Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/12926
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Carvalho, Renata Ribeiro Novais de | |
dc.date.accessioned | 2023-11-19T23:19:44Z | - |
dc.date.available | 2023-11-19T23:19:44Z | - |
dc.date.issued | 2012-08-28 | |
dc.identifier.citation | CARVALHO, Renata Ribeiro Novais de. Hipercortisolismo Experimental em Ratos Wistar – Correlações Clínicas em Medicina Veterinária. 2012. 51 f. Dissertação (Programa de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas)) - Universidade Federal Rural do Rio de Janeiro, Seropédica. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/12926 | - |
dc.description.abstract | Glucocorticoids are hormones synthesized and released by activation of the hypothalamic pituitary adrenal axis and perform essential functions for ensuring the homeostasis, acting on biological processes such as growth, reproduction, energy metabolism, immune and inflammatory responses, behavioral changes, actions in the nervous system (CNS) and cardiovascular functions. Corticosterone is the most important glucocorticoid present in mice and rats, while cortisol is prevalent in humans and dogs. Plasma levels of glucocorticoids are altered in various diseases. Pituitary dependent hyperadrenocorticism is highlight because, despite being described since 1932, continues to be reported as a real challenge for the clinician, due to pathophysiological mechanisms are not fully elucidated. For this reason, the objective of this study is to provide a basis for the standardization of an experimental model for this disease and, in the future, allow the suggestion of new diagnostics, as well as propose new treatments. For this experiment, were divided two groups (control and treated) with seven animals in both groups. The control group was submitted to daily applications of saline subcutaneously with 0.2ml of volume for 7 days. While treated group was submitted to applications of synthetic ACTH1-24 by the same route, treatment time and volume of the control group. After euthanasia on the seventh day of experiment, samples were obtained from blood plasma (to determine the levels of triiodothyronine, thyroxine, corticosterone, oxytocin, vasopressin and thyroid stimulating hormone) and organs (to assess the change in the relative weights). In relation to changes of the hypothalamic pituitary adrenal axis, we obtained a significant increase in plasma corticosterone (5.63±1.01 vs. 8.31±0.60μg/dl p<0.05) and increased the relative weight of right (0.0094±0.01 vs. 0.05±0.01g/100g p<0.0001) and left (0.01±0.01 vs. 0.05±0.01g/100g p<0.0001) adrenal and pituitary (0.0025±0.0008 vs. 0.0033±0.0001g/100g p<0.0001). Hypothalamus did not change significantly. The weight of the treated animals was significantly decreased after the fifth day compared to the weight of control group (282.14±14.01 vs. 227.86±12.67g p<0.05; 285.71±13.29 vs. 215.00±11.80g p<0.001). Similarly, there was a decrease in food intake only represented on the second day (9.09±0.49 vs. 5.59±0.57g/100g p<0.0001). The peritoneal fat considerably reduced in the treated group (0.97±0.12 vs. 0.45±0.07g/100g p<0.001) and liver demonstrated to be increased (3.43±0.84 vs. 4.75±0.16g/100g p<0.0001) in size in comparison with the control group. Changes in fluid and electrolyte were important in drinking water at 4, 5 and 6 days (8.86±0.19 vs. 17.01±3.22 p<0.001; 8.22±0.26 vs. 14.40±2.71 p<0.05; 8.65±0.34 vs. 25.69±1.67ml/100g p<0.0001) and saline since second day (0.09±0.05 vs. 14.11±1.70; 0.11±0.07 vs. 21.76±2.22; 0.01±0.01 vs. 24.13±2.22; 0.13±0.10 vs. 24.86±2.96; 0.18±0.16 vs. 21.57±3.77ml/100g p<0.0001 all days) in which a significant increase induced ACTH group compared with the control group, urine output (3.99±0.28 vs. 17.56±1.10; 3.63±0.38 vs. 25.46±2.01; 3.69±0.28 vs. 29.70±2.02; 3.63±0.19 vs. 33.97±2.77; 4.14±0.31 vs. 41.52±4.25ml/100g p<0.0001 all days) as well as the weight of heart (0.35±0,02 vs. 0.53±0.02g/100g p<0.0001) and right (0.30±0.04 vs. 0.56±0.01g/100g p<0.001) and left (0.340±0.006 vs. 0.543±0.016g/100g p<0.0001) kidneys. Plasma levels of oxytocin and vasopressin were decreased (1.53±0.19 vs. 0.70±0.16pg/ml p<0.05; 1.34±0.10 vs. 0.71±0.08pg/ml p<0.001) in the same comparison. On thyroid axis, we observed a reduction in plasma levels of triiodothyronine (90.71±2.84 vs. 56.67±3.49ng/dL p<0.0001) and thyroxine (4.9±0.1 vs. 2.2±0.2μg/dL p<0.0001), but no significant change in the levels of thyroid stimulating hormone and the weight of the thyroid. The data suggest this protocol as a basis for determining an experimental model of pituitary dependent hyperadrenocorticism although we can conclude that the proposed treatment time may represent the acute phase of disease. | eng |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil. | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Glicocorticoide | por |
dc.subject | Hiperadrenocorticismo | por |
dc.subject | Modelo experimental | por |
dc.subject | Glucocorticoid | eng |
dc.subject | Hyperadrenocorticism | eng |
dc.subject | Experimental model | eng |
dc.title | Hipercortisolismo Experimental em Ratos Wistar – Correlações Clínicas em Medicina Veterinária | por |
dc.title.alternative | Pituitary dependent hyperadrenocorticism in Wistar Rats: Experimental View | eng |
dc.type | Dissertação | por |
dc.contributor.advisor1 | Reis, Luis Carlos | |
dc.contributor.advisor1ID | 484.252.577-00 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2679836949147357 | por |
dc.contributor.referee1 | Castillo, Victor Alejandro | |
dc.contributor.referee2 | Silva, Alba Cenélia Matos da | |
dc.creator.ID | 103.315.267-60 | por |
dc.creator.Lattes | http://lattes.cnpq.br/8549453408479600 | por |
dc.description.resumo | Os glicocorticoides são hormônios sintetizados e liberados pela ativação do eixo hipotálamo hipófise adrenal e exercem funções fundamentais para garantir a homeostase, atuando em processos biológicos, tais como crescimento, reprodução, metabolismo energético, respostas imunes e inflamatórias, alterações comportamentais, ações no sistema nervoso central (SNC) e funções cardiovasculares. A corticosterona é o glicocorticoide presente em maior quantidade em camundongos e ratos, enquanto cortisol é o glicocorticoide prevalente em humanos e cães. Os níveis plasmáticos de glicocorticoides estão alterados em diversas enfermidades, tendo destaque o hiperadrenocorticismo hipófise dependente que, apesar de ser descrito desde 1932, continua sendo relatado como um verdadeiro desafio para o clínico, uma vez que, os mecanismos fisiopatológicos não estão completamente elucidados. Portanto, objetiva-se com este trabalho fornecer bases para a padronização de um modelo experimental para esta doença a fim de, futuramente, permitir a sugestão de novos meios de diagnóstico, bem como propor novos tratamentos. Para a realização deste experimento, foram divididos dois grupos (controle e tratados) contendo sete animais cada. O grupo controle foi submetido a aplicações diárias de salina isotônica no volume de 0,2ml pela via subcutânea durante 7 dias. Já o grupo tratado recebeu de ACTH sintético pela mesma via, volume e tempo de tratamento do grupo controle. Após a eutanásia no sétimo dia de experimento, foram obtidas amostras de plasma sanguíneo (para determinação dos níveis de triiodotironina e tiroxina, corticosterona, ocitocina, vasopressina e hormônio estimulador da tireoide), e órgãos (para avaliação da alteração dos pesos relativos). A despeito das alterações do eixo