Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/12953
Full metadata record
DC FieldValueLanguage
dc.creatorOliveira, Fabricia Gonçalves de
dc.date.accessioned2023-11-19T23:20:25Z-
dc.date.available2023-11-19T23:20:25Z-
dc.date.issued2010-09-03
dc.identifier.citationOliveira, Fabricia Gonçalves de. Influência do tratamento com captopril, losartan, furosemida e isoproterenol durante a gestação e lactação de ratas, no comportamento ingestivo dos filhotes e da prole adulta. 2010. 57 f. Dissertação (Programa de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas) - Universidade Federal Rural do Rio de Janeiro, Seropédica.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/12953-
dc.description.abstractThe renin-angiotensin system (RAS) has been involved with the organization ontogenetic neural systems related to affective behavior. However, there is no known evidence of the involvement of RAS in ontogeny of systems that control hydroelectrolytic equilibrium. This dissertation aimed to investigate the effect of treatment with drugs affecting the activity of RAS during pregnancy and lactation of rats and its effects on offspring on natriorexigenic response in adulthood. The change of RAS was raised with the administration subcutaneous administration of captopril (50 mg / kg), an ACE inhibitor; isoproterenol (300 mg/kg), a betablocker; losartan (50 mg/kg), a blocker of ANG II receptors and furosemide (10 mg/kg), a potent diuretic handle, from seventh day of pregnancy to fourteenth day after parturition. To investigate the influence of these drugs during and after treatment on the homeostatic programming the individual was assessed indirectly through feeding behavior, the electrolytic equilibrium of adult rats by measurements of basal and under stimulation (water deprivation, sodium depletion with furosemide 20mg. kg-1, s.c.) as compared with the influence of neonatal changing of the RAS. In these assays were evaluated intakes of water and NaCl 0,3M. Furthermore, we tested the milk intake and intake of food under basal conditions in adulthood. Also, it was evaluated mortality rate in the treatments and the volume of urine correlating with the effect of drugs on RAS. The results showed changes in appetite and satiety of the neonate, reflected the lowest intake of milk in the treated group with isoproterenol, suggesting a supra-regulation of the RAS with subsequent change the electrolytic equilibrium of the body. It was also observed that in the baseline protocol using isoproterenol affected the intake of saline to 1440 min, and therefore have lower intake than group control. In the protocol of deprivation had lower water intake in the group treated with captopril in time 1440 min and no changes in ingestion of saline. It was also observed that in the depletion protocol, there was a lower percentage of water intake in the groups treated with captopril, isoproterenol and furosemide, at 1440 min, compared to group control. However, in this protocol, no significant difference was observed in response natriorexigenic. Regarding the baseline intake ration, no significant difference in the groups treated compared to control. Furthermore, the protocol baseline, there was a highest percentage in volume of urine in the group treated with captopril while the protocol of deprivation, there was less volume in groups isoproterenol and furosemide. In the depletion protocol, there was less volume in the three groups. Also observed a high rate of mortality in animals from mothers treated with losartan. In short, these results demonstrate that the use of drugs during the period neonatal programming alters the homeostatic balance electrolyte and expression of ingestive behavior in rats adults.eng
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectSRApor
dc.subjectdesenvolvimento ontogênicopor
dc.subjectprogramação hidroeletrolíticapor
dc.subjectRASeng
dc.subjectontogenetic developmentpor
dc.subjectprogramming hydrolyticpor
dc.titleInfluência do tratamento com captopril, losartan, furosemida e isoproterenol durante a gestação e lactação de ratas, no comportamento ingestivo dos filhotes e da prole adultapor
dc.title.alternativeInfluence of treatment with captopril, losartan, furosemide and isoproterenol during pregnancy and lactation in rats on the ingestive behavior of pups and adult offspring.eng
dc.typeDissertaçãopor
dc.contributor.advisor1Reis, Luis Carlos
dc.contributor.advisor1ID484.252.577-00por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2679836949147357por
dc.contributor.referee1Costa, Amilton Paulo Raposo
dc.contributor.referee2Côrtes, Wellington da Silva
dc.creator.ID633.526.563-04por
dc.creator.Latteshttp://lattes.cnpq.br/4951618435441355por
