Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/13744
Full metadata record
DC FieldValueLanguage
dc.creatorMarchesini, Paula Barroso Cruz
dc.date.accessioned2023-11-19T23:55:50Z-
dc.date.available2023-11-19T23:55:50Z-
dc.date.issued2020-09-30
dc.identifier.citationMARCHESINI, Paula Barroso Cruz. Potencial dos óleos essenciais de Eremanthus erythropappus e Cinnamomum zeylanicum e compostos isolados α-bisabolol e (E)-cinamaldeído para o controle de Rhipicephalus microplus (Acari: Ixodidae). 2020. 155 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13744-
dc.description.abstractCompounds of plant origin have been identified as promising in the control of ticks. Thus, a study was carried out on the phytochemical characterization of essential oils (EOs) of the bark of Cinnamomum zeylanicum (cinnamon) and of the stem of Eremanthus erythropappus (candeia) and evaluation of the tick activity of these OEs and the major compounds on engorged larvae and females of Rhipicephalus microplus. In addition, the tick activity of an acetylated compound, produced from (E)-cinnamaldehyde, which was the predominant compound in cinnamon OE, was also evaluated. The bioassays with the non-fed larvae were performed using the larval pack test at concentrations from 0.31 to 10.0 mg / mL. For the EOs of cinnamon, candeia, and for the isolated substances, (E)-cinnamaldehyde, α-bisabolol and cinamyl acetate, mortality of over 90% was observed from the concentrations of 2.0; 2.0; 2.5; 5.0; 5.0 mg / ml, respectively. For engorged females, the immersion test was performed at concentrations of 2.5 to 60.0 mg / mL, and it was observed that only cinnamyl acetate showed low activity. A control percentage above 95% was observed for cinnamon and cinnamon EOs, and for substances (E)-cinnamaldehyde and α-bisabolol, at concentrations of 20.0; 60.0; 20.0 and 20.0 mg / mL respectively. Based on these results, the activity of (E)-cinnamaldehyde and α-bisabolol was investigated on fifty-one populations of R. microplus, with different profiles of resistance to different commercial ticks. For the characterization of resistance, carrapaticides based on deltamethrin (Pyrethroid - Butox®), amitraz (Amidine - Triatox®) and chlorfenvinphos (Organophosphate - Supokill®) were used in their commercial concentration in the female immersion test. For the calculation of the LC50 of the larvae translated with the pure compounds, the larval pack test was performed at concentrations from 0.31 to 10.0 mg / mL. In this stage, tests were also performed with the Porto Alegre strain (POA), a sensitive strain for reference in the calculation of the Resistance Ratio (RR). Based on the results generated, it was not possible to infer a correlation between the efficiency of ticks and the LC50 values of the pure compounds tested, thus not observing cross resistance, indicating that the different results found may be related to existing phenotypic variations between populations. Finally, the lipid profile of the fatty body and eggs of R. microplus engorged females exposed to a concentration of 10.0 mg / mL of (E)-cinnamaldehyde and α-bisabolol were evaluated. To characterize the lipid profile, the techniques of thin layer chromatography and gas chromatography coupled to a mass spectrometer were applied. In addition, an in silico study was carried out in order to know the possible molecular targets of these plant compounds. The results demonstrated changes in the profile of lipids present in the fatty body and eggs of females treated with (E)-cinnamaldehyde and α-bisabolol, showing a possible mechanism of action of these compounds.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectCarrapato dos bovinospor