hipotálamo-hipófise-adrenal, obteve-se aumento significativo dos níveis plasmáticos de corticosterona (5,63±1,01 vs. 8,31±0,60μg/dl p<0,05), além do aumento do peso relativo das adrenais direita (0,0094±0,01 vs. 0,05±0,01g/100g p<0,0001) e esquerda (0,01±0,01 vs. 0,05±0,01g/100g p<0,0001) e da hipófise (0,0025±0,0008 vs. 0,0033±0,0001g/100g p<0,0001). Já o hipotálamo não sofreu alteração significativa. O peso dos animais tratados sofreu redução significativa a partir do quinto dia, quando comparado ao grupo controle (282,14±14,01 vs. 227,86±12,67g p<0,05; 285,71±13,29 vs. 215,00±11,80g p<0,001). Da mesma forma, houve queda na ingestão alimentar representada apenas no segundo dia (9,09±0,49 vs. 5,59±0,57g/100g p<0,0001). O tecido adiposo peritoneal reduziu consideravelmente no grupo tratado (0,97±0,12 vs. 0,45±0,07g/100g p<0,001) e o fígado (3,43±0,84 vs. 4,75±0,16g/100g p<0,0001) desses animais demonstrou-se aumentado de tamanho em comparação com o grupo controle. As alterações no equilíbrio hidroeletrolítico foram significativas na ingestão de água nos dias 4, 5 e 6 (8,86±0,19 vs. 17,01±3,22 p<0,001; 8,22±0,26 vs. 14,40±2,71 p<0,05; 8,65±0,34 vs. 25,69±1,67ml/100g p<0,0001) e salina a partir do segundo dia (0,09±0,05 vs. 14,11±1,70; 0,11±0,07 vs. 21,76±2,22; 0,01±0,01 vs. 24,13±2,22; 0,13±0,10 vs. 24,86±2,96; 0,18±0,16 vs. 21,57±3,77ml/100g p<0,0001 para todos os dias) no grupo induzido com ACTH, bem como a produção urinária também significante a partir do segundo dia (3,99±0,28 vs. 17,56±1,10; 3,63±0,38 vs. 25,46±2,01; 3,69±0,28 vs. 29,70±2,02; 3,63±0,19 vs. 33,97±2,77; 4,14±0,31 vs. 41,52±4,25ml/100g p<0,0001 para todos os dias), peso do coração (0,35±0,02 vs. 0,53±0,02g/100g p<0,0001) e rins direito (0,30±0,04 vs. 0,56±0,01g/100g p<0,001) e esquerdo (0,340±0,006 vs. 0,543±0,016g/100g p<0,0001). Já os níveis plasmáticos de ocitocina e vasopressina estavam diminuídos nesta mesma comparação (1,53±0,19 vs. 0,70±0,16pg/ml p<0,05; 1,34±0,10 vs. 0,71±0,08pg/ml p<0,001). Sobre o eixo tireóideo, pode-se observar redução nos níveis plasmáticos de triiodotironina (90,71±2,84 vs. 56,67±3,49ng/dL p<0,0001) e tiroxina (4,9±0,1 vs. 2,2±0,2μg/dL p<0,0001), mas nenhuma alteração significativa nos níveis de TSH, bem como no peso da tireoide. Os dados obtidos sugerem este protocolo como base para a determinação de um modelo experimental de HAC hipófise-dependente embora possamos concluir que o tempo de tratamento proposto possa representar a fase aguda da doença. | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Veterinária | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas) | por |
dc.relation.references | AGARWAL A.K., MONDER C., ECKSTEIN, B., WHITE P.C. Cloning and expression of rat cDNA-encoding corticosteroid 11-beta-dehydrogenase J. Biol. Chem., 264 (1989), pp. 18939–18943 ALBISTON, V.R. OBEYESEKERE, R.E. SMITH, Z.S. KROZOWSKI Cloning and tissue distribution of the human 11-beta-hydroxysteroid dehydrogenase type-2 enzyme Mol. Cell. Endocrinol., 105 (1994), pp. R11–R17 ALKEMADE A, UNMEHOPA UA, WIERSINGA WM (2005) Glucocorticoids decrease thyrotropinreleasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus. Journal of Clinical Endocrinology & Metabolism. 90(1):323-327 ANTONI FA. 1986. Hypothalamic control of adrenocorticotropin secretion: Advances since the discovery of 41‐residue corticotropin‐releasing factor. Endocr Rev 7(4): 351-378. ANTUNES-RODRIGUES J, MOREIRA AC, KAGOHARA, LL, de Castro, M.Neuroendocrinologia básica e aplicada. Rio de Janeiro: Editora Guanabara Koogan.SA, 2005 ARAMPATZIS S, KADEREIT B, SCHUSTER D, BALAZS Z, SCHWEIZER RA, FREY FJ, LANGER T, ODERMATT A. Comparative enzymology of 11beta-hydroxysteroid dehydrogenase type 1 from six species. J Mol Endocrinol. 