171, p.6478-6487, 2003. COJOCARU, M.; COJOCARU, I.M.; SILOSI, I.; VRABIE, C.D. Manifestations of systemic lupus erythematosus. Maedica, v.6, n.4, p.330-336, 2011. CONNOLLY, D.J.; O'NEILL, L.A. New developments in Toll-like receptor targeted therapeutics. Current opinion in immunology, v.12, n.4, p.510-518, 2012. DAL PORTO, J.M.; GAULD, S.B.; MERRELL, K.T.; MILLS, D.; PUGH-BERNARD, A.E.; CAMBIER, J. B cell antigen receptor signaling 101. Molecular Immunology, v.41, n.6-7, p. 599–613, 2004. DECOTÉ-RICARDO, D.; CHAGAS, K.K.; ROCHA, J.D.; REDNER, P.; LOPES, U.G.; CAMBIER, J.C.; BARROS, BARROS DE ARRUDA L., PEÇANHA, L.M. Modulation of in vitro murine B-lymphocyte response by curcumin. Phytomedicine, v.16, n.10, p.982-988, 2009. DEDERA, D.A.; URASHIMA, M.; CHAUHAN, D.; LEBRUN, D.P.; BRONSON, R.T.; ANDERSON, K.C. Interleukin-6 is required for pristane-induced plasma cell hyperplasia in mice. British journal of haematology, v.94, n.1, p.53-61, 1996. DEFRANCO, A.L.; ROOKHUIZEN, D.C.; HOU, B. Contribution of Toll-like receptor signaling to germinal center antibody responses. Immunological review, v.247, n.1, p.64-72, 2012. 57 DE PAIVA, L.; COSTA, K.M.; DO CANTO, F.B.; CABRAL, V.R.; FUCS, R.; NOBREGA, A.; RUMJANEK, V . Modulation of mature B cells in mice following treatment with ouabain. Immunobiology, v. 216, p. 1038-1043, 2011. DOGRA, R.K.; KHANNA, S.; SHANKER, R. Immunotoxicological effects of piperine in mice. Toxicology, v.196, n.3, p.229-236, 2004. DORIA, A.; IACCARINO, L.; GHIRARDELLO, A.; ZAMPIERI, S.; ARIENTI, S.; SARZIPUTTINI, P.; ATZENI, F.; PICCOLI, A.; TODESCO, S. Long-Term Prognosis and Causes of Death in Systemic Lupus Erythematosus. The American Journal of Medicine, v.119, p.700-706, 2006. DORSHKIND, K.; MONTECINO-RODRIGUEZ, E. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nature Reviews Immunology, v.7, p.213-219, 2007. DOUCETTE, C.D.; HILCHIE, A.L.; LIWSKI, R.; HOSKIN, D.W. Piperine, a dietary phytochemical, inhibits angiogenesis. Journal of Nutritional Biochemistry, v.24, n.1, p.231- 239, 2013. DUFFAU, P.; SENESCHAL, J.; NICCO, C.; RICHEZ, C.; LAZARO, E.; DOUCHET, I.; BORDES, C.; VIALLARD, J-F.; GOULVESTRE, C.; PELLEGRIN, J-L.; WEIL, B.; MOREAU, J-F.; BATTEUX, F.; BLANCO, P. Platelet CD154 Potentiates Interferon-α Secretion by Plasmacytoid Dendritic Cells in Systemic Lupus Erythematosus. Science Translational Medicine, v.2, p.47ra63, 2010. FLAISHON, L.; HERSHKOVIZ, R.; LANTNER, F.; LIDER, O.; ALON, R.; LEVO, Y.; FLAVELL, R.A.; SHACHAR, I. Autocrine secretion of interferon gamma negatively regulates homing of immature B cells. The journal of experimental medicine, v.192, n.9, p.1381-1388, 2000. FURTADO, J.; ISENBERG, D.A. B cell elimination in systemic lupus erythematosus. Clinical Immunology, v.146, p.90-103, 2013. GAO, J.; MA, X.; GU, W.; FU, M.; AN, J.; XING, Y.; GAO, T.; LI, W.; LIU, Y. Novel functions of murine B1 cells: Active phagocytic and microbicidal abilities. European Journal of Immunology, v.42, p.982-992, 2012. GARCIA-ROMO, G.S.; CAIELLI, S.; VEGA, B.; CONNOLLY, J.; ALLANTAZ, F.; XU, Z.; PUNARO, M.; BAISCH, J.; GUIDUCCI, C.; COFFMAN, R.L.; BARRAT, F.J.; BANCHEREAU, J.; PASCUAL, V. Netting Neutrophils are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus. Science Translational Medicine, v.3, n.73, p.73rs20, 2011. GERONDAKIS, S.; GRUMONT, R.J.; BANERJEE, A. Regulating B-cell activation and survival in response to TLR signals. Immunology and cell biology, v.85, n.6, p.471-475, 2007. GOODNOW, C.C.; VINUESA, C.G.; RANDALL, K.L.; MACKAY, F.; BRINK, R. Control systems and decision making for antibody production. Nature immunology, v.11, n.8, p.681- 688, 2010. 