dc.description.resumoO sistema renina-angiotensina (SRA) tem sido implicado com a organização ontogênica de sistemas neurais relacionados com o comportamento afetivo. Entretanto, não são conhecidas evidências do envolvimento do SRA na ontogênese de sistemas que controlam o equilíbrio hidroeletrolítico. Nesta dissertação objetivou-se investigar o efeito do tratamento com drogas que influenciam a atividade do SRA durante a gestação e lactação de ratas e suas repercussões na resposta natriorexigênica da prole na vida adulta. A alteração do SRA foi evocada com a administração subcutânea de captopril (50 mg/kg), um inibidor da ECA; isoproterenol (300 μg/kg), um betabloqueador; losartan (50 mg/kg), um bloqueador dos receptores de ANG II e furosemida (10mg/kg), um potente diurético da alça, do sétimo dia de gestação até o décimo quarto dia após o parto. A fim de investigar a influência dessas drogas, durante e após o tratamento, sobre a programação homeostática do indivíduo, foi avaliado indiretamente, através de comportamento ingestivo, o equilíbrio hidroeletrolítico dos ratos adultos através das mensurações basais e sob estimulação (privação hídrica, depleção de sódio com furosemida 20mg. kg-1, s.c) correlacionando com a influência da alteração neonatal do SRA. Nestes ensaios experimentais foram avaliadas as ingestões de água e NaCl 0,3 M. Ademais, foram avaliadas a ingestão de leite e a ingestão de alimento sob condições basais na idade adulta. Foi avaliado também o índice de mortalidade nos tratamentos e o volume de urina, correlacionando com o efeito das drogas no SRA. Os resultados demonstraram alterações no apetite e na saciedade do neonato, refletido pela menor ingestão de leite nos animais do grupo tratado com isoproterenol, sugerindo a supra-regulação do SRA com subseqüente alteração do equilíbrio hidroeletrolítico do corpo. Observou-se também que, no protocolo basal o uso de isoproterenol afetou a ingestão de salina aos 1440 min, tendo, portanto, menor ingestão em relação ao grupo controle. No protocolo de privação houve menor ingestão de água no grupo tratado com captopril no tempo 1440 min e não ocorreram alterações na ingestão de salina. Observou-se ainda que, no protocolo de depleção, houve menor percentual de ingestão de água nos grupos tratados com captopril, isoproterenol e furosemida, aos 1440 min, em relação ao grupo controle. Porém, neste protocolo, não foi observada diferença significativa na resposta natriorexigênica. Em relação à ingestão basal de ração, não houve diferença significativa dos grupos tratados em relação ao controle. Além disso, no protocolo basal, foi observado um maior percentual no volume de urina do grupo tratado com captopril enquanto que no protocolo de privação, houve menor volume nos grupos isoproterenol e furosemida. Já no protocolo de depleção, houve menor volume nos três grupos tratados. Ademais foi observado alto índice de mortalidade em animais provenientes de mães tratadas com losartan. Em suma, estes resultados demonstram que o uso de drogas durante o período neonatal altera a programação da homeostase do equilíbrio hidroeletrolítico e da expressão comportamental ingestiva em ratos adultos.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas)por
dc.relation.referencesABRAHAM, S. F., DENTON, D. D. MCKINLEY, M. J., WEISINGER, R. S. Effect of angiotensin antagonist Sar’-AlaO-angiotensin II on physiological thirst. Pharmacol Biochem Behav, v. 4, p.243-247, 1976. ANDERSSON, B. The effect of injections of hypertonic NaCl-solutions into different parts of the hypothalamus of goats. Acta Physiol Scand. v. 28, p. 188-201, 1953. ANDERSSON, B. Thirst -and brain control of water balance. Am Sci. v. 59, p. 408-415, 1971. ANDERSSON, B. Regulation of Water Intake. Physiol Rev, v. 58, n. 3, 1978. ANTUNES-RODRIGUES J, MCCANN, S. M. Water, sodium chloride, and food intake induced by injections of cholinergic and adrenergic drugs into the third ventricle of the rat brain. Proc Soc Exp Biol Med v. 133, p. 1464-70, 1970. ANTUNES-RODRIGUES, J., RAMALHO, M. J., REIS, L. C., MENANI, J. V., TURRIN, M. Q. A., GUTKOWSKA, J., MCCANN, S. M. Lesions of the hypothalamus and pituitary inhibit volume-expansion-induced release of atrial natriuretic peptide. Proc Nat Acad Sci, USA, 88: 2956-2960, 1991. ANTUNES-RODRIGUES, J., MACHADO, B. H., ANDRADE, H. A., MAUAD, H., RAMALHO, M. J., REIS, L. C., SILVA-NETTO, C. R., FAVARETTO, A. L. V., GUTKOWSKA, J., MCCANN, S. M. Carotid-aortic and renal baroreceptors mediate the atrial natriuretic peptide release induced by blood volume expansion. Proc Nat Acad Sci, USA, 89: 6829-6831, 1992. ANTUNES-RODRIGUES, J; DE CASTRO, M; ELIAS, L.L; VALENÇA, M.M; McCANN, S.M. Neuroendocrine control of body fluid metabolism. Physiol Rev, v. 84, n. 1, p. 169-208, 2004. BADAUË-PASSOS JR, D; VENTURA, R.R; FAVARETTO, A.L; GUTKOWSKA, J; MCCANN, S.M; ANTUNES-RODRIGUES, J. Effect of losartan on sodium appetite of hypothyroid rats subjected to water and sodium depletion and water, sodium and food deprivation. Exp Physiol, v. 86, n. 5, p. 621-8, 2001. BALDISSERA, S., MENANI, J. V., SOTERO DOS SANTOS, L.F, FAVARETTO, A. L. V GUTKOWSKA, J., TURRIN, M. Q. A., MCCANN, S. M., ANTUNES-RODRIGUES, J. Role of the hypothalamus in the control of atrial natriuretic peptide release. Proc Nat Acad Sci, USA, v. 86, p. 9621-9625, 1989. BALTATU, O., LIPPOLDT, A., HANSSON, A., GANTEN, D., BADER, M. Local renin– angiotensin system in the pineal gland. Brain Res. v.54, p.237–242, 1998. 