dc.subjectcarrapaticidas botânicospor
dc.subjectsesquiterpenopor
dc.subjectfenilpropanoídepor
dc.subjectmetabolismo energéticopor
dc.subjectCattle tickeng
dc.subjectbotanical acaricideeng
dc.subjectsesquiterpeneeng
dc.subjectphenylpropanoideng
dc.subjectenergy metabolism.eng
dc.titlePotencial dos óleos essenciais de Eremanthus erythropappus e Cinnamomum zeylanicum e compostos isolados α-bisabolol e (E)-cinamaldeído para o controle de Rhipicephalus microplus (Acari: Ixodidae)por
dc.title.alternativePotential of the essential oils of Eremanthus erythropappus and Cinnamomum zeylanicum and compounds isolated α-bisabolol and (E)-cinnamaldehyde for the control of the Rhipicephalus microplus (Acari: Ixodidae)eng
dc.typeTesepor
dc.contributor.advisor1Bittencourt, Vânia Rita Elias Pinheiro
dc.contributor.advisor1ID505.198.676-53por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3888832724995864por
dc.contributor.advisor-co1Monteiro, Caio Márcio de Oliveira
dc.contributor.advisor-co1ID058.965.206-03por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2496419306394657por
dc.contributor.advisor-co2Angelo, Isabele da Costa
dc.contributor.advisor-co2ID090.347.797-18por
dc.contributor.referee1Lopes, Welber Daniel Zanetti
dc.contributor.referee2Monteiro, Caio Márcio de Oliveira
dc.contributor.referee3Reck, José
dc.contributor.referee4Fabri, Rodrigo Luiz
dc.contributor.referee5Camargo, Mariana Guedes
dc.creator.ID087.158.016-08por
dc.creator.Latteshttp://lattes.cnpq.br/2159998919091266por
dc.description.resumoCompostos de origem vegetal têm sido apontados como promissores no controle de carrapatos. Dessa forma, foi realizado um estudo de caracterização fitoquímica dos óleos essenciais (OEs) da casca de Cinnamomum zeylanicum (canela) e do caule de Eremanthus erythropappus (candeia) e avaliação da atividade carrapaticida desses OEs e dos compostos majoritários sobre larvas e fêmeas ingurgitadas de Rhipicephalus microplus. Além disso, também foi avaliado a atividade carrapaticida de um composto acetilado, produzido a partir do (E)-cinamaldeído, que foi o composto predominte no OE de canela. Os bioensaios com as larvas não alimentadas foram realizados através do teste de pacote de larvas nas concentrações de 0,31 a 10,0 mg/mL. Para os OEs de canela, candeia, e para as substâncias isoladas, (E)-cinamaldeído, α-bisabolol e acetato de cinamila, foram observadas mortalidade superior a 90% a partir das concentrações de 2,0; 2,0; 2,5; 5,0; 5.0 mg/mL, respectivamente. Para fêmeas ingurgitadas foi realizado o teste de imersão nas concentrações de 2,5 a 60,0 mg/mL, sendo observado que apenas o acetato de cinamila apresentou baixa atividade. Um percentual de controle acima de 95% foi observado para os OEs de canela e candeia, e para as substâncias (E)-cinamaldeído