Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/13687
Full metadata record
DC FieldValueLanguage
dc.creatorPorto, Yuri Duarte
dc.date.accessioned2023-11-19T23:54:37Z-
dc.date.available2023-11-19T23:54:37Z-
dc.date.issued2023-05-05
dc.identifier.citationPORTO, Yuri Duarte. Vigilância e diagnóstico de Salmonella spp. em pisciculturas de peixes redondos nativos (Colossoma macropomum). 2023. 99 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2023.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13687-
dc.description.abstractBrazil has great potential for aquaculture. However, fish can also be a cofactor of foodborne illness (FBD) outbreaks. Salmonellosis is caused by bacteria of the genus Salmonella of interest to public health worldwide due to its morbidity and control difficulties. Salmonella spp. it has great physiological adaptation capable of surviving in soil and water allowing contamination and dissemination between animals and handlers in the fish processing industry. In Brazilian legislation, Salmonella spp. is prohibited and when detected, the entire batch must be discarded and the industry must under go a cleaning process. Characterized by infection by non-typhoidal species of the genus Salmonella, although they do not naturally belong to the aquatic habitat or microbiota of fish, fish farming systems in tanks can offer conditions that provide contamination and concentration of the microbial load of this pathogen, and as a result, persist after stages of processing and industrial improvement, remaining as a microbiological risk when not completely eliminated. In Chapter 1, a systematic review of the microbiological diagnoses of Salmonella spp. in aquaculture between 2000-2020. Among the results presented, the isolation method by culture was the most widespread, supported by more precise techniques such as PCR. The most prevalent Salmonella serovars reported were S. Typhimurium, S. Weltevreden and S. Newport. The information produced characterizes the occurrence of Salmonella spp. in the aquaculture sector bringing an overview of recent years. Future research focusing on control and prevention strategies for Salmonella spp. in fish production are necessary and should be encouraged. In Chapter 2, a study was conducted to verify the occurrence of Salmonella spp. in tambatinga farms (Colossoma macropomum x Piaractus brachypomus) and to draw a susceptibility profile to antimicrobials of isolates from 25 fish farms distributed in eight municipalities belonging to the Baixada Cuiabana region in Mato Grosso, from November 2021 to June 2022. both 184 samples (fish, pond water and soil, feed and faeces) from 25 farms were evaluated for presumptive detection of Salmonella spp. by the microbiological method based on ISO 6579-1, and confirmed after polymerase chain reaction (PCR) targeting the hilA gene and reading after electrophoresis in agarose gel. Of the fish farms 88% (22/25) were diagnosed with Salmonella spp. in at least one of the samples. Some risk factors, such as the free access of animals outside aquaculture production (domestic, poultry, production, wild) to the breeding tanks, were identified and suggest a potential source of contamination. The results demonstrate a high prevalence, being a silent problem, since the fish in the rearing phase harbors a pathogen of interest in public health without manifesting symptoms of apparent infection.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipEmbrapapor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectSalmonellapor
dc.subjectdiagnóstico microbiológicopor
dc.subjectaquiculturapor
dc.subjectsegurança alimentarpor
dc.subjectsaúde públicapor
dc.subjectrevisão sistemáticapor
dc.subjectmicrobiological diagnosiseng
dc.subjectaquacultureeng
dc.subjectfood safetyeng
dc.subjectpublic healtheng
dc.subjectsystematic revieweng
dc.titleVigilância e diagnóstico de Salmonella spp. em pisciculturas de peixes redondos nativos (Colossoma macropomum)por
dc.title.alternativeSurveillance and diagnosis of Salmonella spp. in native roundfish (Colossoma macropomum) fish farmseng
dc.typeTesepor
dc.contributor.advisor1Tassinari, Wagner de Souza
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3648148709641027por
dc.contributor.advisor-co1Fogaça, Fabiola Helena dos Santos
dc.contributor.referee1Tassinari, Wagner de Souza
dc.contributor.referee2Andrade, Adriana Oliveira
dc.contributor.referee3Baroni, Francisco de Assis
dc.contributor.referee4Miranda, Eduardo Jacusiel
dc.contributor.referee5Direito, Glória Maria
dc.creator.IDhttps://orcid.org/0000-0001-6053-5953por
dc.creator.Latteshttp://lattes.cnpq.br/4012616905587008por