58 GRANT, C.F.J.; LEFEVRE, E.A.; CARR, B.V.; PRENTICE, H.; GUBBINS, S.; POLLARD, A.J.; CHARREYRE, C.; CHARLESTON, B. Assessment of T-dependent and T-independent immune responses in cattle using a B cell ELISPOT assay. Veterinary Research, v. 43, n.68, p.1-9, 2012. GRIMALDI, C.M.; HILL, L.; XU, X.; PEEVA, E.; DIAMOND, B. Hormonal modulation of B cell development and repertoire selection. Molecular immunology, v.42, n.7, p.811-820, 2005. HASTINGS, W.D.; GURDAK,S.M.; TUMANG, J.R.; ROTHSTEIN, T.L. CD5+/Mac-1- peritoneal B cells: a novel B cell subset that exhibits characteristics of B-1 cells. Immunology Letters, v.105, n.1, p.90-96, 2006. HAYASHI, E.A.; GRANATO, A.; PAIVA, L.S.; BERTHO, A.L.; BELLIO, M.; NOBREGA, A. TLR4 promotes B cell maturation: independence and cooperation with B lymphocyteactivating factor. Journal of Immunology, v.184, n.9, p.4662-72, 2010. HOFFMANN, K.F.; CHEEVER, A.W.; WYNN, T.A. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. The journal of immunology, v.164, n.12, p.6406-6416, 2000. JIN, M.J.; HAN, H.K. Effect of piperine, a major component of black pepper, on the intestinal absorption of fexofenadine and its implication on food-drug interaction. Journal of Food Science, v.75, n.3, p.H93-6, 2010. JOHNSON, J.J.; NIHAL, M.; SIDDIQUI, I.A.; SCARLETT, C.O.; BAILEY, H.H.; MUKHTAR, H.; AHMAD, N. Enhancing the bioavailability of resveratrol by combining it with piperine. Molecular nutrition & food research, v.55, n.8, p.1169-1176, 2011. KAGAN, J.C.; MEDZHITOV, R. Phosphoinositide-Mediated Adaptor Recruitment Controls Toll-like Receptor Signaling. Cell, v.125, p.943-955, 2006. KANAYAMA, N.; CASCALHO, M.;OHMORI, H. Analysis of Marginal Zone B Cell Development in the Mouse with Limited B Cell Diversity: Role of the Antigen Receptor Signals in the Recruitment of B Cells to the Marginal Zone. The Journal of Immunology, v.174, n.3, 2005. KANTOR, A. B;, STALL, A.M.; ADAMS, S.; HERZENBERG, L.A.; HERZENBERG, L.A. Differential development of progenitor activity for three B-cell lineages. Proceedings of the national academy of sciences, v.89, p.3320-3324, 1992. KAWAI, T.; AKIRA, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature immunology, v.11, p.373-384, 2010. KESSEL, A.; HAJ, T.; PERI, R.; SNIR, A.; MELAMED, D.; SABO, E.; TOUBI, E. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmunity reviews, v.11, n.9, p.670-677, 2012. 59 KIM, H.G.; HAN, E.H.; JANG, W-S.; CHOI, J.H.; KHANAL, T.; PARK, B.H.;TRAN, T.P.; CHUNG, Y.C.; JEONG, H.G. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food and chemical toxicology, v.50, p.2342-2348, 2012. KIM, K.J.; KANELLOPOULOS-LANGEVEN, C.; MERWIN, R.M.; SACHS, D.H.; ASOFSKY, R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. Journal of immunology, v.122, n.2, p.549-554, 1979. KIM, S.H.; LEE, Y.C. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. Journal of Pharmacy and Pharmacology, v.61, n.3, p.353-359, 2009. KO, E.; LEE, Y.; PARK, N.; CHO, C.; YIM, Y-N.; KIM, J.; KIM, Y.S.; KIM, D.; SHIN, MK.; HONG, M-C.; BAE, H. Sophorae radix reduces autoimmune response in NZB/w F1systemic lupus erythematosus mouse model. Lupus, v.16, p.335-341, 2007. KO, E.; LEE, Y.; PARK, N.; CHO, C.; YIM, Y-N.; KIM, J.;KIM, Y.S.; KIM, D.; SHIN, MK.; HONG, M-C.; BAE, H. Sophorae radix reduces autoimmune response in NZB/w F1 systemic lupus erythematosus mouse model. Lupus, v.16, p.335-341, 2007. KOEHN, F.E.; CARTER, G.T. Rediscovering natural products as a source of new drugs. Discovery medicine, v.5, n.26, p.159-164, 2005. KOLEVA, I.I.; BEEK, T.A.V.; SOFFERS, A.E.M.F.; DUSEMUND, B.; RIETJENS, I.M.C.M. Alkaloids in the human food chain – Natural occurrence and possible adverse effects. Molecular nutriton & food research, n.56, p.30-52, 2012. KUMAR, H.; KAWAI, T.; AKIRA, S. Toll-like receptors and innate immunity. Biochemical and biophysical research communications, v.388, p.621-625, 2009. KUMAR, S.; KAMBOJ, J.; SUMAN, SHARMA, S. Overview for Various Aspects of the Health Benefits of Piper Longum Linn. Fruit. Journal of Acupuncture and Meridian Studies, v.4, p. 134-140, 2011. KUMAR, S.; SINGHAL, V.; ROSHAN, R.; SHARMA, A.; REMBHOTKAR, G.W.; GHOSH, B. Piperine inhibits TNF-α induced adhesion of neutrophils to endothelial monolayer through suppression of NF-κB and IκB kinase activation. European Journal of Pharmacology, v.575, p.177-186, 2007. KUROSAKI, T. Regulation of BCR signaling. Molecular Immunology, v.48, p.1287-1291, 2011. LI, J.W.; VEDERAS, J.C. Drug discovery and natural products: end of an era or an endless frontier? Science, v.325, n.5937, p.161-165, 2009. LIED, G.A.; LILLESTØL, K.; VALEUR, J.; BERSTAD, A. Intestinal B cell-activating factor: an indicator of non-IgE-mediated hypersensitivity reactions to food? Alimentary Pharmacology & Therapeutics, v.32, n.1, p.66-73, 2010. 60 LIN, M.M.; ZHU, M.; SCHARFF, M.D. Sequence dependent hypermutation of the immunoglobulin heavy chain in cultured B cells. Proceedings of the National Academy of Sciences of the United States of America, v.94, n.10, p.5284-5289,1997. LLORENTE, L.; RICHAUD-PATIN, Y.; GARCÍA-PADILLA, C.; CLARET, E.; JAKEZOCAMPO, J.; CARDIEL, M.H.; ALCOCER-VARELA, J.; GRANGEOT-KEROS, L.; ALARCÓN-SEGOVIA, D.; WIJDENES, J.; GALANAUD, P.; EMILIE, D. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis & rheumatims, v.43, n.8, p.1790-1800, 2000. LODER, F.; MUTSCHLER, B.; RAY, R.J.; PAIGE, C.J.; SIDERAS, P.; TORRES, R.; LAMERS, M.C.; CARSETTI, R. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. The journal of experimental medicine, v.190, n.1, p.75-89, 1999. LU Q. The critical importance of epigenetics in autoimmunity. Journal of immunity, doi: 10.1016/j.jaut.2013.01.010, 2013 MARRON, T.U.; YU, J.E.; CUNNINGHAM-RUNDLES, C. Toll-like receptor function in primary B cell defects. Frontiers in Bioscience, v.4, p.1853-1863, 2012. MARSHALL-CLARKE, S.; TASKER, L.; PARKHOUSE, R.M. Immature B lymphocytes from adult bone marrow exhibit a selective defect in induced hyperexpression of major histocompatibility complex class II and fail to show B7.2 induction. Immunology, v.100, n.2, p.141–151, 2000. MARTIN, F.; OLIVER, A.M.; KEARNEY, J.F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity, v.14, n.5, p.617-629, 2001. MAURI, C. EHRENSTEIN, M.R. The ‘short’ history of regulatory B cells. Trends in immunology, v.29, n.1, p.34-40, 2008. MEDZHITOV, R.; PRESTON-HURLBURT, P.; JANEWAY, C.A. A human homologue of the Drosophila toll protein signals