e α-bisabolol, nas concentrações de 20,0; 60,0; 20,0 e 20,0 mg/mL respectivamente. Com base nesses resultados, foi investigado a atividade do (E)-cinamaldeído e α-bisabolol sobre cinquenta e uma populações de R. microplus, com diferentes perfis de resistência a diferentes carrapaticidas comerciais. Para caracterização de resistência, foram utilizados os carrapaticidas a base de deltametrina (Piretroide – Butox®), amitraz (Amidínico – Triatox®) e clorfenvinfós (Organofosforado – Supokill®) em sua concentração comercial no teste de imersão de fêmeas. Já para o cálculo da CL50 das larvas tradadas com os compostos puros, foi realizado o teste de pacote de larvas nas concentrações de 0,31 a 10,0 mg/mL. Nessa etapa também foram realizados testes com a cepa Porto Alegre (POA), uma cepa sensível para referência do cálculo da Razão de Resistência (RR). Com base nos resultados gerados, não foi possível inferir uma correlação entre a eficiência dos carrapaticidas e os valores de CL50 dos compostos puros testados, não sendo observado, dessa forma, resistência cruzada, indicando que os diferentes resultados encontrados podem estar relacionados com variações fenotípicas existentes entre as populações. Por fim, foi avaliado o perfil lipídico do corpo gorduroso e ovos de fêmeas ingurgitadas de R. microplus expostas a concentração de 10,0 mg/mL do (E)-cinamaldeido e do α-bisabolol. Para caracterização do perfil de lipídios, foram aplicadas as técnicas de cromatografia em camada delgada e cromatografia gasosa acoplada a um espectrômetro de massa. Além disso, foi realizado um estudo in silico com o intuito de se conhecer os possíveis alvos moleculares desses compostos vegetais. Os resultados demonstraram alterações no perfil de lipídios presentes no corpo gorduroso e ovos de fêmeas tratadas com (E)-cinamaldeido e α-bisabolol, evidenciando um possível mecanismo de ação desses compostos.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.referencesABBAS, R.Z.; ZAMAN, M.A.; COLWELL, D.D.; GILLEARD, J.; IQBAL, Z. Acaricide resistance in cattle ticks and approaches to its management: the state of play. Veterinary Parasitology, v. 203, p. 6-20, 2014. ANGELO, I.C.; GÔLO, P.S.; PERINOTTO, W.M.S.; CAMARGO, M.G.; QUINELATO, S.; SÁ, F.A.; PONTES, E.G. Neutral lipid composition changes in the fat bodies of engorged females Rhipicephalus microplus ticks in response to fungal infections, Parasitology Research, v.112, p.501-509, 2013. ARRESE, E.L.; SOULAGES, J.L.; Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology, v. 55, p. 207-225, 2010. BELZILE, A.S.; MAJERUS, S.L.; PODESZFINSKI, C.; GUILLET, G.; DURST, T.; ARNASON, J.T. Dillapiol derivatives as synergists: structure-activity relationship analysis. Pesticide Biochemistry and Physiology, v. 66, p. 33-40, 2000. BENELLI, G.; PAVELA, R.; CANALE, A.; MEHLHORN, H. Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitology Research, v. 115, p. 2545-2560, 2016. BICKERS, D.; CALOW, P.; GREIM, H.; HANIFIN, J.M.; ROGERS, A.E.; SAURAT, J.H. A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as fragrance ingredients. Food and Chemical Toxicology, v. 43, p. 799-836, 2005. BLIGH, E.G.; DYER, W.J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry Phisiology, v. 37, p. 911-917, 1959. CAMPOS, E.V.; PROENÇA, P.L.; OLIVEIRA, J.L.; BAKSHI, M.; ABHILASH, P.; FRACETO, L.F. Use of botanical insecticides for sustainable agriculture: future perspectives. Ecological Indicators, v. X, p. XX, 2019. CANAVOSO, L.E.; KARNAS, J. K.; JOUNI, Z.E.; PENNINGTON, J.E.; WELLS, M. A. Fat metabolism in insects. Annual Review of Nutrition, v. 21, p. 23-46, 2001. DENARDI, S.E.; BECHARA, G.H.; MATHIAS, M. I. New morphological data on fat bodies of semi-engorged females of Amblyomma cajennense (Acari: Ixodidae). Micron, v. 39, n. 7, p. 875-83, 2008. ELLSE, L.; WALL, R. The use of essential oils in veterinary ectoparasite control: a review. Medical and Veterinary Entomology, v. 28, p. 233-243, 2014. ENAN, E.E. Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry, Physiology, Toxicology and Pharmacology, v. 130, p. 325-337, 2001. ENAN, E.E. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochemistry and Molecular Biology, v. 35, p. 309-321, 2005a. ENAN, E.E. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Archives of Insect Biochemistry and Physiology, v. 59, p. 161-171, 2005b. ESTEVES, E.; FOGAÇA, A.C.; MALDONADO, R.; SILVA, F.D; MANSO, P.P.; PELAJOMACHADO, M.; VALLE, D.; DAFFRE, S. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: Cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Development and Comparative Immunology, v.33, n.8, p.913-919, 2009. FOGAÇA, A.C.; ALMEIDA, I.C.; EBERLIN, M.N.; TANAKA, A.S.; BULET, P.; DAFFRE. Ixodidin, a novel antimicrobial peptide from the hemocytes of the catle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides, v.27, p.667-674, 2006. FOGAÇA, A.C.; LORENZINI, D.M.; KAKU, L.M.; ESTEVES, E.; BULET, P.; DAFFRE, S. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Developmental and Comparative Immunology, v.28, p.191–200, 2004. FURLONG, J.; MARTINS, J. R.; PRATA, M. C. A. O carrapato dos bovinos e a resistência: temos o que comemorar? A Hora Vetetinária, 27: 1-7, 2007. GARCIA, E. S.; AZAMBUJA, P. Lignoids in insects: chemical probes for the study of ecdysis, excretion and Trypanosoma cruzi-triatomine interactions. Toxicon, v. 44, p. 431-440, 2004. GAUDÊNCIO, F.N. 2016. Efeito do fluazuron sobre ovos, larvas e fêmeas ingurgitadas de Rhipicephalus microplus. Tese de Doutorado. 88p. Universidade Federal Rural do Rio de Janeiro, Seropédica, Brasil GONCALVES, K.; TOIGO, E.; ASCOLI, B.; VAN POSER, G.L.; RIBEIRO, V.L.S. Effects of solvents and surfactant agents on the female and larvae of cattle tick Boophilus microplus. Parasitology Research, v. 71, p. 443-50, 2007. GRIFFITHS, W.J.; OGUNDARE, M.; MELJON, A.; WANG, Y. MASS SPECTROMETRY FOR STEROID ANALYSIS Chapter 14. Mass Spectrometry Handbook, First Edition. John Wiley e Sons, 2012, p.297-337. GUERRERO, F.D.; DE LEÓN, A.A.P.; RODRÍGUEZ-VIVAS, R.I.; JONSSON, N.N.; MILLER, R.J.; ANDREOTTI, R. Acaricide research and development, resistance, and resistance monitoring. In: Sonenshire DE, Roe RM, editors. Biology of Ticks. Volume 2. 