dc.description.resumoO Brasil possui grande potencial para aquicultura. Contudo o pescado também pode ser cofator de surtos de doenças transmitidas por alimentos (DTA). A salmonelose é causada por bactérias do gênero Salmonella de interesse para saúde pública em todo o mundo pelas suas características de morbidade e dificuldade de controle. A Salmonella spp. possui grande adaptação fisiológica capaz de sobreviver em solo e água permitindo contaminação e disseminação entre animais e manipuladores na indústria processadora de pescado. Na legislação brasileira a presença de Salmonella spp. em alimentos é proibida e quando detectada, todo o lote deve ser descartado e a indústria deve passar por processo de higienização. Caracterizada pela infecção por espécies não tifoidais do gênero Salmonella, embora não pertençam naturalmente ao habitat aquático ou microbiota dos peixes, os sistemas de criação piscícola em tanques podem oferecer condições que propiciam contaminação e concentração da carga microbiana deste patógeno, e como resultado, persistir pós etapas de processamento e beneficiamento industrial, mantendo-se como risco microbiológico quando não totalmente eliminado. No Capítulo 1 foi realizada uma revisão sistemática dos diagnósticos microbiológicos de Salmonella spp. na aquicultura entre 2000-2020. Dentre os resultados apresentados, o método de isolamento por cultura foi o mais difundido, apoiado por técnicas mais precisas como PCR. Os sorovares de Salmonella mais predominantes reportados foram S. Typhimurium, S. Weltevreden e S. Newport. As informações produzidas caracterizam a ocorrência de Salmonella spp. no setor da aquicultura trazendo um panorama dos últimos anos. Pesquisas futuras com foco nas estratégias de controle e prevenção de Salmonella spp. na produção de pescado são necessárias e devem ser incentivadas. No Capítulo 2, um estudo foi conduzido para verificar a ocorrência de Salmonella spp. em criações de tambatingas (Colossoma macropomum x Piaractus brachypomus) e traçar um perfil de suscetibilidade a antimicrobianos de isolados de 25 pisciculturas distribuídas em oito municípios pertencentes a região da Baixada Cuiabana em Mato Grosso, no período de novembro de 2021 a junho de 2022. Para tanto 184 amostras (peixe, água e terra do tanque, ração e fezes) de 25 pisciculturas foram avaliadas para detecção presuntiva de Salmonella spp. pelo método microbiológico baseado na ISO 6579-1, e confirmados após reação de cadeia de polimerase (PCR) tendo como alvo o gene hilA e leitura após eletroforese em gel de agarose. Das pisciculturas, 88% (22/25) foram diagnosticadas com Salmonella spp. em pelo menos uma das amostras. Alguns fatores de risco, como o livre acesso de animais alheios a produção aquícola (domésticos, aves, de produção, selvagens) aos tanques de criação, foram identificados e sugerem potencial fonte contribuidora para contaminação. Os resultados demonstram alta prevalência, sendo um problema silencioso, visto que o peixe na fase de criação alberga um patógeno de interesse em saúde pública sem manifestar sintomas de infecção aparentes.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.referencesABBASSI-GHOZZI, I.; JAOUANI, A.; HAMMAMI, S.; MARTINEZ-URTAZA, J.; BOUDABOUS, A.; GTARI, M. Molecular analysis and antimicrobial resistance of Salmonella isolates recovered from raw meat marketed in the area of “Grand Tunis”, Tunisia. Pathol. Biol. 2012, 60, e49– e54. https://doi.org/10.1016/j.patbio.2011.07.005. ABOU-ELELA, G.M.; EL-SERSY, N.A.; ABD-ELNABY, H.; WEFKY, S.H. Distribution and biodiversity of fecal indicators and potentially harmful pathogens in North Delta (Egypt). Aust. J. Basic Appl. Sci. 2009, 3, 3374–3385. AKINJOGUNLA, O.J.; INYANG, C.U.; AKINJOGUNLA, V.F. Bacterial species associated with anatomical parts of fresh and smoked Bonga fish (Ethmalosa fimbriata): Prevalence and susceptibility to cephalosporins. Res. J. Microbiol. 2011, 6, 87–97. https://doi.org/10.3923/jm.2011.87.97. AKIYAMA, T.; KHAN, A.A.; CHENG, C.-M.; STEFANOVA, R. Molecular characterization of Salmonella enterica serovar Saintpaul isolated from imported seafood, pepper, environmental and clinical samples. Food Microbiol. 2011, 28, 1124–1128. https://doi.org/10.1016/j.fm.2011.03.003. AL-HARBI, A.H.; UDDIN, M.N. Seasonal changes in bacterial flora of fish pond sediments in Saudi Arabia. J. Appl. Aquac. 