46 BALTATU, O., LIPPOLDT, A., HANSSON, A., GANTEN, D., BADER, M. Local renin– angiotensin system in the pineal gland. Brain Res. v.54, p.237–242, 1998. BEAUCHAMP, G. K., BERTINO, M., BURKE, D., ENGELMAN, K. Experimental sodium depletion and salt taste in normal human volunteers. American Journal of Clinical Nutrition, v. 51, p. 881–889, 1990. BGOMEZ, R. A, TUFRO-MCREDDIE, A., EVERETT, A.D, PENTZ, E.S. Ontogeny of renin and AT1 receptor in the rat. Pediatr Nephrol .v.7, p. 635-638, 1993 BLAIR-WEST, J. R., CAREY, K. D., DENTON, D. A., WEISINGER, R. S., SHADE, R. E. Evidence that brain angiotensin II is involved in both thirst and sodium appetite in baboons. Am J Physiol, v. 275, p. 1639–1646, 1998. BLAIR-WEST, J. R., DENTON, D. A., MCKINLEY, M. J., & WEISINGER, R. S. Angiotensin-related sodium appetite and thirst in cattle. American Journal of Physiology, v.255, p.205–R211, 1988. BOSLER, O., DESCARRIES, L. Monoamine innervation of the organum vasculosum laminae terminalis (OVLT): A high resolution radioautographic study in the rat. J Comp Neurol, vol. 272, p. 545-561, 1987. BOTTARI, S.P., OBERMU¨ LLER, N., BOGDAL, Y., ZAHS, K.R., DESCHEPPER, C.F., Characterization and distribution of angiotensin II binding sites in fetal and neonatal astrocytes from different rat brain regions. Brain Res. v.585, p.372–376, 1992. BOURJEILI, N., TURNER, M., STINNER, J., & ELY, D. Sympathetic nervous system influences salt appetite in four strains of rats. Physiology and Behavior, v.58, p.437–443, 1995. BRUHN, T. O., SUTTON, S. W., PLOTSKY, P. M., & VALE, W. W. Central administration of corticotropinreleasing factor modulates oxytocin secretion in the rat. Endocrinology, v. 119, p.1558–1563, 1986. BURNETT JR, J.C. Vasopeptidase inhibition: a new concept in blood pressure management. J Hypertens vol. 17, Suppl 1, p. 37-43, 1999. CAVALCANTE-LIMA , H.R; LIMA, H.R; COSTA E SOUSA, R.H; OLIVARES, E.L; CEDRAZ-MERCEZ, C.L; REIS, R.O; BADAUÊ-PASSOS Jr, D; DE-LUCA, W, Jr; MEDEIROS, M.A; CORTÊS, W.S; REIS, L.C. Dipsogenic stimulation in ibotenic DRNlesioned rats induces concomitant sodium appetite. Neurosci Lett v. 374, n. 1, p. 5-10, 2005. CAVALCANTE-LIMA, H.R; BADAUÊ-PASSOS Jr, D; DE-LUCA, W, Jr; LIMA, H.R; COSTA E SOUSA, R.H; OLIVARES, E.L; CEDRAZ-MERCEZ, C.L; REIS, R.O; MEDEIROS, M.A; CORTÊS, W.S; REIS, L.C. 2005a. Chronic excitotoxic lesion of dorsal raphe nucleus induces sodium appetite. Braz J Med Biol Res v. 38, n. 11, p. 1669-75, 2005. CHAI, S.Y., MENDELSOHN, F.A.O., PAXINOS, G. Angiotensin converting enzyme in rat brain visualized by quantitative in vitro autoradiography. Neuroscience v.20, p.615- 627,1987. 47 CHARRON, G., LAFOREST, S., GAGNON, C., DROLET, G., & MOUGINOT, D.. Acute sodium deficit triggers plasticity of the brain angiotensin type 1 receptors. The FASEB Journal v. 16, p.610–612, 2002. CAMARGO, L. A., SAAD, W. A, DE LUCA L. A. JR, RENZI, A., SILVEIRA, J. E., MENANI, J. V. Synergist interaction between angiotensin II and DOCA on sodium and water balance in rats. Physiol Behav, v. 55, p. 423–427, 1994. CELADA, P; CASANOVAS, J.M; PAEZ, X; ARTIGAS, F. Control of serotonergic neurons in the dorsal raphe nucleus by the lateral hypothalamus. Brain Res, v. 932, n. 1-2, p. 79-90, 2002. CHEN, H.H., BURNETT JR, J.C. C-type natriuretic peptide: the endothelial component of the natriuretic peptide system. J. Cardiovasc Pharmacol. vol. 2, s. 3 p. 22-28, 1988. CHENG, A., FRISHMAN, W.H. Use of angiotensin-converting enzyme inhibitors as monotherapy and in combination with diuretic and calcium channel blockers. J Clin Pharmacol. vol. 38, p. 477-91, 1998. CHEN, K., CAREY, L.C., LIU, J., VALEGO, N.K., TATTER, S.B., ROSE, J.C. The effect of hypothalamo-pituitary disconnection on the renin–angiotensin system in the late-gestation fetal sheep. Am. J. Physiol. v.288, p.1279–1287, 2005. COOPER, W.O. Clinical implications of increased congenital malformations after first trimester exposures to angiotensin-converting enzyme inhibitors. J Cardiovasc Nurs. Vol. 23, p: 20–24. DE LUCA, L. A. JR, XU, Z., SCHOORLEMMER, G. H., THUNHORST, R. L., BELTZ, T. G., MENANI, J. V., JOHNSON, A. K. Water deprivation-induced sodium appetite: humoral and cardiovascular mediators and immediate early genes. Am J Physiol Regul Integr Comp Physiol v. 282, p. 552–559, 2002. DENTON, D. A., BLAIR-WEST, J. R., MCBURNIE, M. I., MILLER, J. A., WEISINGER, R. S., WILLIAMS, R. M.. Effect of adrenocorticotrophic hormone on sodium appetite in mice. American Journal of Physiology, v.277, p.1033–1040, 1999. DODIC, M., BAIRD, R., HANTZIS, V., KOUKOULAS, I., MORITZ, K., PEERS, A., WINTOUR, E.M. Organs/systems potentially involved in one model of programmed hypertension in sheep. Clin. Exp. Pharmacol. Physiol. v. 28, p.952–956, 2001(a). DODIC, M., HANTZIS, V., DUNCAN, J., REES, S., KOUKOULAS, I., JOHNSON, K., WINTOU, E.M., MORITZ, K., Programming effects of short prenatal exposure to cortisol. FASEB J. v.16, p.1017–1026, 2002(b). DODIC, M., MORITZ, K., KOUKOULAS, I., WINTOUR, E.M., Programmed hypertension: kidney, brain or both? Trends Endocrinol. Metab. v.13, p.403–408, 2002(c). DZAU, V.J., INGELFINGER, J., PRATT, R.E., ELLISON, K.E. Identification of renin and angiotensinogen messenger RNA sequences in mouse and rat brains. Hypertension v.8, p.544–548, 1986. 