2nd ed. New York: Oxford University Press, 2013. GUIZZO, M.G.; ABREU, L.; MASUDA, A.; LOGULLO, C.; VAZ JUNIOR, I.S. Metabolismo de biomoléculas na embriogênese do carrapato Rhipicephalus (Boophilus) microplus. Acta Scientiae Veterinariae. v. 40, n.1, p.1-12, 2012. HOOTH, M.J.; SILLS, R.C.; BURKA, L.T.; HASEMAN, J.K.; WITT, K.L.; OREZECH, D.P.; GRAVES, S.; BUCHER, J.R. Toxicology and carcinogenesis studies of microencapsulated transcinnamaldehyde in rats and mice. Food and Chemical Toxicology, v. 42, p. 1757-1768, 2004 JONSSON, N. N.; KLAFKE, G.; CORLEY, S. W.; TIDWELL, J.; BERRY, C. M.; KOH-TAN, H. H. C. Molecular biology of amitraz resistance in cattle ticks of the genus Rhipicephalus. Frontiers in Bioscience, v. 23, n. 2, p. 796-810, 2018. KAWOOYA, J.K.; LAW, J.H. Role of lipophorin in lipid transport to the insect egg. Journal of Biological Chemistry, v. 263, p. 8748-8753, 1988. KLAFKE, G.; WEBSTER, A.; AGNOL, B.D.; PRADEL, E.; SILVA, J.; DE LA CANAL, L.H.; BECKER, M.; OSÓRIO, M.F.; MANSSON, M.; BARRETO, R.; SCHEFFER, R.; SOUZA, U.A.; CORASSINI, V.B.; DOS SANTOS, J.; RECK, J.; MARTINS, J.R. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state Southern Brazil. Ticks Tick-borne Diseases, v. 8, n. 1, p.73-80, 2017. KONIG, I.F.M.; GONÇALVES, R.R.P.; OLIVEIRA, M.V.S.; SILVA, C.M.; THOMASI, S.S.; PECONICK, A.P.; REMEDIO, R.N. Sublethal concentrations of acetylcarvacrol strongly impact oocyte development of engorged female cattle ticks Rhipicephalus microplus (Canestrini, 1888) (Acari: Ixodidae). Ticks Tick-borne Diseases, v. 10, p. 766-774, 2019. LEE, S.H.; CHOI, M.H; LEE, W.Y.; CHUNG, B.C. Isotope-Dilution Mass Spectrometry for Quantification of Urinary Active Androgens Separated by Gas Chromatography. Mass Spectrometry Letters, v.1, n.1, 2010. LOMAS, L.O.; KAUFMAN, W.R. An indirect mechanism by which a protein from the male gonad ha stens salivary gland degeneration in the female ixodid tick, Amblyomma hebraeum. Archives of Insect Biochemistry and Physiology, v. 21, n.3, p.169-178, 1992. LÓPEZ, M.D.; PASCUAL-VILLALOBOS, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products, v. 31, p. 284-288, 2010. MARCHESINI, P.; NOVATO, T.P.; CARDOSO, S.J.; PRATA, M.C.A.; NASCIMENTO, R.M.; KLAFKE, G.; COSTA-JÚNIOR, L.M.; MATURANO, R.; LOPES, W.D.Z.; BITTENCOURT, V.R.E.P.; MONTEIRO, C.M.O. Acaricidal activity of (E)-cinnamaldehyde and α-bisabolol on populations of Rhipicephalus microplus (Acari: Ixodidae) with different resistance profiles. Veterinary Parasitology, v. XX, p. XX, 2020. MATOS, R.S.; MELO, D.R.; MONTEIRO, C.M.O.; ZERINGÓTA, V.; SENRA, T.O. S.; CALMON, F.; MATURANO, R.; PRATA, M.C.A.; DAEMON, E. Determination of the susceptibility of unengorged larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae) to different methods of dissolving thymol. Parasitology Research, v. 113, p. 669-673, 2014a. MATOS, R.S.; DAEMON, E.; CAMARGO-MATHIAS, M.I.; FURQUIM, K.; SAMPIERI, B.; REMEDIO, R.; ARAÚJO, L.X.; NOVATO, T.P.L. Histopathological study of ovaries of Rhipicephalus sanguineus (Acari: Ixodidae) exposed to different thymol concentrations. Parasitology Research, v. 113, p. 4555-4565, 2014b. MATOS, R.S.; DELMONTE, C.; MARCHESINI, P.; MONTEIRO, C.M.O.; SAMPIERI, B.; DAEMON, E.; CAMARGO-MATHIAS, M.I. Thymol action on cells and tissues of the synganglia and salivary glands of Rhipicephalus sanguineus sensu lato females (Acari: Ixodidae). Ticks Tick Borne Diseases, v. 10, p. 314-320, 2019. MATOS, R.S.; ROSA, P.; BRITO, L.C.M.; PAULA, L.G.F.; ZERINGOTA, V.; MONTEIRO, C.M.O.; DAEMON, E.; CAMARGO-MATHIAS, M.I. Thymol: effects on reproductive biology and Gene’s organ morphology in Rhipicephalus sanguineus sensu lato engorged females (Acari: Ixodidae). Ticks Tick Borne Disseases, v. 11, n. 1, 101308, 2020. MONTEIRO, C.M.O; DAEMON, E.; SILVA, A.M.R.; MATURANO, R.; AMARAL C.D. Acaricide and ovicide activities of thymol on engorged females and eggs of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitology Research, v. 106, p. 615-619, 2010. NELSON, D.L.; COX, M.M. Princípios de Bioquímica de Lehninger. 6ª ed. Porto Alegre: W.H. Freeman, 2014. 1220 p. NOVATO, T.; ARAUJO, L.X.; MONTEIRO, C.M.O.; MATURANO, R.; SENRA, T.O.S.; MATOS, R.S.; GOMES, G.A.; CARVALHO, M.G.; DAEMON, E. Evaluation of the combined effect of thymol, carvacrol and (E)-cinnamaldehyde on Amblyomma sculptum (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) larvae. Veterinary Parasitology, v. 212, p. 331-335, 2015. OLIVEIRA, A.D.; RIBEIRO, I.S.A.; SCOLFORO, J.R.S.; MELLO, J.M.; ACERBI JR.; F.W.A.; CAMOLESI, J.F. Market chain analysis of Candeia Timer (Eremanthus erythropappus). Lavras. Cerne, v. 15, p. 257-264, 2009. OLKKONEN, V.M.; LI, S. Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Progress in Lipid Research, v. 52, p. 529-538, 2013. PONTES, E.G.; LEITE, P.; MAJEROWICZ, D.; ATELLA, G.C.; GONDIM, K.C. Dynamics of lipid accumulation by the fat body of Rhodnius prolixus: The involvement of lipophorin binding sites. Journal of Insect Physiology, v. 54, p. 790-797, 2008. RAVINDRAN, R.; JULIET, S.; AJITH KUMAR, K.G.; SUNIL, A.R.; NAIR, S.N.; AMITHAMOL, K.K.; RAWAT, A.K.S.; GHOSH, S. Toxic effects of various solvents against Rhipicephalus (Boophilus) annulatus. Ticks and tick-borne diseases, v. 2, n. 3, p. 160-162, 2011. RAYCHAUDHURI, S.; PRINZ, W.A. The diverse functions of oxysterol-binding proteins. Annual Review of Cell and Developmental Biology, v. 26, p. 157-177, 2010. RENTHAL, R., LOHMEYER, K., BORGES, L. M. F., PÉREZ DE LEÓN, A. A. Surface lipidome of the lone star tick, Amblyomma americanum, provides leads on semiochemicals and lipid metabolism. Ticks and Tick-borne Diseases, v. 10, p. 138-145, 2019. RECK, J.; KLAFKE, G.M.; WEBSTER, A.; DALL'AGNOL, B.; SCHEFFER, R.; SOUZA, U.A.; CORASSINI, V.B.; VARGAS, R.; DOS SANTOS, J.S.; MARTINS, J.R. First report of fluazuron resistance in Rhipicephalus microplus: a field tick population resistant to six classes of acaricides. Veterinary Parasitology, v. 201, n. 1-2, p. 128-136, 2014. RESENDE, J.D.R.A.; DAEMON, E.; MONTEIRO, C.M.O.; MATURANO, R.; PRATA, M.C.A.; RODRIGUES, A.F.S.F. Toxicity of solvents and surfactants to Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae) and Dermacentor nitens (Neumann, 1897) (Acari: Ixodidae) larvae. Experimental Parasitology, v.131, n.2, p. 139-142, 2012. RUIZ, J.I.; OCHOA, B. Quantification in the subnanomolar range of phospholipids and neutral lipids by monodimensional thin-layer chromatography and image analysis. Journal of Lipid Research, v. 38, p.1482-1489, 1997. RYAN, R.O.; VAN DER HORST, D.J. Lipid transport biochemistry and its role in energy production. Annual Review of Entomology, v. 45, 233-260, 2000. SÁ, F.A.; COUTINHO-RODRIGUES, C.J.B.; ANGELO, I.C.; FIOROTTI, J.P.; ATELLA, G.C.; BITTENCOURT, V.R.E.; SILVA-NETO, M.A.C. Metarhizium