2006, 18, 35–45. https://doi.org/10.1300/J028v18n02_03. ALAMEER, A.H.A.; ATSHAN, O.F.; MAHMOOD, M.M.; AL-JEWARI, W.M.; MOHAMMED, A.A. Detection of Salmonella species in viscera of Carp fish. Plant Arch. 2020, 20, 2683–2686. ALEXOPOULOS, A.; PLESSAS, S.; VOIDAROU, C.; NOUSSIAS, H.; STAVROPOULOU, E.; MANTZOURANI, I.; TZORA, A.; SKOUFOS, I.; BEZIRTZOGLOU, E. Microbial ecology of fish species ongrowing in Greek sea farms and their watery environment. Anaerobe 2011, 17, 264–266. https://doi.org/10.1016/j.anaerobe.2011.03.003. ALI, A.; PARISI, A.; CONVERSANO, M.C.; IANNACCI, A.; D’EMILIO, M.C.; MERCURIO, V.; NORMANNO, G. Food-borne bacteria associated with seafoods: A brief review. J. Food Qual. Hazards Control. 2020, 7, 4–10. https://doi.org/10.18502/jfqhc.7.1.2446. ÁLVAREZ, A.; GARCÍA GARCÍA, B.; GARRIDO, M.D.; HERNÁNDEZ, M.D. The influence of starvation time prior to slaughter on the quality of commercial-sized gilthead seabream (Sparus aurata) during ice storage. Aquaculture 2008, 284, 106–114. https://doi.org/10.1016/j.aquaculture.2008.07.025. AMAGLIANI, G.; BRANDI, G.; SCHIAVANO, G.F. Incidence and role of Salmonella in seafood safety. Food Res. Int. 2012, 45, 780–788. https://doi.org/10.1016/j.foodres.2011.06.022. AMPOFO, J.A.; CLERK, G.C. Diversity of bacteria in sewage treatment plant used as fish culture pond in southern Ghana. Aquac. Res. 2003, 34, 667–675. ANTUNES, P.; CAMPOS, J.; MOURÃO, J.; PEREIRA, J.; NOVAIS, C.; PEIXE, L. Inflow water is a major source of trout farming contamination with Salmonella and multidrug resistant bacteria. Sci. Total Environ. 2018, 642, 1163–1171. https://doi.org/10.1016/j.scitotenv.2018.06.143. AO, T.T.; FEASEY, N.A.; GORDON, M.A.; KEDDY, K.H.; ANGULO, F.J.; CRUMP, J.A. Global burden of invasive nontyphoidal Salmonella disease, 2010. Emerg. Infect. Dis. 2015, 21, 941–949. https://doi.org/10.3201/eid2106.140999. ARAÚJO, W.S.C.; DE LIMA, C.L.S.; PEIXOTO JOELE, M.R.S.; LOURENÇO, L.D.F.H. Development and Application of the Quality Index Method (QIM) for Farmed Tambaqui (Colossoma macropomum) Stored Under Refrigeration. J. Food Saf. 2017, 37, e12288. https://doi.org/10.1111/jfs.12288. ATANASSOVA, V.; REICH, F.; KLEIN, G. Microbiological quality of Sushi from Sushi bars and retailers. J. Food Prot. 2008, 71, 860–864. AUBOURG, S.P.; QUITRAL, V.; LARRAÍN, M.A.; RODRÍGUEZ, A.; GÓMEZ, J.; MAIER, L.; VINAGRE,J. Autolytic degradation and microbiological activity in farmed Coho salmon (Oncorhynchus kisutch) during chilled storage. Food Chem. 2007, 104, 369–375. https://doi.org/10.1016/j.foodchem.2006.11.066. AYAZO-GENES, J.; PERTUZ-BUELVAS, V.; JIMENEZ-VELASQUEZ, C.; ESPINOSA-ARAUJO, J.; ATENCIO-GARCIA, V.; PRIETO-GUEVARA, M. Describing the planktonic and bacterial communities associated with bocachico Prochilodus magdalenae fish culture with biofloc technology. Rev. Mvz Cordoba 2019, 24, 7209–7217. https://doi.org/10.21897/rmvz.1648. BANERJEE, S.; OOI, M.C.; SHARIFF, M.; KHATOON, H. Antibiotic resistant Salmonella and Vibrio associated with farmed Litopenaeus vannamei. Sci. World J. 2012, 2012, 130136. https://doi.org/10.1100/2012/130136. BASTI, A.A.; MISAGHI, A.; SALEHI, T.Z.; KAMKAR, A. Bacterial pathogens in fresh, smoked and salted Iranian fish. Food Control 2006, 17, 183–188. https://doi.org/10.1016/j.foodcont.2004.10.001. BINGOL, E.B.; COLAK, H.; HAMPIKYAN, H.; MURATOGLU, K. The microbiological quality of stuffed mussels (Midye Dolma) sold in Istanbul. Br. Food J. 2008, 110, 1079–1087. https://doi.org/10.1108/00070700810917992. BOOTH, A.; NOYES, J.; FLEMMING, K.; GERHARDUS, A.; WAHLSTER, P.; VAN DER WILT, G.J.; MOZYGEMBA, K.; REFOLO, P.; SACCHINI, D.; TUMMERS, M.; et al. Guidance on Choosing Qualitative Evidence Synthesis Methods for Use in Health Technology Assessments of Complex Interventions; Integrate-HTA: Bremen (DE), Germany, 2016. BOUCHET-VALAT, M. SnowballC: Snowball Stemmers Based on the C ‘libstemmer’ UTF-8 Library. R Package Version 0.7.0. 2020. Available online: https://CRAN.R- project.org/package=SnowballC (accessed on 18 October 2020). BOULARES, M.; MEJRI, L.; HASSOUNA, M. Study of the Microbial Ecology of Wild and Aquacultured Tunisian Fresh Fish. J. Food Prot. 2011, 74, 762–1768. https://doi.org/10.4315/0362-028X.JFP-11-057. BRENNER, M.; RAMDOHR, S.; EFFKEMANN, S.; STEDE, M. Key parameters for the consumption suitability of offshore cultivated blue mussels (Mytilus edulis L.) in the German Bight. Eur. Food Res. Technol. 2009, 230, 255–267. https://doi.org/10.1007/s00217-009-1159-0. BROUGHTON, E.I.; WALKER, D.G. Prevalence of Antibiotic-Resistant Salmonella in Fish in Guangdong, China. Foodborne Pathog. Dis. 2009, 6, 519–521. https://doi.org/10.1089/fpd.2008.0196. BUDIATI, T.; RUSUL, G.; WAN-ABDULLAH, W.N.; ARIP, Y.M.; AHMAD, R.; THONG, K.L. Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture 2013, 372–375, 127–132. https://doi.org/10.1016/j.aquaculture.2012.11.003. CALIXTO, F.A.A.; MACHADO, E.D.S.; FRANCO, R.M.; DE MESQUITA, E.D.F. Bacteriological evaluation of fresh, salted and smoked Cobia meat from fish culture of Ilha Grande bay, Rio de Janeiro state, Brazil. Bol. Inst. Pesca 2016, 42, 209–215. https://doi.org/10.5007/1678- 2305.2016v42n1p209. CARUSO, G.; MAIMONE, G.; MANCUSO, M.; MODICA, A.; Genovese, L. Microbiological controls across the productive cycle of Dicentrarchus labrax L. and Sparus aurata L.: A study from the environment to the final product. Aquac. Res. 2004, 35, 184–193. CASANOVA, L.M.; SOBSEY, M.D. Antibiotic-Resistant Enteric Bacteria in Environmental Waters. Water 2016, 8, 561. https://doi.org/10.3390/w8120561. Centers for Disease Control and Prevention; National Center for Infectious Diseases; Division of Bacterial and Mycotic Diseases; Foodborne and Diarrheal Diseases Branch. Human Isolates Surveillance Report; Enteric Diseases Epidemiology Branch, Division of Foodborne, Bacterial, and Mycotic Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2015. COSTA, J.C.C.P.; FLORIANO, B.; VILLEGAS, I.M.B.; RODRÍGUEZ-RUIZ, J.P.; POSADA-IZQUIERDO, G.D.; ZURERA, G.; PÉREZ-RODRÍGUEZ, F. Study of the microbiological quality, prevalence of foodborne pathogens and product shelf-life of Gilthead sea bream (Sparus aurata) and Sea bass (Dicentrarchus labrax) from aquaculture in estuarine ecosystems of Andalusia (Spain). Food Microbiol. 2020, 90, 103498. https://doi.org/10.1016/j.fm.2020.103498. DHOWLAGHAR, N.; ABEYSUNDARA, P.D.A.; NANNAPANENI, R.; SCHILLING, M.W.; CHANG, S.; CHENG, W.H.; SHARMA, C.S. Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions. Food Microbiol. 2018, 70, 172–180. https://doi.org/10.1016/j.fm.2017.09.016. DIB, A.L.; AGABOU, A.; CHAHED, A.; KUREKCI, C.; MORENO, E.; ESPIGARES, M.; ESPIGARES, E. Isolation, molecular characterization and antimicrobial resistance of enterobacteriaceae isolated from fish and seafood. Food Control 2018, 88, 54–60. https://doi.org/10.1016/j.foodcont.2018.01.005. DOMÉNECH, E.; JIMENEZ-BELENGUER, A.; AMOROS, J.A.; FERRUS, M.A.; ESCRICHE, I. Prevalence and antimicrobial resistance of Listeria monocytogenes and Salmonella strains isolated in ready-to-eat foods in Eastern Spain. Food Control 2015, 47, 120–125. https://doi.org/10.1016/j.foodcont.2014.06.043. DONDERO, M.; CISTERNAS, F.; CARVAJAL, L.; SIMPSON, R. Changes in quality of vacuum-packed cold-smoked salmon (Salmo salar) as a function of storage temperature. Food Chem. 2004, 87, 543–550. https://doi.org/10.1016/j.foodchem.2004.01.005. DOS SANTOS, R.R.; XAVIER, R.G.C.; DE OLIVEIRA, T.F.; LEITE, R.C.; FIGUEIREDO, H.C.P.; LEAL, C.A.G. Occurrence, genetic diversity, and control of Salmonella enterica in native Brazilian farmed fish. Aquaculture 2019, 501, 304–312. https://doi.org/10.1016/j.aquaculture.2018.11.034. DRÓŻDŻ, M.; MAŁASZCZUK, M.; PALUCH, E.; PAWLAK, A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect. Ecol. Epidemiol. 2021, 11, 1975530. https://doi.org/10.1080/20008686.2021. EFUNTOYE, M.O.; OLURIN, K.B.; JEGEDE, G.C. Bacterial flora from healthy clarias gariepinus and their antimicrobial resistance pattern. Adv. J. Food Sci. Technol. 2012, 4, 121– 128. ELSAIDY, N.; ABOUELENIEN, F.; KIRRELLA, G.A.K. Impact of using raw or fermented manure as fish feed on microbial quality of water and fish. Egypt. J. Aquat. Res. 2015, 41, 93–100. https://doi.org/10.1016/j.ejar.2015.01.002. ESPOSTO, E.M.; SILVA, W.C.P.; REIS, C.M.F.; REIS, E.M.F.; RIBEIRO, R.V.; RODRIGUES, D.P.; LÁZARO, N.S. Enteropatógenos bacterianos em peixes criados em uma estação de reciclagem de nutrientes e no ecossistema relacionado. Pesqui. Veterinária Bras. 2007, 27, 144– 148. European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. 2015, 13, 3991. FARIKOSKI, I.; MEDEIROS, L. ; CARVALHO, Y. K.; ASHFORD, D.; FIGUEIREDO, E. E. S.; FERNANDES, D. V. G. S.; SILVA, P. J.; RIBEIRO, V. The urban and rural capybaras (Hydrochoerus hydrochaeris) as reservoir of Salmonella in the western Amazon, Brazil. PESQUISA VETERINÁRIA BRASILEIRA (ONLINE), v. 39, p. 66-69, 2019. https://www.scielo.br/j/pvb/a/dJqLpTdYwXrPKpm9jxhHzBG/?lang=en FEINERER, I.; HORNIK, K. tm: Text Mining Package. R Package Version 0.7-8. 2020. Available online: https://CRAN.R-project.org/package=tm (accessed on 18 October 2020). FELLOWS, I. Wordcloud: Word Clouds. R Package Version 2.6. 2018. Available online: https://CRAN.R-project.org/package=wordcloud (accessed on 18 October 2020). FERNANDES, D.V.G.S.; CASTRO, V.S.; CUNHA NETO, A.; FIGUEIREDO, E.E.S. Salmonella spp. in the fish production chain: A review. Ciência Rural 2018, 48, e20180141. https://doi.org/10.1590/0103-8478cr20180141. FERRARI, R.G.; ROSARIO, D.K.A.; CUNHA-NETO, A.; HAND, S.B.; FIGUEIREDO, E.E.S.; CONTE-JUNIOR, C.A. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. https://doi.org/10.1128/AEM.00591-19. FURUSHITA, M.; SHIBA, T.; MAEDA, T.; YAHATA, M.; KANEOKA, A.; TAKAHASHI, Y.; TORII, K.; HASEGAWA, T.; OHTA, M. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl. Environ. Microbiol. 2003, 69, 5336–5342. https://doi.org/10.1128/AEM.69.9.5336–5342.2003. GAZAL, L.E.S.; BRITO, K.C.T.; CAVALLI, L.S.; KOBAYASHI, R.K.T.; NAKAZATO, G.; OTUTUMI, L.K.; CUNHA, A.C.; NETO, J.A.S.P.; BRITO, B.G. Salmonella sp. in fish—What is the importance for health in fish farm? Pesqui. Agropecuária Gaúcha 2018, 24, 55–64. ISSN online: 2595- 7686. HARAKEH, S.; YASSINE, H.; EL-FADEL, M. Antimicrobial-resistant patterns of Escherichia coli and Salmonella strains in the aquatic Lebanese environments. Environ. Pollut. 2006, 143, 269–277. https://doi.org/10.1016/j.envpol.2005.11.027. HERNÁNDEZ, M.D.; LÓPEZ, M.B.; ÁLVAREZ, A.; FERRANDINI, E.; GARCÍA GARCÍA, B.; GARRIDO, M.D. Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food Chem. 2009, 114, 237–245. https://doi.org/10.1016/j.foodchem.2008.09.045. HOLLMANN, I.; LINGENS, J.B.; WILKE, V.; HOMANN, C.; TEICH, K.; BUCH, J.; CHUPPAVA, B.; VISSCHER, C. Epidemiological Study on Salmonella Prevalence in Sow Herds Using Direct and Indirect Detection Methods. Microorganisms 2022, 10, 1532. https://doi.org/10.3390/microorganisms10081532. HUDECOVA, K.; BUCHTOVA, H.; STEINHAUSEROVA, I. The Effects of Modified Atmosphere Packaging on the Microbiological Properties of Fresh Common Carp (Cyprinus carpio L.). Acta Vet. Brno 2010, 79, S93–S100. https://doi.org/10.2754/avb201079S9S093. HUYS, G.; BARTIE, K.; CNOCKAERT, M.; HOANG OANH, D.T.; PHUONG, N.T.; SOMSIRI, T.; CHINABUT, S.; YUSOFF, F.M.; SHARIFF, M.; GIACOMINI, M.; et al. Biodiversity of chloramphenicol- resistant mesophilic heterotrophs from Southeast Asian aquaculture environments. Res. Microbiol. 2007, 158, 228–235. https://doi.org/10.1016/j.resmic.2006.12.011. JACKSON, B.R.; GRIFFIN, P.M.; COLE, D.; WALSH, K.A.; CHAI, S.J. Outbreak-associated Salmonella enterica serotypes and food Commodities, United States, 1998–2008. Emerg. Infect. Dis. 2013, 8, 1239–1244. https://doi.org/10.3201/eid1908.121511. KAKATKAR, A.S.; PANSARE, L.S.; GAUTAM, R.K.; SHASHIDHAR, R.; KARANI, M.; BANDEKAR, J.R. Molecular characterization of antibiotic resistant Salmonella isolates from Indian foods. Food Res. Int. 2011, 44, 3272–3275. https://doi.org/10.1016/j.foodres.2011.09.014. KAKTCHAM, P.M.; TEMGOUA, J.-B.; NGOUFACK ZAMBOU, F.; DIAZ-RUIZ, G.; WACHER, C.; PÉREZ-CHABELA, M.L. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria. World J. Microbiol. Biotechnol. 2017, 33, 32. https://doi.org/10.1007/s11274-016-2197-y. KLASE, G.; LEE, S.; LIANG, S.; KIM, J.; ZO, Y.-G.; LEE, J. The microbiome and antibiotic resistance in integrated fishfarm water: Implications of environmental public health. Sci. Total Environ. 2019, 649, 1491–1501. https://doi.org/10.1016/j.scitotenv.2018.08.288. KODAMA, H.; NAKANISHI, Y.; YAMAMOTO, F.; MIKAMI, T.; IZAWA, H.; IMAGAWA, T.; HASHIMOTO, Y.; KUDO, N. Salmonella arizonae isolated from a pirarucu, Arapaima gigas Cuvier, with septicaemia. J. Fish Dis. 1987, 10, 509–512. https://doi.org/10.1111/j.1365- 2761.1987.tb01103.x. KROG, J.S.; LARSEN, L.E.; SCHULTZ, A.C. Enteric porcine viruses in farmed shellfish in Denmark. Int. J. Food Microbiol. 2014, 186, 105–109. https://doi.org/10.1016/j.ijfoodmicro.2014.06.012. KUMAR, R.; SURENDRAN, P.K.; THAMPURAN, N. Detection and characterization of virulence factors in lactose positive and lactose negative Salmonella serovars isolated from seafood. Food Control 2009, 20, 376–380. https://doi.org/10.1016/j.foodcont.2008.06.005. LI, K.; PETERSEN, G.; BARCO, L.; HVIDTFELDT, K.; LIU, L.; DALSGAARD, A. Salmonella Weltevreden in integrated and non-integrated tilapia aquaculture systems in Guangdong, China. Food Microbiol. 2017, 65, 19–24. https://doi.org/10.1016/j.fm.2017.01.014. LI, Y.; PEI, X.; YAN, J.; LIU, D.; ZHANG, H.; YU, B.; LI, N.; YANG, D. Prevalence of foodborne pathogens isolated from retail freshwater fish and shellfish in China. Food Control 2019, 99, 131–136. https://doi.org/10.1016/j.foodcont.2018.12.024. MAHMOUD, M.A.; ABDELSALAM, M.; MAHDY, O.A.; EL MINIAWY, H.M.F.; AHMED, Z.A.M.; OSMAN, A.H.; MOHAMED, H.M.H.; KHATTAB, A.M.; ZAKI EWISS, M.A. Infectious bacterial pathogens, parasites and pathological correlations of sewage pollution as an important threat to farmed fishes in Egypt. Environ. Pollut. 2016, 219, 939–948. https://doi.org/10.1016/j.envpol.2016.09.044. MARTINEZ, O.; RODRIGUEZ-CALLEJA, J.M.; SANTOS, J.A.; OTERO, A.; GARCIA-LOPEZ, M.L. Foodborne and Indicator Bacteria in Farmed Molluskan Shellfish before and after Depuration. J. Food Prot. 2009, 72, 1443–1449. MARTINEZ-URTAZA, J.; LIEBANA, E. Use of pulsed-field gel electrophoresis to characterize the genetic diversity and clonal persistence of Salmonella senftenberg in mussel processing facilities. Int. J. Food Microbiol. 