2005 Aug;35(1):89-101. ASHIZAWA N, TAKAGI M, SETO S, SUZUKI S, YANO K. Serum adiponectin and leptin in a patient with Cushing's syndrome before and after adrenalectomy. Intern Med. 2007;46(7):383-5. Epub 2007 Apr 2. 39 BAYLIS, C.; HANDA, R.K.; SORKIN, M. Glucocorticoids and control of glomerular-filtration rate. Semin Nephrol, 10: 320–329, 1990. BENKER G, RAIDA M, OLBRICHT T, WAGNER R, REINHARDT W & REINWEIN D TSH Secretion in Cushing's syndrome: relation to glucocorticoid excess, diabetes, goiter, and the „sick euthyroid syndrome‟. Clinical Endocrinology 1990 33 777–786. BAUDRAND R, CARVAJAL CA, RIQUELME A, MORALES M, SOLIS N, PIZARRO M, ESCALONA A, BOZA C, PÉREZ G, DOMÍNGUEZ A, ARRESE M, FARDELLA CE.Overexpression of 11beta-hydroxysteroid dehydrogenase 1 in hepatic and visceral adipose tissue is associated with metabolic disorders in morbidly obese patients. Obes Surg 2010;20: 77-83. BRONNEGARD M., REYNISDOTTIR S., MARCUS C., STIERNA P., ARNER P. Effect of glucocorticoid treatment on glucocorticoid receptor expression in human adipocytes J t BUCKLEY, T. M & A. F. SCHATZBERG, A. F. Review: on the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders,” Journal of Clinical Endocrinology and Metabolism, 90: 3106–3114, 2005. BUJALSKA, I.J., KUMAR, S., STEWART, P.M. Does central obesity reflect “Cushing's disease of the omentum”? The Lancet Volume 349, Issue 9060, 26 April 1997, Pages 1210–1213 CANALIS, E.; PEREIRA, R.C & DELANY, A. M. Effects of glucocorticoids on the skeleton, J. Pediatr. Endocrinol. Metab, 15: 1341, 2002. CASTREN, E; SAAVEDRA, JM Repeated stress increases the dendity of angiotensin II binding sites in rat paraventricular nucleus subfornical organ Endocrinology 122: 370-372, 1988 40 CHOPRA IJ, WILLIAMS DE, ORGIAZZI J. (1975) Opposite effects of dexamethasone on serum concentrations of 3,3',5'-triiodothyronine (reverse T3) and 3,3'5-triiodothyronine (T3). Journal of Clinical Endocrinology & Metabolism. 41(5):911-920. CHROUSOS, G. P.; CHARMANDARI, E & KINO, T. Glucocorticoid action networks – an introduction to systems biology. J. Clin Endocrinol Metab, 89: 563–564, 2004 CIECHANOVER, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell. 79:13-21. CONNELL JMC, WHITWORTH JA, DAVIES DL, RICHARDS AM, FRASER R Hemodynamic, hormonal and renal effects of adrenocorticotropic hormone in sodium-restricted man J. Hypertens., 6 (1988), pp. 17–23 CROSSCROSS E.E.,, MORELANDMORELAND R.R., , WALLACKWALLACK S.S. Feline Feline PituitaryPituitary--Dependent Dependent Hyperadrenocorticism and Insulin Resistance Due to a Plurihormonal AdenomaHyperadrenocorticism and Insulin Resistance Due to a Plurihormonal Adenoma Topics Topics in Companion Animal Medicinein Companion Animal Medicine 20112011 DARDEVET D, SORNET C, TAILLANDIER D, SAVARY I, ATTAIX D, GRIZARD J. Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest. 1995 November; 96(5): 2113–2119. DAVIS JO, HOWELL DS Comparative effect of ACTH, cortisone and DCA on renal function, electrolyte excretion and water exchange in normal dogs Endocrinology, 52 (1953), pp. 245–255. DEGOEIJ DC, JEZOVA D, TILDERS FJ. 1992b. Repeated stress enhances vasopressin synthesis in CRF neurons in the paraventricular nucleus. Brain Res 577: 165-168. 41 DE GOEIJ DC, KVETNANSKY R, WHITNALL MH, JEZOVA D,BERKENBOSCH F. 1991. Repeated stress‐induced activationof corticotropin‐releasing factor neurons enhancesvasopressin stores and colocalization with corticotropinreleasing factor in the median eminence of rats. Neuroendocrinology 53(2): 150-159. DE KLOET ER, JOËLS M, HOLSBOER F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005 Jun;6(6):463-75. DE LEO MDE LEO M,, PIVONELLO RPIVONELLO R,, AURIEMMA RSAURIEMMA RS,, COZZOLINO ACOZZOLINO A,, VITALE VITALE PP,, SIMEOLI CSIMEOLI C,, DE MARTINO MCDE MARTINO MC,, LOMBARDI GLOMBARDI G,, COLAO ACOLAO A. . Cardiovascular Cardiovascular disease indisease in CushingCushing's's syndromesyndrome: heart versus vasculature.: heart versus vasculature. NeuroendocrinologyNeuroendocrinology.. 