48 DZAU, V.J. Circulating versus local reninangiotensin system in cardiovascular homeostasis. Circulation 77, parte 2, I4-I13, 1988. EPSTEIN, A. N., AND N. J. KENNEY. Suppression of angiotensin-induced thirst by the Eprostaglandins. In: Central Actions of Angiotensin and Related Hormones, edited by J. P. Buckley and C. M. Ferrario. New York: Pergamon, p. 417-428, 1977. FABIANI, M.E, JOHNSTON, C.I. Spectrum of use for the angiotensin-receptor blocking drugs. Cur Hypert Rep I, p. 394-401, 1999. FAVARETTO, A. L. V. , BALLEJO, G. O., ALBUQUERQUE-ARAUJO, W. I. C, GUTKOWSKA, J., ANTUNES-RODRIGUES, J. & MCCANN, S. M. (1997). Oxytocin releases atrial natriuretic peptide from rat atria in vitro that exerts negative inotropic and chronotropic action. Peptides, vol. 18, p. 1377-1381. FERREIRA, S. H. Angiotensin converting enzyme: history and relevance. Semin Perinatol, vol. 24, p. 7-10, 2000. FINDLAY, A. L., EPSTEIN, A. N. Increased sodium intake is somehow induced in rats by intravenous angiotensin II. Horm Behav., v. 14, p. 86–92, 1980. FITTS, D. A., THUNHORST, R. L.. Rapid elicitation of salt appetite by an intravenous infusion of angiotensin II in rats. Am J of Physiol., v. 270, p. 1092–1098, 1996. FITZSIMONS, J. T., STRICKER, E. M. Sodium appetite and the reninangiotensin system. Nat New Biol v. 231, p. 58–60, 1971. FITZSIMONS, J. T. Thirst. Physiol Rev. 52, p. 468-561, 1972. FITZSIMONS, J. T. The renin-angiotensin system and drinking behaviour. In: Progress in Brain Research. Hormones, Homeostasis and the Brain, edited by W. H. Gispen, T. B. van Wimersma Greidanus, B. Bohus, and D. de Wied. Amsterdam: Elsevier, vol. 42, p. 215-233, 1975. FITZSIMONS, J. T. The physiological basis of thirst. Kidney Intern. Vol. 10, p. 3-11, 1976. FITZSIMONS, J. T., WIRTH, J. B. The renin-angiotensin system and sodium appetite. J Physiol v. 274, p. 63–80, 1978. FITZSIMONS, J. T. Angiotensin, thirst, and sodium appetite. Physiol Rev, v. 78, p. 583-686, 1998. GAINER, J.V., MORROW, J.D., LOVELAND, A. et al. Effects of bradykinin-receptor blockade on the response to angiotensin-converting enzyme inhibitor in normotensive and hypertensive subjects. N Engl J Med 339: 1285-92, 1998. GOMEZ, R.A, TUFRO-MCREDDIE, A., EVERETT, A.D., PENTZ, E.S. Ontogeny of renin and AT1 receptor in the rat. Pediatr Nephrol Vol. 7, p. 635–8, 1993. 49 GRADY, E.F., SECHI, L.A, GRIFFIN, C.A, SCHAMBELAN, M., KALINYAK, J.E. Expression of AT2 receptors in the developing rat fetus. J Clin Invest, vol. 88, p. 921-33, 1991. GROSSMAN, S.P. A neuropharmacological analysis of hypothalamic and extrahypothalamic mechanisms concerned with the regulation of food and water intake. Ann New York Acad Sci, 157: 902-917, 1969. GUTKOWSKA, J., JANKOWSKI, M., LAMBERT, C., MUKADDAM-DAHER, S., ZINGG, H. H. & MCCANN, S. M. Oxytocin releases atrial natriuretic peptide by combining with oxytocin receptors in the heart. Proc Nat Acad Sci, USA, vol. 94, p. 11704-11709. 1997. GUTMAN, J. An extrarenal effect of hydrochlorothiazide. Experientia vol. 19, p. 544- 545, 1963. HAANWINCKEL, M. A., ELIAS, L. K., FAVARETTO, A.L.V, GUTKOWSKA, J., MCCANN, S. M., ANTUNES-RODRIGUES, J. Oxytocin mediates atrial natriuretic peptide release and natriuresis after volume expansion in the rat. Proc Nat Acad Sci, USA, 92:7902- 7906, 1995. HERMANN, K., RAIZADA, M.K., SUMNERS, C., PHILIPS, M.I. Presence of renin in primary neuronal and glial cells from rat brain. Brain Res. v.437, p.205–213, 1987. HIROSE, S., YOKOSAWA, H., INAGAMI, T., WORKMAN, K.J. Renin and prorenin in hog brain: ubiquitous distribution and high concentration in pituitary and pineal. rain Res. v.1, p.9–499, 1980. IMBODEN, H., HARDING, J.W., HILGENFELDT, U., CELIO, M.R., FELIX, D.Localization of angiotensinogen in multiple cell types of rat brain. Brain Res. v.410, 74– 77, 1987. ITA CE, SINGHVI SM, HEALD AF, MIGDALOF BH. Distribution of captopril to foetuses and milk of rats. Xenobiotica, 1982 Oct;12(10):627-32. JALOWIEC, J. E. Sodium appetite elicited by furosemide: Effects of differential dietary maintenance. Behav Bio, v. 10, p. 313–327, 1974. JANKOWSKI, M., WANG, D., HAJJAR, F., MUKADDAM-DAHER, S., MCCANN, S. M., GUTKOWSKA, J. Oxytocin and its receptors are synthesized in the rat vasculature. Proc Nat Acad Sci, USA, 97: 6207-6211, 2000. JOHNSTON, C.I. Franz Volhard lecture: reninangiotensin system: a dual tissue and hormonal system for cardiovascular control. J Hyperten vol. 10 (Suppl 7), p. S13-S26, 1992. KALINYAK, J.E., HOFFMAN, A.R., PERLMAN, A.J. Ontogeny of angiotensinogen mRNA and angiotensin II receptors in rat brain and liver. J. Endocr. Invest, v.14, p.647–653, 1991. 