2005, 105, 153–163. https://doi.org/10.1016/j.ijfoodmicro.2005.04.006. MANNAN, M.; ISLAM, S.R.; OSMAN, M.H.; RAHMAN, M.K.; UDDIN, M.N.; KAMAL, M.; REZA, M.S. Antibacterial activity of oxytetracycline on microbial ecology of Nile tilapia (Oreochromis niloticus) gastrointestinal tract under laboratory condition. Aquac. Res. 2020, 51, 2125–2133. https://doi.org/10.1111/are.14563. MCCOY, E.; MORRISON, J.; COOK, V.; JOHNSTON, J.; EBLEN, D.; GUO, C. Foodborne agents associated with the consumption of aquaculture catfish. J. Food Prot. 2011, 74, 500–516. https://doi.org/10.4315/0362-028X.JFP-10-341. MELETIADIS, A.; BIOLATTI, C.; MUGETTI, D.; ZACCARIA, T.; CIPRIANI, R.; PITTI, M.; DECASTELLI, L.; CIMINO, F.; DONDO, A.; MAURELLA, C.; et al. Research on exposure to reptile-associated salmonellosis (RAS) in the Piedmont region of Italy. Animals 2022, 12, 906. https://doi.org/10.3390/ani12070906. MIRUKA, D.O.; OCHIENG, J.O.; WERE, J.W.; WAINDI, E.N. Microbial assessment of selected earthen fish ponds in western Kenya. Ecohydrol. Hydrobiol. 2013, 13, 261–266. https://doi.org/10.1016/j.ecohyd.2013.10.005. MISHRA, P.; PANDEY, C.; SINGH, U.; GUPTA, A.; SAHU, C.; KESHRI, A. Descriptive statistics and normality tests for statistical data Annals of Cardiac Anesthesia. Ann. Card. Anaesth. 2019, 22, 67–72. https://doi.org/10.4103/aca.ACA_157_18. NAHM, U.Y.; MOONEY, R.J. A Mutually Beneficial Integration of Data Mining and Information Extraction. In Proceedings of the AAAI/IAAI, Austin, TX, USA, 1–3 August 2000; pp. 627–632. NESSE, L.L.; LØVOLD, T.; BERGSJØ, B.; NORDBY, K.; WALLACE, C.; HOLSTAD, G. Persistence of orally administered Salmonella enterica Serovars Agona and Montevideo in Atlantic salmon (Salmo salar L.). J. Food Prot. 2005, 68, 1336–1339. NGUYEN, D.T.A.; KANKI, M.; NGUYEN, P.D.; LE, H.T.; NGO, P.T.; TRAN, D.N.M.; LE, N.H.; DANG, C.V.; KAWAI, T.; KAWAHARA, R.; et al. Prevalence, antibiotic resistance, and extended- spectrum and AmpC beta-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. Int. J. Food Microbiol. 2016, 236, 115–122. https://doi.org/10.1016/j.ijfoodmicro.2016.07.017. NOOR UDDIN, G.M.; LARSEN, M.H.; BARCO, L.; MINH PHU, T.; DALSGAARD, A. Clonal Occurrence of Salmonella Weltevreden in Cultured Shrimp in the Mekong Delta, Vietnam. PLoS ONE 2015, 10, e0134252. https://doi.org/10.1371/journal.pone.0134252. NTENGWE, F.W.; EDEMA, M.O. Physico-chemical and microbiological characteristics of water for fish production using small ponds. Phys. Chem. Earth Parts A/B/C 2008, 33, 701–707. https://doi.org/10.1016/j.pce.2008.06.032. NOVOTNY, L.; DVORSKA, L.; LORENCOVA, A.; BERAN, V.; PAVLIK, I. Fish: A potential source of bacterial pathogens for human beings. Veterinární Med. 2004, 49, 343–358. PAGE, M.J.; MCKENZIE, J.E.; BOSSUYT, P.M.; BOUTRON, I.; HOFFMANN, T.C.; MULROW, C.D.; SHAMSEER, L.; TETZLAFF, J.M.; AKL, E.A.; BRENNAN, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. https://doi.org/10.1136/bmj.n71. PAL, A.; MARSHALL, D.L. Comparison of culture media for enrichment and isolation of Salmonella spp. from frozen Channel catfish and Vietnamese basa fillets. Food Microbiol. 2009, 26, 317–319. https://doi.org/10.1016/j.fm.2008.12.003. PALHARES, J.C.P.; KICH, J.D.; BESSA, M.C.; BIESUS, L.L.; BERNO, L.G.; TRIQUES, N.J. Salmonella and antimicrobial resistance in an animal-based agriculture river system. Sci. Total Environ. 2014, 472, 654–661. https://doi.org/10.1016/j.scitotenv.2013.11.052. PASTRO, D.C.; MARIOTTO, S.; SANTOS, E.C.; FERREIRA, D.C.; CHITARRA, G.S. Use of molecular techniques for the analysis of the microbiological quality of fish marketed in the municipality of Cuiaba, Mato Grosso, Brazil. Food Sci. Technol. 2019, 39 (Suppl. S1), 146–151. https://doi.org/10.1590/fst.40217. PATEL, A.; JEYASEKARAN, G.; JEYASHAKILA, R.; ANAND, T.; WILWET, L.; PATHAK, N.; MALINI, A.H.; NEETHISELVAN, N. Prevalence of antibiotic resistant Salmonella spp. strains in shrimp farm source waters of Nagapattinam region in South India. Mar. Pollut. Bull. 2020, 155, 111171. https://doi.org/10.1016/j.marpolbul.2020.111171. PAWAR, P.P.; PAGARKAR, A.U.; RATHOD, N.B. Effect of chilled storage on quality characteristics of battered and breaded snack product from large sized Catla (Catla catla). J. Food Sci. Technol. 2020, 57, 52–59. https://doi.org/10.1007/s13197-019-04028-6. PILARSKI, F.; JÚNIOR, O.T.; CASACA, J.D.M.; GARCIA, F.R.M.; TOMAZELLI, I.B.; DOS SANTOS, I.R. Integrated fish/pig systems: Environmental feature and fish quality [Consórcio suíno- peixe: Aspectos ambientais e qualidade do pescado]. Rev. Bras. De Zootec. 