2010;92 2010;92 Suppl 1:50Suppl 1:50--4. Epub 2010 Sep 10.4. Epub 2010 Sep 10. DE MARCO, V. Advances in the diagnosis and management of canine Hyperadrenocorticism, Faculty of Universidade Guarulhos, Pompeia Veterinary Hospital Endocrinologist, 2009. DINAN, T. C. Glucocorticoids and the genesis of depressionillness. A psychological model. Br J Psychiatry,164:265-371, 1994. DRAPER N, STEWART PM. 11beta-hydroxysteroid dehydro-genase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol 2005; 186: 251-7 FELDMAN EC, NELSON RW, PEDERSEN D. Canine hyperadrenocorticism (Cushing‟s syndrome), In: Canine and Feline Endocrinology and Reproduction. Philadelphia: Saunders; 2004 FERRARI P., M.G. BIANCHETTI M.G., SANSONNENS A., FREY F.J. Modulation of renal calcium handling by 11 beta-hydroxysteroid dehydrogenase type 2 J. Am. Soc. Nephrol., 13 (2002), pp. 2540–2546 42 FINDLING JWFINDLING JW,, RAFF HRAFF H. . ScreeningScreening andand diagnosisdiagnosis ofof Cushing's syndromeCushing's syndrome. . Endocrinol Endocrinol Metab Clin North AmMetab Clin North Am.. 20052005 Jun;34(2):Jun;34(2):385385--402402,, ixix--x.x. FRIED SK, RUSSELL CD, GRAUSO NL, BROLIN RE Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men J Clin Invest, 92 (1993), pp. 2191–2198 FUNDER JW, MIHAILIDOU AS Aldosterone and mineralocorticoid receptors: clinical studies and basic biology Mol. Cell. Endocrinol., 301 (2009), pp. 2–6 FURUNO, K., M. N. GOODMAN, AND A. L. GOLDBERG. 1990. Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J. Biol. Chem. 265:8550-8557. GILOR C, GRAVES TK. Interpretation of laboratory tests for canine Cushing's syndrome. Top Companion Anim Med. 2011 May;26(2):98-108. GUARALDI F, SALVATORI R Cushing syndrome: maybe not so uncommon of an endocrine disease. J Am Board Fam Med. 2012 Mar;25(2):199-208 GILLESPIE CF, NEMEROFF CB. Hypercortisolemia and depression. Psychosom Med. 2005 May-Jun;67 Suppl 1:S26-8. HAACK, D.; MOHRING, J.; MOHRING, B.; PETRI, M & HACKENTHAL, E. Comparative study on development of corticosterone and DOCA hypertension in rats. Am J Physiol Renal Fluid Electrolyte Physiol, 233: 403–411, 1977. HAUGEN BR. (2009) Drugs that suppress TSH or cause central hypothyroidism. Best Practice & Research: Clinical Endocrinology & Metabolism. 23(6):793-800. HAUNER H, ENTENMANN G, WABITSCH M, GAILLARD D, AILHAUD G, NEGREL R, AND PFEIFFER EF Promoting effect of glucocorticoids on the differentiation of 43 human adipocyte precursor cells cultured in a chemically defined medium J Clin Invest, 84 (1989), pp. 1663–1670 HERMAN JP, ADAMS D, PREWITT CM. 1995. Regulatory changes in neuroendocrine stress‐integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61:180-190. HESS, R.S., SAUNDER, H.M., VAN WINKLE, T.J., WARD, C.R. Concurrent disorders in dogs with diabetes mellitus: 221 cases (1993–1998) Journal American Veterinary Medical Association, 217 (2000), pp. 1166–1173 HOLLENBERG AN . The role the thyrotropin-releasing hormone (TRH) neuron as metabolic sensor. Thyroid 2008 18 131–139. IMAKI T, NAHAN JL, RIVIER C, SAWCHENKO PE, VALE W. 1991. Differential regulation of corticotropin‐releasing factor mRNA in rat brain regions by glucocorticoids and stress. J Neurosci 11(3): 585-599. KELLY J.J., WILLIAMSON P., MARTIN A., WHITWORTH J.A. Effects of oral L-arginine on plasma nitrate and blood pressure in cortisol treated humans J. Hypertens., 19 (2001), pp. 263–268 KAKUCSKA IKAKUCSKA I,, QI YQI Y,, LECHAN RMLECHAN RM. . Changes in adrenal status affect hypothalamic Changes in adrenal status affect hypothalamic thyrotropinthyrotropin--releasingreleasing hormonehormonegenegene expressionexpression in parallel with corticotropinin parallel with corticotropin--releasingreleasing hormonehormone. . EndocrinologyEndocrinology.. 