anisopliae sl modulation of lipid metabolismo during tick infection is independent of AMPK and ERK pathways. Parasitology Research, v. 117, p. 793-799, 2018. SAMISH, M. Biocontrol of ticks. Annals of New York Academy of Sciences. v. 916, p. 172-178, 2000. SENRA, T.O.S.; ZERINGOTA, V.; MONTEIRO, C.M.O.; CALMON, F.; MATURANO, R.; GOMES, G.A.; FAZA, A.; CARVALHO, M.G.; DAEMON, E. Assessment of the acaricidal activity of carvacrol, (E)-cinnamaldehyde, trans-anethole, and linalool on larvae of Rhipicephalus microplus and Dermacentor nitens (Acari: Ixodidae). Parasitology Research, v. 112, n. 4, 1461-1466, 2013. SHARMA, A.K.; KUMAR, S.; TIWARI, S.S.; SRIVASTAVA, S.; KUMAR, R.; RAY, D.D.; CHAUDHURI, P.; RAWAT, A.K.S.; GHOSH, S. Comparative acaricidal properties of different solvents and surfactants on Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Indian Journal of Animal Sciences, v. 82, n. 2, p. 154-158, 2012. SONENSHINE, D. E. e ROE, R. M. Biology of Ticks, New York, 2013. SOUZA, J.R.; OLIVEIRA, P.R.; ANHOLETO, L.A.; ARNOSTI, A.; DAEMON, E.; REMEDIO, R.N.; CAMARGO-MATHIAS, M.I. Effects of carvacrol on oocyte development in semiengorged Rhipicephalus sanguineus sensu lato females ticks (Acari: Ixodidae). Micron, v. 116, p. 66-72, 2019. THURMAN, E.M; WRITER, J.H; FERRER, I. Injection Port Derivatization for GC/MS-MS: Analysis of hormones in water Chapter 5. Comprehensive Analytical Chemistry. Elsevier, v. 61, p.115-141, 2013. THOMPSON, D.M.; KHALIL, S.M.; JEFFERS, L.A.; ANANTHAPADMANABAN, L.A.U.; SONENSHINE, D.E.; MITCHELL, R.D.; OSGOOD, C.J.; APPERSON, C.; ROE, R.M. In vivo role of 20-hydroxyecdysone and juvenile hormone in the regulation of the vitellogenin message and egg development in the American dog tick, Dermacentor variabilis (Say). Journal of Insect Physiology, v. 51, p. 11050-11116, 2005. VRIELINK, A.; GHISLA, S. Cholesterol oxidase: biochemistry and structural features. The FEBS Journal, v. 276, n. 23, p. 6826-6843, 2009. XAVIER, M.A.; TIRLONI, L.; PINTO, A.F.M.; DIEDRICH, J.K.; YATES, J.R.; GONZALES, S.; FARBER, M.; VAZ, I.D.; TERMIGNONI, C. Tick Gene’s organ engagement in lipid metabolism revealed by a combined transcriptomic and proteomic approach. Ticks and Tick-borne Diseases, v. 10, p. 787-797, 2019. YILMAZ, B. GC-MS and HPLC Methods for Determination of Estriol Hormone in Pharmaceutical Preparations. Austin Journal of Analytical and Pharmaceutical Chemistry, v.2, n.5, p.1-5, 2015.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72136/2020%20-%20Paula%20Barroso%20Cruz%20Marchesini.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6317
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-02-07T15:46:35Z No. of bitstreams: 1 2020 - Paula Barroso Cruz Marchesini.pdf: 3054492 bytes, checksum: 5a186c0b683afc5c2c09f7eef43628b2 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-02-07T15:46:35Z (GMT). No. of bitstreams: 1 2020 - Paula Barroso Cruz Marchesini.pdf: 3054492 bytes, checksum: 5a186c0b683afc5c2c09f7eef43628b2 (MD5) Previous issue date: 2020-09-30eng
Appears in Collections:Doutorado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Paula Barroso Cruz Marchesini.pdf2.98 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.