2004, 33, 267-276. PINEDO, L.C.; MUGHINI-GRAS, L.; FRANZ, E.; HALD, T.; PIRES, S.M. Sources and trends of human salmonellosis in Europe, 2015–2019: An analysis of outbreak data. Int. J. Food Microbiol. 2022, 379, 109850. https://doi.org/10.1016/j.ijfoodmicro.2022.109850. PONCE, E.; KHAN, A.A.; CHENG, C.-M.; SUMMAGE-WEST, C.; CERNIGLIA, C.E. Prevalence and characterization of Salmonella enterica serovar Weltevreden from imported seafood. Food Microbiol. 2008, 25, 29–35. https://doi.org/10.1016/j.fm.2007.09.001. PORTO, Y.D.; FOGAÇA, F.H.D.S.; ANDRADE, A.O.; DA SILVA, L.K.S.; LIMA, J.P.; DA SILVA, J.L.; VIEIRA, B.S.; CUNHA NETO, A.; FIGUEIREDO, E.E.D.S.; TASSINARI, W.D.S. Salmonella spp. in Aquaculture: An Exploratory Analysis (Integrative Review) of Microbiological Diagnoses between 2000 and 2020. Animals 2023, 13, 27. https://doi.org/10.3390/ani13010027 PYZ-LUKASIK, R.; PASZKIEWICZ, W. Microbiological quality of farmed grass carp, bighead carp, Siberian sturgeon, and wels catfish from Eastern Poland. J. Vet. Res. 2018, 62, 145–149. https://doi.org/10.2478/jvetres-2018-0023. R CORE TEAM. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: https://www.R-project.org/ (accessed on 19 April 2020). REINERT, M. Alceste, une méthodologie d'analyze dês données textuelles et une application: Aurelia de Gerard de Nerval. Bull. De Méthodol. Sociol. 1990, 26, 24–54. https://doi.org/10.1177/075910639002600103 RIBEIRO, R.V.; REIS, E.M.F.; REIS, C.M.F.; FREITAS-ALMEIDA, A.C.; RODRIGUES, D.P. Incidence and antimicrobial resistance of enteropathogens isolated from an integrated aquaculture system. Lett. Appl. Microbiol. 2010, 51, 611–618. https://doi.org/10.1111/j.1472- 765X.2010.02946.x. RUBINI, S.; GALLETTI, G.; D'INCAU, M.; GOVONI, G.; BOSCHETTI, L.; BERARDELLI, C.; BARBIERI, S.; MERIALDI, G.; FORMAGLIO, A.; GUIDI, E.; et al. Occurrence of Salmonella enterica subsp. enterica in bivalve mollusks and associations with Escherichia coli in mollusks and fecal coliforms in seawater. Food Control 2018, 84, 429–435. https://doi.org/10.1016/j.foodcont.2017.08.035. SAGOO, S.K.; LITTLE, C.L.; GREENWOOD, M. Microbiological study of cooked crustaceans and molluskan shellfish from UK production and retail establishments. Int. J. Environ. Health Res. 2007, 17, 219–230. https://doi.org/10.1080/09603120701254946. SAHARAN, V.V.; VERMA, P.; SINGH, A.P. High prevalence of antimicrobial resistance in Escherichia coli, Salmonella spp. and Staphylococcus aureus isolated from fish samples in India. Aquac. Res. 2020, 51, 1200–1210. https://doi.org/10.1111/are.14471. SÁNCHEZ-VARGAS, F.M.; ABU-EL-HAIJA, M.A.; GÓMEZ-DUARTE, O.G. Salmonella infections: An update on epidemiology, management, and prevention. Travel Med. Infect. Dis. 2011, 9, 263–277. https://doi.org/10.1016/j.tmaid.2011.11.001. SAINGAM, P.; LI, B.; YAN, T. Fecal Indicator Bacteria, Direct Pathogen Detection, and Microbial Community Analysis Provide Different Microbiological Water Quality Assessment of a Tropical Urban Marine Estuary. Water Res. 2020, 185, 116280. https://doi.org/10.1016/j.watres.2020.116280. SHABARINATH, S.; SANATH KUMAR, H.; KHUSHIRAMANI, R.; KARUNASAGAR, I.; KARUNASAGAR, I. Detection and characterization of Salmonella associated with tropical seafood. Int. J. Food Microbiol. 2007, 114, 227–233. https://doi.org/10.1016/j.ijfoodmicro.2006.09.012. SHAKILA, R.J.; RAJ, B.E.; FELIX, N. Quality and safety of fish curry processed by sous vide cook chilled and hot filled technology process during refrigerated storage. Food Sci. Technol. Int. 2012, 18, 261–269. https://doi.org/10.1177/1082013211415177. SING, C.K.; KHAN, M.Z.I.; DAUD, H.H.M.; AZIZ, A.R. Prevalence of Salmonella sp. in African Catfish (Clarias gariepinus) Obtained from Farms and Wet Markets in Kelantan, Malaysia and Their Antibiotic Resistance. Sains Malays. 2016, 45, 1597–1602. SMALDONE, G.; MARRONE, R.; ZOTTOLA, T.; VOLLANO, L.; GROSSI, G.; CORTESI, M.L. Formulation and shelf-life of fish burgers served to preschool children. Ital. J. Food Saf. 2017, 6, 6373. https://doi.org/10.4081/ijfs.2017.6373. SOUSA, Y.S.O. The Use of the Iramuteq Software: Fundamentals of Lexicometry for Qualitative Research. Estud. E Pesqui. Em Psicol. 2021, 21, 1541–1560. https://doi.org/10.12957/epp.2021.64034. SURENDRARAJ, A.; SABEENA FARVIN, K.H.; YATHAVAMOORTHI, R.; THAMPURAN, N. Enteric bacteria associated with farmed freshwater fish and its culture environment in Kerala, India. Res. J. Microbiol. 