1995 Jul;136(7):27951995 Jul;136(7):2795--8802.02. KELLERKELLER--WOOD MEWOOD ME,, DALLMAN DALLMAN MFMF Corticosteroid inhibition of ACTH secretion. Corticosteroid inhibition of ACTH secretion. EndocrEndocr Rev.Rev. 1984 Winter;5(1):11984 Winter;5(1):1--24. 24. KOOISTRA H.S.; GALAC S; BUIJTELS J.J.C.W.M; MEIJ, BP KOOISTRA H.S.; GALAC S; BUIJTELS J.J.C.W.M; MEIJ, BP Endocrine DiseasesEndocrine Diseases in in Animals Horm Res 2009;71(suppl 1):14Animals Horm Res 2009;71(suppl 1):1444––147147 44 LABEUR MLABEUR M,, THEODOROPOTHEODOROPOULOU MULOU M,, SIEVERS CSIEVERS C,, PAEZPAEZ--PEREPEREDA DA MM,, CASTILLO VCASTILLO V,, ARZT EARZT E,, STALLA GKSTALLA GK.. NewNew aspectsaspects in in thethe diagnosisdiagnosis andand treatmenttreatment ofof Cushing diseaseCushing disease.. Frontiers of hormone research Frontiers of hormone research 2006;35:1692006;35:169--78.78. LENNARTSSON AK, JONSDOTTIR IH. Prolactin in response to acute psychosocial stress in healthy men and women. Psychoneuroendocrinology. 2011 Nov;36(10):1530-9. Epub 2011 May 28 LEVY BHLEVY BH,, TASKER JGTASKER JG. . Synaptic regulation of theSynaptic regulation of the hypothalamichypothalamic--pituitarypituitary--adrenal adrenal axisaxis and its modulation by gland its modulation by glucocorticoids and stressucocorticoids and stress. . Front Cell Neurosci.Front Cell Neurosci. 2012;6:24. 2012;6:24. Epub 2012 May 11.Epub 2012 May 11. LEVY B.H., TASKER J.G. Synaptic regulation of the hypothalamicSynaptic regulation of the hypothalamic––pituitarypituitary––adrenal adrenal axis and its modulation by glucocorticoids and stressaxis and its modulation by glucocorticoids and stress Front Cell Neurosci. 2012;6:24. Epub 2012 May 11. LINDHOLM J, JUUL S, JORGENSEN JOL, ASTRUP J, BJERRE P, FELDT-RASMUSSEN U, HAGEN C, JORGENSEN J, KOSTELJANETZ M, KRISTENSEN LO, LAURBERG P, SCHMIDT K, WEEKE J Incidence and late prognosis of Cushing‟s syndrome: a population-based study J. Clin. Endocrinol. Metab., 86 (2001), pp. 117–123 LOU YK, WEN C, LI M, ADAMS DJ, WANG MX, YANG F, MORRIS BJ, WHITWORTH JA Decreased renal expression of nitric oxide synthase isoforms in adrenocorticotropin-induced and corticosterone-induced hypertension Hypertension, 37 (2001), pp. 1164–1170 MANGOS GJ, WHITWORTH JA, WILLIAMSON PM, KELLY JJ Glucocorticoids and the kidney Nephrology, 8 (2003), pp. 267–273 45 MANIAM J, MORRIS MJ. The link between stress and feeding behaviour. Neuropharmacology. 2012 Jul;63(1):97-110. Epub 2012 Apr 24. MATHIOUDAKIS NMATHIOUDAKIS N,, TTHAPA SHAPA S,, WAND GSWAND GS,, SALVATORI RSALVATORI R.. AACTHCTH--secreting secreting pituitary microadenomas are associated with a higher prevalence of pituitary microadenomas are associated with a higher prevalence of centralcentral hypothyroidismhypothyroidism compared to other microadenoma typescompared to other microadenoma types. . ClinClin Endocrinol Endocrinol (Oxf).(Oxf). 2012 May 12012 May 1 MAYO-SMITH W, HAYES CW, BILLER BMK, KLIBANSKI A, ROSENTHAL H, ROSENTHAL DI Body fat distribution measured with CT: correlations in healthy subjects, patients with anorexia nervosa and patients with Cushing's syndrome Radiology, 170 (1989), pp. 515–518 MECAWI, A. S. Controle neuroendócrino do apetite ao sódio após dieta hipossódica: Regulação integrada ao drive apetitivo e sua correlação com alterações comportamentais. 2012 102f. Tese de doutorado em Fisiologia – Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo, Ribeirão Preto MEIJ, BP Hypophysectomy as a treatment for canine and feline Cushing's disease.Vet Clin North Am Small Anim Pract. 