activation of adaptative immunity. Nature, v.388, n.6640, p.394-397, 1997. MERRELL, K.T.; BENSCHOP, R.J.; GAULD, S.B.; AVISZUS, K.; DECOTE-RICARDO, D.; WYSOCKI, L.J.; CAMBIER, J.C. Identification of anergic B cells within a wild-type repertoire. Immunity, v.25, n.6, p.953-62, 2006. MINHAS, U.; MINZ, R.; DAS, P.; BHATNAGAR, A. Therapeutic effect of Withania somnifera on pristane-induced model of SLE. Inflammopharmacology, v.20, n.4, p.195-205, 2012. MIZOGUCHI, A.; MIZOGUCHI, E.; SMITH, R.N.; PREFFER, F.I.; BHAN, A.K. Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. The journal of experimental medicine, v.186, n.10, p.1749-1756, 1997. 61 MIZUTANI, A.; SHAHEEN, V.M.; YOSHIDA, H.; AKAOGI, J.; KURODA, Y.; NACIONALES, D.C.; YAMASAKI, Y.; HIRAKATA, M.; ONO, N.; REEVES, W.H.; SATOH, M. Pristane-induced autoimmunity in germ-free mice, Clinical immunology, v.114, p.110-118, 2005. MONROE, J.G. ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nature reviews immunology, v.6, n.4, p.283-294, 2006. MONTECINO-RODRIGUEZ, E.; DORSHKIND, K. B-1 B Cell Development in the Fetus and Adult. Immunity, v.36, n.1, p.13-21 , 2012. MURUNIKKARA, V.; PRAGASAM, S.J.;, KODANDARAMAN, G.; SABINA, E.P.; RASOOL, M. Anti-inflammatory effect of piperine in adjuvant-induced arthritic rats--a biochemical approach. Inflammation, v.35, n.4, p.1348-1356, 2012. NASHI, E.; WANG, Y.; DIAMOND, B. The role of B cells in lupus pathogenesis. The international journal of biochemistry & cell biology, v.42, n.4, p.543-550, 2010. NIKOLOVA, K.A.; MIHAYLOVA, N.M.; VOYNOVA, E.N.; TCHORBANOV, A.I.; VOLL, R.E.; VASSILEV, T.L. Selective silencing of autoreactive B lymphocytes-Following the Nature's way. Autoimmunity review, v.9, n.11, p.775-779, 2010. OH-HORA, M.; JOHMURA, S.; HASHIMOTO, A.; HIKIDA, M.; KUROSAKI, T. Requirement for Ras Guanine Nucleotide Releasing Protein 3 in Coupling Phospholipase C- γ2 to Ras in B Cell Receptor Signaling. The journal of experimental medicine, v.198, n.12, p.1841-1851, 2003. PATHAK N, KHANDELWAL S. Immunomodulatory role of piperine in cadmium induced thymic atrophy and splenomegaly in mice. Environmental toxicology and pharmacology, v.28, n.1, p.52-60, 2009. PATHAK, N.; KHANDELWAL, S. Comparative efficacy of piperine, curcumin and picroliv against Cd immunotoxicity in mice. Biometals, v.21, n.6, p.649-661, 2008. PATHAK, N.; KHANDELWAL, S. Cytoprotective and immunomodulating properties of piperine on murine splenocytes: an in vitro study. European journal of pharmacology, v.576, n.1-3, p.160-170, 2007. PATHAK, N.; KHANDELWAL, S. Modulation of cadmium induced alterations in murine thymocytes by piperine: oxidative stress, apoptosis, phenotyping and blastogenesis.Biochemical Pharmacology, v.72, n.4, p.486-497, 2006. PICCININI, A.M.; MIDWOOD, K.S. DAMPening inflammation by modulating TLR signalling. Inflammatory mediators, doi: 672395. 10.1155/2010/672395, 2010. PILLAI, S.; MATTOO, H.; CARIAPPA, A. B cells and autoimmunity. Current Opinion in Immunology, v.23, n.6, p.721-731, 2011. PIYACHATURAWAT, P.; GLINSUKON, T.; TOSKULKAO, C. Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicology Letters, v.16, p.351-359, 1983. 