50 KALKMAN, E.A.J., et al. Early captopril prevents myocardial infarction-induced hypertrophy but not angiogenesis. Euro J Pharmacol, n.369, p. 339-48, 1999. KLICKSTEIN, L.B., KAEMPFER, C.E., WINTROUB, B.U. The granulocyte–angiotensin system. Angiotensin I-converting activity of cathepsin G. J. Biol. Chem. v.257, p.15042– 15046, 1982. KOSTIS, J.B. Angiotensin converting enzyme inhibitors. I Pharmacol Am H Journal vol. 6, p. 1580-8, 1998. KUTA, C. C., BRYANT, H. U., ZABIK, J. E., YIM, G. K. Stress, endogenous opioids and salt intake. Appetite, 5, 53–60. 1984. LAVOIE, J.L., CASSELL, M.D., GROSS, K.W., SIGMUND, C.D. Localization of rennin expressing cells in the brain, by use of a REN-eGFP transgenic model. Physiol. Genomics v.16, p.240–246, 2004. LEE, H.U., CAMPBELL, D.J., HABENER, J.F. Development expression of the angiotesinogen gene in rat embryos. Endocrinology v.121, p.1335–1342, 1987. LEKSELL, L. G. Influence of prostaglandin E, on cerebral mechanisms involved in the control of fluid balance, Acta Physiol Stand., vol. 98, p. 85-93, 1976. LEONETTI, G., CUSPIDI, C. Choosing the rigth ACE inhibitor. A guide to selection. Drugs vol. 49, p. 516-35, 1995. LESHEM, M., MAROUN, M., DEL CANHO, S. Sodium depletion and maternal separation in the suckling rat increase its salt intake when adult. Physiol Behav., v. 59, p. 199-204, 1996. LESHEM, M., ABUTBUL, A., EILON, R. Exercise increases the preference for salt in humans. Appetite, v. 32, p. 251–260, 1999. LEVIN, E.R., GARDNER, D.G., SAMSON, W.K. Natriuretic peptides. N England J Med v. 339, p. 321-8, 1988. LIPPOLDT, A., PAUL, M., FUXE, K., & GANTEN, D. The brain renin–angiotensin system: Molecular mechanisms of cell to cell interactions. Clinical and Experimental Hypertension, v.17, p.251–266, 1995. LYNCH, K.R., HAWELU-JOHNSON, C.L., GUYENET, P.G. Localization of brain angiotensinogen mRNA by hybridization histochemistry. Mol. Brain Res v.2, p.149–158, 1987. LORI A. DOSTAL, SANG-NAM KIM, JAMES L. SCHARDEIN, and JOHN A. ANDERSON. Fertility and Perinatal/Postnatal Studies in Rats with the Angiotensin- Converting Enzyme Inhibitor, Quinapril . Toxicol. Sci. v.17, p. 684-695, 1991. LUMBERS, E.R. Functions of the renin-angiotensin system during development. Clin Exp Pharmacol Physiol vol. 22, p. 499-505, 1995. 51 MAACK, T., SUZUKI, M., ALMEIDA, F.A, NUSSENZVEIG, D., SCARBOROUGH, R.M., MCENROE, G.A., LEWICKI, J.A. Physiological role of silent receptor of atrial natriuretic factor. Sci., vol. 238, p. 675-8, 1987. MAO, C., SHI, L., XU, F, ZHANG, L., XU, Z. Development of fetal brain renin–angiotensin system and hypertension programmed in fetal origins. Progress in Neurobiology. v. 87, p. 252–263, 2009. MCCANN, S. M., GUTKOWSKA, J., ANTUNES-RODRIGUES. Neuroendocrine control of body fluid homeostasis. Bra J Med Biol Res vol. 36, p. 165-181, 2003. McKINLEY, M.J; JOHNSON, A.K. The physiological regulation of thirst and fluid intake. News Physiol Sci, v. 19, p. 1-6, 2004. MECAWI, A.S; ARAUJO,I.G; FONSECA,F.V; ALMEIDA-PEREIRA,G.; CÔRTES, W.S; ROCHA, F.F; REIS., L.C. Behavioural changes induced by angiotensin-converting enzyme inhibition during pregnancy and lactation in adult offspring rats. Clin Exp Pharmacol Physiol, v.35, 000–000, 2008. MECAWI. A. S., LEPLETIER, A., FONSECA, F. V., ARAUJO, I. G., REIS, L. C. Oestrogenic influence on brain AT1 receptor signalling on the thirst and salt appetite in osmotically-stimulated and sodium-depleted female rats. Exp Physiol, v. 93, p. 1002-10, 2008. MECAWI, AS, ARAUJO, IG, ROCHA, FF, Coimbra,T.M., ANTUNES-RODRIGUES, J. AND REIS, LC. Ontogenetic role of angiontensin-converting enzyme in rats: Thirst and sodium appetite evaluation.Physiology & Behavior v. 99, 118-124, 2010. MENDELSOHN, F.A., CHAI, S.Y., DUNBAR, M., In vitro autoradiographic localization of angiotensin-converting enzyme in rat brain using 125I-labelled MK351A. J. Hypertens. v. 2, p 41–44, 1984. MOE, K. E., WEISS, M. L., EPSTEIN, A. N. Sodium appetite during captopril blockade of endogenous angiotensin II formation. Am J Physiol , v. 247, p. 356-65, 1984. MOOSER, V., NUSSBERGER, J., JUILLERAT, L. et al. Reactive hyperreninemia is a major determinant of plasma angiotensin II during ACE inhibition. J Cardiovasc Pharmacol vol. 15, p. 276-82, 1990. MORRIS, M., ALEXANDER, N. (1988). Baroreceptor influences on plasma atrial natriuretic peptide (ANP): sinoaortic denervation reduces basal levels and the response to an osmotic challenge. Endocrinol, 122: 373-375. MUNGALL, B.A., SHINKEL, T.A., SERNIA, C. Immunocytochemical localization of angiotensinogen in the fetal and neonatal rat brain. Neuroscience v.67, p.505–524, 1995. NAZARALI, A. J., GUTKIND, J. S, AND SAAVEDRA, J. M. Regulation of angiotensin II binding sites in the subfornical organ and other rat brain nuclei after water deprivation. Cell Mol Neurobiol v. 7, p. 447–455, 198. 