2009, 4, 334–344. SUTTON, A.; CLOWES, M.; PRESTON, L.; BOOTH, A. Meeting the review family: Exploring review types and associated information retrieval requirements. Health Inf. Libr. J. 2019, 3, 202–222. https://doi.org/10.1111/hir.12276. TENNEKES, M. tmap: Thematic Maps in R. J. Stat. Softw. 2018, 84, 1–39. https://doi.org/10.18637/jss.v084.i06. TERENTJEVA, M.; EIZENBERGA, I.; VALCIŅA, O.; NOVOSLAVSKIJ, A.; STRAZDIŅA, V.; BERZIŅŠ, A. Prevalence of foodborne pathogens in freshwater fish in Latvia. J. Food Prot. 2015, 78, 2093–2098. https://doi.org/10.4315/0362-028X.JFP-15-121. UPADHYAY, B.P.; UTRARACHKIJ, F.; THONGSHOOB, J.; MAHAKUNKIJCHAROEN, Y.; WONGCHINDA, N.; SUTHIENKUL, O.; KHUSMITH, S. Detection of Salmonella inva gene in shrimp enrichment culture by polymerase chain reaction. Southeast Asian J. Trop. Med. Public Health 2010, 41, 426–445. WALLIS, T.S.; BARROW, P.A. Salmonella epidemiology and pathogenesis in food- producing animals. Am. Soc. Microbiol. 2005, 1, 2324–6200. https://doi.org/10.1128/ecosalplus.8.6.2.1. WANG, F.; JIANG, L.; YANG, Q.; HAN, F.; CHEN, S.; PU, S.; VANCE, A.; GE, B. Prevalence and Antimicrobial Susceptibility of Major Foodborne Pathogens in Imported Seafood. J. Food Prot. 2011, 74, 1451–1461. https://doi.org/10.4315/0362-028X.JFP-11-146. WANG, Y.; LIU, Y.; LYU, N.; LI, Z.; MA, S.; CAO, D.; PAN, Y.; HU, Y.; HUANG, H.; GAO, G.F.; et al. The temporal dynamics of antimicrobial-resistant-Salmonella enterica and predominant serovars in China. Natl. Sci. Rev. 2022, nwac269. https://doi.org/10.1093/nsr/nwac269. WANJA, D.W.; MBUTHIA, P.G.; WARUIRU, R.M.; BEBORA, L.C.; NGOWI, H.A.; NYAGA, P.N. Antibiotic and Disinfectant Susceptibility Patterns of Bacteria Isolated from Farmed Fish in Kirinyaga County, Kenya. Int. J. Microbiol. 2020, 2020, 8897338. https://doi.org/10.1155/2020/8897338. World Health Organization. Initiative to estimate the global burden of foodborne diseases. In Proceedings of the Fourth Formal Meeting of the Foodborne Disease Burden Epidemiology Reference Group (FERG): Sharing New Results, Making Future Plans and Preparing Ground for the Countries, Geneva, Switzerland, 8–12 November 2010; World Health Organization: Geneva, Switzerland, 2014; p. 108. VALENZUELA-ARMENTA, J.A.; DÍAZ-CAMACHO, S.P.; CABANILLAS-RAMOS, J.A.; DE JESUS URIBE-BELTRÁN, M.; DE LA CRUZ MD, C.; OSUNA-RAMÍREZ, I.; BÁEZ-FLORES, M.E. Microbiological analysis of tilapia and water in aquaculture farms from Sinaloa. Biotecnia 2018, 20, 20–26. YANG, X.; WU, Q.; ZHANG, J.; HUANG, J.; CHEN, L.; LIU, S.; YU, S.; CAI, S. Prevalence, enumeration, and characterization of Salmonella isolated from aquatic food products from retail markets in China. Food Control 2015, 57, 308–313. https://doi.org/10.1016/j.foodcont.2015.03.046. YEN, N.T.P.; NHUNG, N.T.; VAN, N.T.B.; CUONG, N.V.; TIEN CHAU, L.T.; TRINH, H.N.; TUAT, C.V.; TU, N.D.; PHU HUONG LAN, N.; CAMPBELL, J.; et al. Antimicrobial residues, nontyphoidal Salmonella, Vibrio spp. and associated microbiological hazards in retail shrimps purchased in Ho Chi Minh city (Vietnam). Food Control 2020, 107, 106756. https://doi.org/10.1016/j.foodcont.2019.106756. YILDIRIM, Z.; SAKIN, T.; ÇOBAN, F. Isolation of lytic bacteriophages infecting Salmonella typhimurium and Salmonella enteritidis. Acta Biol. Hung. 2018, 69, 350–369. https://doi.org/10.1556/018.68.2018.3.10. ZHANG, J.; YANG, X.; KUANG, D.; SHI, X.; XIAO, W.; ZHANG, J.; GU, Z.; XU, X.; MENG, J. Prevalence of antimicrobial resistance of nontyphoidal Salmonella serovars in retail aquaculture products. Int. J. Food Microbiol. 2015, 210, 47–52. https://doi.org/10.1016/j.ijfoodmicro.2015.04.019. ZHAO, S.; DATTA, A.R.; AYERS, S.; FRIEDMAN, S.; WALKER, R.D.; WHITE, D.G. Antimicrobial- resistant Salmonella serovars isolated from imported foods. Int. J. Food Microbiol. 2003, 84, 87–92. https://doi.org/10.1016/S0168-1605(02)00402-6.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/73574/2023%20-%20Yuri%20Duarte%20Porto%20%28parcialmente%20liberada%29.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6673
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-06-06T21:43:57Z No. of bitstreams: 1 2023 - Yuri Duarte Porto (parcialmente liberada).pdf: 1775836 bytes, checksum: 4a6d1a6b14523f6d46c902cb8e005a68 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-06-06T21:43:57Z (GMT). No. of bitstreams: 1 2023 - Yuri Duarte Porto (parcialmente liberada).pdf: 1775836 bytes, checksum: 4a6d1a6b14523f6d46c902cb8e005a68 (MD5) Previous issue date: 2023-05-05eng
Appears in Collections:Doutorado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2023 - Yuri Duarte Porto (parcialmente liberada).pdfDocumento com restrição de libração parcial do conteúdo.1.73 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.