62 PODOJIL, J.R.; SANDERS, V.M. Selective regulation of mature IgG1 transcription by CD86 and beta 2-adrenergic receptor stimulation. Journal of immunology, v.170, n.10, p.5143- 5151, 2003. POSTAL, M.; COSTALLAT, L.T.; APPENZELLER, S. Biological Therapy in Systemic Lupus Erythematosus. International journal of rheumatology, online, 2012. PRADEEP, C.R.; KUTTAN, G. Effect of piperine on the inhibition of nitric oxide (NO) and TNF-alpha production. Immunopharmacology and immunotoxicology, v.25, n.3, p.337- 346, 2003. PRADEEP, C.R.; KUTTAN, G. Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clinical & experimental metastasis, v.19, n.8, p.703-708, 2002. PRADEEP, C.R.; KUTTAN, G. Piperine is a potent inhibitor of nuclear factor-κB (NF-κB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. International immunopharmacology, v.4, p.1795-1803, 2004. PRAKASH, U.N.; SRINIVASAN, K. Enhanced intestinal uptake of iron, zinc and calcium in rats fed pungent spice principles - Piperine, capsaicin and ginger (Zingiber officinale). Journal of Trace Elements in Medicine and Biology, :pii: S0946-672X(12)00174-5. 10.1016/j.jtemb.2012.11.003, 2013. PUTTERMAN, C.; CARICCHIO, R.; DAVIDSON, A.; PERLMAN, H. Systemic Lupus Erythematosus. Clinical and Developmental Immunology, publicado online, 2012. QUINTANA, F.J.; SOLOMON, A.; COHEN, I.R.; NUSSBAUM, G. Induction of IgG3 to LPS via Toll-like receptor 4 co-stimulation. Plos One, v.3, n.10, 2008. RABIN, E.M.; OHARA, J.; PAUL, W.E. B cell stimulatory factor 1 activates resting B cells. Procedings of the National. Academy Sciences, v.82, p.2935–2939, 1985. RANKIN,A.L.; MACLEOD, H.; KEEGAN, S.; ANDREYEVA, T.; LOWE, L.; BLOOM, L.; COLLINS, M.; NICKERSON-NUTTER, C.; YOUNG, D.; GUAY, H. IL-21 Receptor is critical for the development of memory B cell responses. Journal of Immunology, v.186, p.667-674, 2011. REEN, R.K.; WIEBEL, F.J.; SINGH, J. Piperine inhibits aflatoxin B1-induced cytotoxicity and genotoxicity in V79 Chinese hamster cells genetically engineered to express rat cytochrome P4502B1. Journal of Ethnopharmacology, v.58, n.3, p.165-173, 1997. REEVES, W.H.; LEE, P.Y.; WEINSTEIN, J.S.; SATOH, M.; LU, L. Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends in immunology, v.30, n.9, p.455-64, 2009. RIBEIRO, T.S.; FREIRE-DE-LIMA, L.; PREVIATO, J.O.; MENDONCA-PREVIATO, L.; HEISE, N.; DE LIMA, M.E.F. Toxic Effects of Natural Piperine and Its Derivatives on Epimastigotes and Amastigotes of Trypanosoma Cruzi. Bioorganic & Medicinal Chemistry Letters, v.14, n.13, p.3555-3558, 2004. 63 RICKERT, R.C. Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex. Current opinion in immunology, v.17, p.237-243, 2005. ROCHA, J.D.; DECOTÉ-RICARDO, D.; REDNER, P.; LOPES, U.G.; BARBOSA-FILHO, J.M.; PIUVEZAM, M.R.; ARRUDA, L.B.; PEÇANHA, L.M.T. Inhibitory effect of the alkaloid warifteine purified from Cissampelos sympodialis on B lymphocyte function in vitro and in vivo. Planta medica, v.76, n.4, p.325-330, 2010. RODRÍGUEZ-PINTO D. B cells as antigen presenting cells. Cellular immunology, v.238, n.2, p.67-75, 2005. RUPRECHT, C.R.; LANZAVECCHIA, A. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. European journal of immunology, v.36, p.810-816, 2006. SAIJO, K.; MECKLENBRÄUKER, I.; SANTANA, A.; LEITGER, M.; SCHMEDT, C.; TARAKHOVSKY, A. Protein Kinase C β Controls Nuclear Factor κB Activation in B Cells Through Selective Regulation of the IκB Kinase α. The journal of experimental medicine, v.195, n.12, p.1647-1652, 2002. SATOH, M.; KUMAR, A.; KANWAR, Y.S.; REEVES, W.H. Anti-nuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane. Proceedings of the National Academy of Sciences of the United States of America, v.92, p.10934-10938, 1995. SATOH, M.; REEVES, W.H. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. The journal of experimental medicine, v.180, p.2341-2346, 1994. SCHARENBERG, A.M.; HUMPHRIES, L.A.; RAWLINGS, D.J. Calcium signalling and cell-fate choice in B cells. Nature Reviews Immunology, v.7, n.10, p.778–789, 2007. SCHATZ, D.G.; OETTINGER, M.A.; BALTIMORE, D. The V(D)J recombination activating gene, RAG-1. Cell, v.59, p.1035-1048, 1989. SCHIEMANN, B.; GOMMERMAN, J.L.; VORA, K.; CACHERO, T.G.; SHULGAMORSKAYA, S.; DOBLES, M.; FREW, E.; SCOTT, M.L. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science, v.293, n.5537, p.2111-2114, 2001. SCUPOLI, M.T.; PIZZOLO, G. Signaling Pathways Activated by the B-Cell Receptor in Chronic Lymphocytic Leukemia. Expert review of hematology, v.5, n.3, p.341-348, 2012. SEHGAL, A.; KUMAR, M.; JAIN, M.; DHAWAN, D.K. Combined effects of curcumin and piperine in ameliorating benzo(a)pyrene induced DNA damage. Food and chemical toxicology, v.49, n.11, p.3002-3006, 2011. SELVENDIRAN, K.; PADMAVATHI, R.; MAGESH, V.; SAKTHISEKARAN, D. Preliminary study on inhibition of genotoxicity by piperine in mice.Fitoterapia, v.76, n.3-4, p.296-300, 2005. 64 SHARMA, S.; CHOPRA, K.; KULKARNI, S.K.; AGREWALA, J.N. Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway. Clinical experimental immunology, v.147, n.1, p.155-163, 2007. SHOBA, G.; JOY, D.; JOSEPH, T.; MAJEED, M.; RAJENDRAN, R.; SRINIVAS, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta medica, v.64, n.4, p.353-359, 1998. SHOBA, G.; JOY, D.; JOSEPH, T.; MAJEED, M.; RAJENDRAN, R.; SRINIVAS, P.S.S.R. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta medica, v.64, n.4, p.353–357,1998. SIDDIQUI, B.S., BEGUM, S.; GULZAR, T.; FARHAT; NOOR, F. An amide from fruits of piper nigrum. Phytochemistry, v.45 n.8, p.1617-1619, 1997. Signaling through surface IgM in tolerance-susceptible immature murine B lymphocytes. Developmentally regulated differences in transmembrane signaling in splenic B cells from adult and neonatal mice. Journal of immunology, v.146, n.5, p.1446–1454, 1991. SINGH, J.; REEN, R.K.; WIEBEL, F.J. Piperine, a major ingredient of black and long peppers, protects against AFB1-induced cytotoxicity and micronuclei formation in H4IIEC3 rat hepatoma cells. Cancer letters, v.86, n.2, p.195-200, 1994. SOLVASON, N.; KEARNEY, J.F. The human fetal omentum: a site of B cell generation. An important study showing that the potential to produce B-1a, B-1b and B-2 cells arises at different times during development.The journal of experimental medicine, n.175, p.397- 404, 1992. SRINIVASAN, K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Clinical reviews in food science and nutrition, v.47, p.735-748, 2007. STODDART, A.; DYKSTRA, M.L.; BROWN, B.K.; SONG, W.; PIERCE, S.K.; BRODSKY, F.M. Lipid Rafts Unite Signaling Cascades with Clathrin to Regulate BCR Internalization. Immunity, v.17, p.451-462, 2002. SUNILA, E.S.; KUTTAN, G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. Journal ethnopharmacology, v.90, n.2-3, p.339-346, 2004. SUVAS, S.; SINGH, V.; SAHDEV, S.; VOHRA, H.; AGREWALA, J.N. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. The journal of biological chemistry, v.277, n.10, p.7766-7775, 2002. VOS, Q.; LEES, A.; WU, Z.Q.; SNAPPER, C.M.; MOND, J.J. B-cell activation by T-cellindependent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunological Review, v.176, n.154-170, 2000. WARDEMANN, H.; BOEHM, T.; DEAR, N.; CARSETTI, R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. Journal of experimental medicine, v. 195, n.6, p.771–780, 2002. 65 YAFFE, P.B.; DOUCETTE, C.D.; WALSH, M.; HOSKIN, D.W. Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells. Experimental and Molecular Pathology, v.94, n.1, 109-114, 2012. YELLEN, A.J.; GLENN, W.; SUKHATME, V.P.; CAO, X.M.; MONROE, J.G. Signaling through surface IgM in tolerance-susceptible immature murine B lymphocytes. Developmentally regulated differences in transmembrane signaling in splenic B cells from adult and neonatal mice. Journal of immunology, v.145, n.5, p.1446-1454, 1991. YOUINOU, P. B cell conducts the lymphocyte orchestra. Journal of autoimmunity, v.28, n.2-3, p.143-151, 2007. YURASOV, S.; WARDEMANN, H.; HAMMERSEN, J.; TSUIJI, M.; MEFFRE, E.; PASCUAL, V.; NUSSENZWEIG, M.C. Defective B cell tolerance checkpoints in systemic lupus erythematosus. The journal of experimental medicine, v. 201, n.5, p.703-711, 2005. ZOUALI, M.; YOLANDE RICHARD, Y. Marginal Zone B-Cells, a Gatekeeper of Innate Immunity. Frontiers in immunology, v.2, n.63, online, 2011. ZUTSHI, R.K.; SINGH, R.; ZUTSHI, U.; JOHRI, R.K.; ATAL, C.K. Influence of piperine on rifampicin blood levels in patients of pulmonary tuberculosis. Journal of the Association of Physicians of India, v.33, n.3, p.223-224, 1985. ZUTSHI, R.K.; SINGH, R.; ZUTSHI, U.; JOHRI, R.K.; ATAL, C.K. Influence of piperine on rifampicin blood levels in patients of pulmonary tuberculosis. The Journal of the Association of Physicians of India, v.33, n.3, p.223–224, 1985. | por |
dc.subject.cnpq | Medicina Veterinária | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/14528/2013%20-%20Aline%20Rodrigues%20Bernardo.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/17482/2013%20-%20Aline%20Rodrigues%20Bernardo.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/23726/2013%20-%20Aline%20Rodrigues%20Bernardo.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/30154/2013%20-%20Aline%20Rodrigues%20Bernardo.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/36550/2013%20-%20Aline%20Rodrigues%20Bernardo.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/42916/2013%20-%20Aline%20Rodrigues%20Bernardo.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/49344/2013%20-%20Aline%20Rodrigues%20Bernardo.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/55738/2013%20-%20Aline%20Rodrigues%20Bernardo.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/3479 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-04-30T19:49:58Z No. of bitstreams: 1 2013 - Aline Rodrigues Bernardo.pdf: 5148608 bytes, checksum: 1d8482162f43e85583117ef56acd0466 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2020-04-30T19:49:58Z (GMT). No. of bitstreams: 1 2013 - Aline Rodrigues Bernardo.pdf: 5148608 bytes, checksum: 1d8482162f43e85583117ef56acd0466 (MD5) Previous issue date: 2013-03-07 | eng |
Appears in Collections: | Doutorado em Ciências Veterinárias |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2013 - Aline Rodrigues Bernardo.pdf | 2013 - Aline Rodrigues Bernardo | 5.03 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.