52 NICOLAIDIS, S., FITZSIMONS, J. T. La dependence de la prise d’eau induite par l’angiotensine II envers la fonction vasomotrice cerebrale locale chez le rat. Compt Rend Acad Sci., Ser. D 281, p. 1417-1420, 1975. NICOLAIDIS, S., GALAVERNA, O., METZLER, C. H. Extracellular dehydration during pregnancy increases salt appetite of offspring. Am J Physiol v. 258, p. 281-83, 1990. NUYT, A.M., LENKEI, Z., CORVOL, P., PALKOVITS, M., LLORENS-CORTES, C. Ontogeny of angiotensin II type 1 receptor mRNAs in fetal and neonatal rat brain. J. Comp. Neurol. v.440, p.192–203, 2001. NUYT, A.M., LENKEI, Z., PALKOVITS, M., CORVOL, P., LLORENS-CORTES, C., Ontogeny of angiotensin II type 2 receptor mRNA expression in fetal and neonatal rat brain. J. Comp. Neurol. v.407, p.193–206, 1999. OLSSON, K. Attenuation of dehydrative thirst by lowering of the CSF [Nat]. Acta Physiol Stand 94: 536-538, 1975. OLSON, B. R., DRUTAROSKY, M. D., STRICKER, E. M., & VERBALIS, J. G.. Brain oxytocin receptors mediate corticotropin-releasing hormone- induced anorexia. American Journal of Physiology, v.260, p.448–452, 1991. ONDETTI, M. A., RUBIN, B., & CUSHMAN, D. W. Design of specific inhibitors of angiotensin converting enzyme: A new class of orally active antihypertensive agents. Science, v.196, p.441–446, 1977. PAUL, M. , MEHR, A.P., KREUTZ, R., Physiology of local renin–angiotensin systems. Physiol. Rev. v.86, p.747–803, 2006. PAXINOS, G., WATSON, C. The Rat Brain in Stereotaxic Coordinates. London: Academic Press, 1986. PERILLAN, C; COSTALES, M; VIJANDE, M; ARGUELLES, J. Maternal RAS influence on the ontogeny of thirst. Physiol Behav, v. 92, n. 2007, p. 554-59, 2007. RAMSAY, D. J., REID, I. A.. Some central mechanisms of thirst in the dog. J Physiol., London, vol. 253, p. 517-525, 1975. RAPOSO-COSTA, A. P., REIS, A. M. O Sistema Renina-Angiotensina em Ovário. Arq. Bras. Endocrinol Metab. v.44, 2000. REIS, L.C; RAMALHO, M.J; ANTUNES-RODRIGUES, J. Central serotonergic modulation of drinking behavior induced by angiotensin II and carbachol in normally hydrated rats: effect of intracerebroventricular injection of MK-212. Braz J Med Biol Res, v. 23, n. 12, p. 1339- 42, 1990. REIS, L. C., RAMALHO, M. J., ANTUNES-RODRIGUES, J. Participation of the median raphe nucleus and central serotoninergic pathways in the control of water electrolyte excretion. Bra J Med Biol Res, vol. 24, p. 847-854, 1991. 53 REIS, L. C., RAMALHO, M. J., FAVARETO, A. L. V., GUTKOWSKA, J., MCCANN, S. M., ANTUNES-RODRIGUES, J. Participation or the ascending serotonergic system in the stimulation of atrial natriuretic peptide release. Proc Natl Acad Sci USA v. 91, p. 12022– 12026, 1994. REIS, L.C. Role of the serotoninergic system in the sodium appetite. An Acad Bras Cienc, v. 79, n. 2, p. 261-83, 2007. RIBEIRO, J. M., FLORÊNCIO, L. F. Bloqueio farmacológico do sistema reninaangiotensina- aldosterona: inibição da enzima de conversão e do receptor AT1. Rev Bras Hipertens, v.7(3), p. 293-302,2000. ROGERSON, F.M., SCHLAWE, I., PAXINOS, G., CHAI, S.Y., MCKINLEY, M.J., MENDELSOHN, F.A. Localization of angiotensin converting enzyme by in vitro autoradiography in the rabbit brain. J. Chem. Neuroanat. v.8, p.227–243, 1995. ROSS, M.G., KULLAMA, L.K., CHAN, A.K., ERVIN, M.G. Central angiotensin II stimulation of ovine fetal swallowing. J. Appl. Physiol. v.76, p.1340–1345, 1994. SAAVEDRA, M.J. Brain and pituitary angiotensin. Endocri. Rev. v.13, p.329–380,1992. SAAVEDRA, J.M. Emerging features of brain angiotensin receptors. Regul Pept, vol. 85, p. 31-45, 1999. SAKAI, R. R., EPSTEIN, A. N. Dependence of adrenalectomy-induced sodium appetite on the action of angiotensin II in the brain of the rat. Behav Neurosci, v. 104, p. 167–176, 1990. SANVITTO, G. L., JOHREN, O., HAUSER, W., SAAVEDRA, J.M. Water deprivation upregulates ANG II AT1 binding and mRNA in rat subfornical organ and anterior pituitary. Am J Physiol Endocrinol Metab v. 273, p. 156–163, 1997. SATO, M. A., YADA, M. M., & DE LUCA, L. A., JR. . Antagonism of the renin–angiotensin system and water deprivation-induced NaCl intake in rats. Physiology and Behavior ,v. 60, p.1099–1104, 1996. SCHELLING, P., MEYER, D., LOOS, H.E., SPECK, G., PHILLIPS, M.I., JOHNSON, A.K., GANTEN, D.,A micromethod for the measurement of renin in brain nuclei: its application in spontaneously hypertensive rats. Neuropharmacology v.1, p.435–463, 1982. SCHUTZ, S. , MOULLEC, J.M., LE, CORVOL, P., GASC, J.M. Early expression of all the components of the renin–angiotensin system in human development. Am. J. Pathol. v.149, p.2067–2079, 1996. SERNIA, C., ZENG, T., KERR, D., WYSE, B. Novel perspectives on pituitary and brain angiotensinogen. Front. Neuroendocrinol. v.18, p.174–208, 1997. SHI, L., HU, F., MORRISSEY, P., YAO, J., XU, Z. Intravenous angiotensin induces brain cfos expression and vasopressin release in the near-term ovine fetus. Am. J. Physiol. v.285, p.1216–1222, 2003. 