2001 Sep;31(5):1015-41. MELBY, J. C. (1989) Clinical review, 1: Endocrine hyper-tension. Journal of Clinical Endocrinology and Metabolism 69, 697 MELMED S. Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest. 2003; 112(11):1603–1618. MORLEY JE. Neuroendocrine control of thyrotropin secretion. Endocrine Reviews 1981 12 396–436. MORTON NM, SECKL JR. 11beta-hydroxysteroid dehydrogenase type 1 and obesity. Front Horm Res 2008;36:146–64 46 NICOLOFF JT, FISHER DA, APPLEMAN MD, JR. (1970) The role of glucocorticoids in the regulation of effect of glucocorticoids on thyrotropin secretion. Journal of Clinical Investigation. 48(11):2096-2103 ORTEGA TM, FELDMAN EC, NELSON RW. Systemic arterial blood pressure and urine protein-creatinine ratio in dogs with hyperadrenocorticism. J Am Vet Med Assoc 1996;209:1724–1729 ORTEGA, T., FELDMAN, E. C., NELSON, R. W. & FELDMAN, M. (1995) Plasma aldosterone concentrations in dogs before and after o‟p‟-DDD therapy for pituitary-depen-dent hyperadrenocorticism Journal of Veterinary Internal Medicine 9, 182 OTTOSSON M., VIKMAN-ADOLFSSON K., ENERBACK S., OLIVECRONA G., BJORNTORP P. The effects of cortisol on the regulation of lipoprotein lipase activity in human adipose tissue Journal of Clinical Endocrinology and Metabolism, 79 (1994), pp. 820–825 PASQUALI R, VICENNATI V, CACCIARI M, PAGOTTO U 2006 The hypothalamicpituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann NY Acad Sci 1083:111–128 PETERSON ME, PALKOVITS M, CHIUEH CC. Biogenic amine and corticotrophin-releasing factor concentrations in hypothalamic paraventricular nucleus and biogenic amine levels in the median eminence of normal dogs, chronic dexamethasone-treated dogs, and dogs with naturally-occurring pituitart-dependent hyperadrenocorticism (canine Cushing's disease) J Neuroendocrinol, 1 (1989) 169 PETERSON M.E., ALTSZULER N., NICHOLS, C.E. Reased insulin sensitivity and glucose tolerance in spontaneous canine hyperadrenocorticism Research in Veterinary Science, 36 (1984 Dec), pp. 177–182 47 PIVONELLO R, FAGGIANO A, LOMBARDI G, COLAO A (2005) The metabolic syndrome and cardiovascular risk in Cushing‟s syndrome. Endocrinol Metab Clin N Am 34:327–339 PREWITT CM, HERMAN JP. 1997. Hypothalamo‐pituitaryadrenocortical regulation following lesions of the central nucleus of the amygdala. Stress 1(4): 263-280. PRICE, S. R., B. K. ENGLAND, J. L. BAILEY, K. VAN VREEDE, AND W. E. MITCH. 1994. Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle. Am. J. Physiol. 36:C955-C960. REBUFFE-SCRIVE M, KROTKIEWSKI M, ELFERSSON J, BJORNTORP P Muscle and adipose tissue morphology in Cushing's syndrome J Clin Endocrinol Metab, 67 (1988), pp. 1122–1125 RECHSTEINER, M. 1991. Natural substrates of the ubiquitin proteolytic pathway. Cell. 66:615-618. RENÉ BAUDRAND B.1, EUGENIO ARTEAGA U.1, MANUEL MORENO G. El tejido graso como modulador endocrino: Cambios hormonales asociados a la obesidade Rev. méd. Chile vol.138 no.10 Santiago Oct. 2010 REIMONDO G., PIA A. , BOVIO S., ALLASINO B., DAFFARA F., PACCOTTI P., BORRETTA G., ANGELI A., TERZOLO M. Laboratory differentiation of Cushing's syndrome Clin Chim Acta. 2008 Feb;388(1-2):5-14. Epub 2007 Nov 9. ROGERS WAROGERS WA,, RUEBNER BHRUEBNER BH. . A retrospective study of probable glucocorticoidA retrospective study of probable glucocorticoid--induced hepainduced hepatopathy in dogstopathy in dogs. . J Am Vet Med Assoc.J Am Vet Med Assoc. 1977 Mar 15;170(6):6031977 Mar 15;170(6):603--6.6. SALA C, AMBROSI B, MORGANTI A Blunted vascular and renal effects of exogenous atrial natriuretic peptide in patients with Cushing‟s disease J. Clin. Endocrinol. Metab., 86 (2001), pp. 1957–1961 48 SAMUELS MH, MCDANIEL PA. (1997) Thyrotropin levels during hydrocortisone infusions that mimic fasting-induced cortisol elevations: a clinical research center study. Journal of Clinical Endocrinol ogy & Metabolism. 