54 SHI, L., GUERRA, C., YAO, J., XU, Z. Vasopressin mechanism-mediated pressor responses caused by central angiotensin II in the ovine fetus. Pediatric Res. v.56, p.756–762, 2004a. SHI, L., YAO, J., KOOS, B.J., XU, Z. Induced fetal depressor or pressor responses associated with c-fos by intravenous or intracerebroventricular losartan. Dev. Brain Res. v.153, p.53– 60, 2004b. SHI, L., YAO, J., STEWART, L., XU, Z. Brain c-fos expression and pressor responses after i.v. or i.c.v. angiotensin in the nearterm ovine fetus. Neuroscience v.126, p.979–987, 2004c. SICA, D. A., GEHR, T. W . B. ACE inhibitors: current consideration in their use. J Clin Hypertens vol. 1, p. 218-30, 1999. SONG, J. C., & WHITE, C. M. Clinical pharmacokinetics and selective pharmacodynamics of new angiotensin converting enzyme inhibitors: An update. Clinical Pharmacokinetics, v.41, p.207–224, 2002. SOOD, P.P., PANIGEL, M., WEGMANN, R. The existence of renin–angiotensinogen system in the rat fetal brain: I. Immunocytochemical localization of renin-like activity at the 19th day of gestation. Cell Mol. Biol. v. 33, p. 675–680, 1987a. SOOD, P.P., RICHOUX, J.P., PANIGEL, M., BOUHNIK, J., WEGMANN, R. The existence of renin–angiotensinogen system in the rat fetal brain. II. Immunocytochemical localization of angiotensinogen in the telencephalon and the diencephalons. Cell Mol. Neuobiol. v.33, p.681–689, 1987b. SOOD, P.P., PANIGE, M.L, WEGMANN, R. Co-existance of renin-like immunoreactivity in the rat maternal and fetal neocortex. Neurochem. Res. v.14, p.99, 1989. 502. SOOD, P.P., RICHOUX, J.P., PANIGEL, M., BOUHNIK, J., WEGMANN, R. Angiotensinogen in the developing rat fetal hindbrain and spinal cord from 18th to 20th day of gestation: an immunocytochemical study. Neuroscience v.37, p.517–522, 1990. SPECK, G., POULSEN, K., UNGER, T., RETTIG, R., BAYER, C., SCHO LKENS, B., GANTEN, D.In vivo activity of purified mouse brain renin. Brain Res. v.9, p.371-384,1981. STEIN, J. M., LIND, R. W., JOHNSON, A. K. (1987). Central serotonergic influences on renal electrolyte and water excretion. Neuropharmacol, v. 26, p. 1685-1692. STONESTREET, B.S., CLIFFORD, S.P., KAREN, D.P., CHRISTOPHER, B.R., HELEN, F.C. Ontogeny of blood–brain barrier function in ovine fetuses, lambs, and adults. Am. J. Physiol. v.271, p.1594–1601, 1996 STRICKER, E. M. Inhibition of thirst in rats following hypovolemia and/or caval ligation. Physiology and Behavior, v.6, p.293–298, 1971. STRICKER, E. M., SVED, A. F. Thirst. Nutrition v. 16, p. 821–826, 2000. 55 STRITTMATTER, S.M., LYNCH, D.R., SNYDER, S.H. Differential ontogeny of rat brain peptidases. Prenatal expression of enkephalin convertase and postnatal development of angiotensin-converting enzyme. Brain Res. vol. 394, p. 207–15, 1986. SUMITANI, M., JULIANO, L., BERALDO, W.T., PESQUERO, J.L. Distribution of toninand kallikrein-like activities in rat brain. Brain Res. v.769, p.152–157, 1997. TANAKA, J; USHIGOME, A; HORI, K; NOMURA, M. Responses of raphe nucleus projecting subfornical organ neurons to angiotensin II in rats. Brain Res Bull, v. 45, n. 3, p. 315-18, 1998. TANAKA, J; OKUMURA, T; SAKAMAKI, K; MIYAKUBO, H. Activation of serotonergic pathways from the midbrain raphe system to the subfornical organ by hemorrhage in the rat. Exp Neurol, v. 169, n. 1, p. 156-62, 2001. TANAKA, J; HAYASHI, Y; YAMATO, K; MIYAKUBO, H; NOMURA, M. Involvement of serotonergic systems in the lateral parabrachial nucleus in sodium and water intake: a microdalysis study in the rat. Neurosci Lett, v. 357, n. 1, p. 41-44, 2004. TARJAN, E., FERRARO, T., MAY, C., WEISINGER, R. S. Converting enzyme inhibition in rabbits: Effects on sodium and water intake/excretion and blood pressure. Physiol Behav v. 53, p. 291–299, 1993. TESTA, M.A., Anderson, R.B., Nackley, J.F., Hollenberg, N.K. Quality of life and antihypertensive therapy in men. A comparison of captopril with enalapril. The Quality-of- Life Hypertension Study Group. N Engl J Med, v. 328, p. 907–13, 1993. THOMAS, W.G., SERNIA, C. Immunocytochemical localization of angiotensinogen in the rat brain. Neuroscience v.25, p.319–341, 1988. THUNHORST, R. L., KIRBY, R. F., & JOHNSON, A. K.. Role of renal nerves in sodium depletion-induced salt appetite. American Journal of Physiology, v.271, p.806–812, 1996. THUNHORST, R. L., & FITTS, D. A. Peripheral angiotensin causes salt appetite in rats. American Journal of Physiology,v. 267, p.171–177, 1994. TILLEY, L. P., GOODWIN, J. K. Manual de Cardiologia para cães e gatos. São Paulo, Ed. Roca, 3 ed., 2002. TSUTSUMI, K., STROMBERG, C., VISWANATHAN, M., SAAVEDRA, J.M., Angiotensin-II receptor subtypes in fetal tissue of the rat: autoradiography, guanine nucleotide sensitivity, and association with phosphoinositide hydrolysis. Endocrinology v.129, p.1075– 1082, 1991a. TSUTSUMI, K., VISWANATHAN, M., STROMBERG, C., SAAVEDRA, J.M., Type-1 and type-2 angiotensin II receptors in fetal rat brain. Eur. J. Pharmacol v.198, p.89–92, 1991b. TSUTSUMI, K., SELTZER, A., SAAVEDRA, J.M. Angiotensin II receptor subtypes and angiotensin-converting enzyme in the fetal rat brain. Brain Res. v.631, 12–220,1993. 56 URATA, H., NISHIMURA, H., GANTEN, D. Mechanisms of angiotensin II formation in humans. Eur Heart J vol. 16 (Suppl N), p. 79-85, 1995. URATA, H., NISHIMURA, H., GANTEN, D., ARAKAWA, K. Angiotensin-converting enzyme-independent pathways of angiotensin II formation in human tissues and cariovascular diseases. Blood Press vol. 2 (Suppl), p. 22-8, 1996a. URATA, H., NISHIMURA, H., GANTEN, D. Chymase-dependent angiotensin II forming system in humans. Am J Hypertens. Vol. 9, p. 277-84, 1996b. VAN KATS, J.P, DANSER, A.H., van Meegan JR, et al. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation vol. 98, p. 73-81, 1998. VILA-PORCILE, E., CORVOL, P. Angiotensinogen, prorenin, and renin are colocalized in the secretary granules of all glandular cells of the rat anterior pituitary: an immunoultrastructural study. J. Histochem. Cytochem. v.46, p.301–311, 1998. WEBER, M. Emerging treatments for hypertension: potential role for vasopeptidade inhibition. Am J Hypertens, vol 12, p.139S-147S, 1999a. WEBER, M. Interrupting the renin-angiotensin system: the role of angiotensinconverting enzyme inhibitors and angiotensin II receptor antagonist in the treatment of hypertension. Am J Hypertens 12 (Suppl 1), p. 189-94, 1999b. WEISINGER, R. S., BLAIR-WEST, J. R., DENTON, D. A., MCBURNIE, M., ONG, F., TARJAN, E. ET AL. Effect of angiotensin-converting enzyme inhibitor on salt appetite and thirst of BALB/c mice. Am J Physiol, v. 259, p. 736–740. 1990. WEISINGER, R. S., BLAIR-WEST, J. R., BURNS, P., DENTON, D. A., MCKINLEY, M. J., TARJAN, E. The role of angiotensin II in ingestive behaviour: A brief review of angiotensin II, thirst and Na appetite. Regulatory Peptides, v. 66, p. 73–81, 1996. WEISINGER, R. S., BLAIR-WEST, J.R., BURNS, P., CHEN, N., WEISINGER, H. S..Handbook of Behavioral Neurobiology . Plenum Publishers. 2 Ed., v 14 , p.547-575, 2004 WEISINGER, R. S., COGHLAN, J. P., DENTON, D. A., FAN, J. S., HATZIKOSTAS, S., MCKINLEY, M. J. et al. ACTH-elicited sodium appetite in sheep. American Journal of Physiology, v.239, p.45–50, 1980. WEISINGER, R. S., DENTON, D. A., DI NICOLANTONIO, R., MCKINLEY, M. J., MULLER, A. F., TARJAN, E. Role of angiotensin in sodium appetite of sodium-deplete sheep. Am J Physiol., v. 253, p. 482–488, 1987. WEISINGER, R. S., DENTON, D. A., DI NICOLANTONIO, R., MCKINLEY, M. J. The effect of captopril or enalaprilic acid on the Na appetite of Na- deplete rats. Clin Exp Pharmacol Physiol, v. 15, p. 55–65, 1988. 57 WEISINGER, R. S., DENTON, D. A., MCKINLEY, M. J., MULLER, A. F., & TARJAN, E. Cerebrospinal fluid sodium concentration and salt appetite. Brain Research, v.326, p.95–105. 1985 (a). WEISINGER, R. S., DENTON, D. A., MCKINLEY, M. J., NELSON, J. F. Dehydrationinduced sodium appetite in rats. Physiol Behav, v. 34, p. 45–50, 1985 (b). WIRTH, J.B; EPSTEIN, A.N. Ontogeny of thirst in infant rat. Am J Physiol, v. 230, n. 1, p. 188-98, 1976. WHITING, P., NAVA, S., MOZLEY, L., EASTHAM, H., POAT, J. Expression of angiotensin converting enzyme mRNA in rat brain. Mol. Brain Res. v.11, p.93–96, 1991 WOLF, G. Angiotensin II and tubular development. Nephrol Dial Transplant. Vol. 17 (Suppl. 9), 48–51, 2002. WONG, J., PATEL, R.A., KOWEY, P.R. The clinical use of angiotensin-converting enzyme inhibitors. Prog Cardiovasc Dis. vol. 47, p. 116–30, 2004. WOOD, R. J., ROLLS, B. J., RAMSAY, D. J. Drinking following intracarotid infusions of hypertonic solutions in dogs. Am J Physiol. vol. 232, p. R88-R92, 1977. XU, Z.,GLENDA, C.,DAY, L., YAO, J., ROSS,M.G. Central angiotensin induction of fetal brain c-fos expression and swallowing activity. Am. J. Physiol. v.280, p.1837–1843, 2001 XU, Z., SHI, L., HU, F., WHITE, R., STEWART, L., YAO, J..In utero development of central ANG-stimulated pressor response and hypothalamic fos expression. Brain Res. v.145, p.169–176, 2003. XU, Z., SHI, L., YAO, J. Central angiotensin II induced pressor responses and neural activity in utero and hypothalamic angiotensin receptors in preterm ovine fetus. Am. J. Physiol. v. 286, p.1507–1514, 2004 XU, Z., HU, F., SHI, L., SUN, W.,WU, J., MORRUSSEY, P., YAO, J. Central angiotensinmediated vasopressin release and activation of hypothalamic neurons in younger fetus at pre-term. Peptides v.26,p. 307–314,2005. YANG, G., SIGMUND, C.D. Developmental expression of human angiotensinogen in transgenic mice. Am. J. Physiol. v.274, p.932–939, 1998. ZHANG, D. M., EPSTEIN, A. N., SCHULKIN, J. Medial region of the amygdala: involvement in adrenal-steroid-induced salt appetite. Brain Res v. 600, p. 20–26, 1993. ZOU, L.X., IMIG, J.D., HYMEL, A, NAVAR, L.G. Renal uptake of circulating angiotensin II in Val5-angiotensin II infused rats is mediated by AT1 receptor. Am J Hypertens vol. 11, p. 570-8, 1998.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/62523/2010%20-%20Fabr%c3%adcia%20Gon%c3%a7alves%20de%20Oliveira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4027
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-10-20T21:50:55Z No. of bitstreams: 1 2010 - Fabrícia Gonçalves de Oliveira.pdf: 3004332 bytes, checksum: 2be6a40f5f6dc0cb0c93d29552abee56 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-10-20T21:50:55Z (GMT). No. of bitstreams: 1 2010 - Fabrícia Gonçalves de Oliveira.pdf: 3004332 bytes, checksum: 2be6a40f5f6dc0cb0c93d29552abee56 (MD5) Previous issue date: 2010-09-03eng
Appears in Collections:Mestrado em Medicina Veterinária (Patologia e Ciências Clínicas)

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2010 - Fabrícia Gonçalves de Oliveira.pdf2010 - Fabrícia Gonçalves de Oliveira2.93 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.