82(11):3700-3704. SCHIMMER, B. P. & PARKER, K. L. (1996) Adrenocorti-cotropic hormone; adrenocortical steroids and their synthetic analogs; inhibitors of the synthesis and actions of adrenocortical hormones. In: Goodman & Gilman‟s The Pharmacological Basis of Thera-peutics, 9th edn. Eds J. G. Hardman, A. Goodman Gilman and L. E. Limbird. McGraw-Hill, New York. Pp 1454-1485 SLAVIN, B.G., ONG J.M., KERN, P.A. Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes Journal of Lipid Research, 35 (1994), pp. 1535–1541 SMETS PSMETS P,, MEYER EMEYER E,, MADDENS BMADDENS B,, DAMINET SDAMINET S.. CushingCushing's syndrome, 's syndrome, glucocorticoids and the kidney. glucocorticoids and the kidney. Gen Comp Endocrinol.Gen Comp Endocrinol. 2010 Oct;169(1):12010 Oct;169(1):1--10. Epub 10. Epub 2010 Jul 23.2010 Jul 23. SMITH L, SMITH, JB Regulation of sodium-calcium exchanger by glucocorticoids and growth factors in vascular smooth muscle J. Biol. Chem., 269 (1994), pp. STEWART PM. The adrenal cortex. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, Foster DW, Wilson JD. Williams textbook of endocrinology. 10th ed. Philadelphia: Saunders, 2003. pp. 491-539. SOLANO JM, JACOBSON L Glucocorticoids Reverse leptin effects on food intake and body fat in mice without increasing NPYmRNA. Am J Physiol. 1999 Oct;277(4Pt1):E708-16. SPIEGELMAN BM, FLIER JS 2001 Obesity and the regulation of energy balance. Cell104:531–543 CrossRefMedline 49 SUZUKI, H.; HANDA, M.; KONDO, K.; SARUTA, T. Role of renin-angiotensin system in glucocorticoid hypertension in rats. Am J Physiol Endocrinol Metab 243: 48–51, 1982 TOJA, P.M., BRANZI, G., CIAMBELLOTTI F., RADAELLI P., DE MARTIN, M., LONATI L. M., PARAT M.S.G., CAVAGNINI F., GIRALDI, F.P. Clinical relevance of cardiac structure and function abnormalities in patients with Cushing‟s syndrome before and after cure Clinical Endocrinology (2012) 76, 332–338 TORRES SM, MCKEEVER PJ, JOHNSTON SD. Effect of oral administration of prednisolone on thyroid function in dogs. Am J Vet Res. 1991 Mar;52(3):416-21 TSIGOS, C & CHROUSOS, G. P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53, 865–871, 2002. TOMLINSON JW, WALKER EA, BUJALSKA IJ. 11betaHydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 2004;25:831-66 ULICK S, WANG JZ, BLUMENFELD JD, PICKERING TP Cortisol inactivation overload – a mechanism of mineralocorticoid hypertension in the ectopic adrenocorticotropin syndrome J. Clin. Endocrinol. Metab., 74 (1992), pp. 963–967 VAN RAALTE D. H., OUWENS D. M. AND DIAMANT M. Novel insights into glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic options? You have full text access to this content European Journal of Clinical Investigation Volume 39, Issue 2, Article first published online: 20 JAN 2009 VISSER TJ & LAMBERTS SW Regulation of TSH secretion and thyroid function in Cushing's disease. Acta Endocrinologica 1981 96 480–483 50 YAMAJI T, ISHIBASHI M, YAMADA A, TAKAKU F, ITABASHI A, KATAYAMA S, ISHII J, TAKAMI M, FUKUSHIMA T Plasma levels of atrial natriuretic hormone in Cushing‟s syndrome J. Clin. Endocrinol. Metab., 67 (1988), pp. 348–352 YASUDA, G., SHIONOIRI, H., UMEMURA, S., TAKASAKI, I. & ISHII, M. (1994) Exaggerated blood pressure response to angiotensin II in patients with Cushing‟s syndrome due to adrenocortical adenoma. European Journal of Endocrinology 131, 582-588 WAJCHENBERG, B.L. 2000. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21: 697–738. WALKER BR Glucocorticoids and cardiovascular disease Eur. J. Endocrinol., 157 (2007), pp. 545–559 WALKER BR, ANDREW R. Tissue production of cortisol by 11betahydroxysteroid dehydrogenase type 1 and metabolic disease. Ann N Y Acad Sci 2006;1083:165-84. WALKER BR, YAU JL, BRETT LP, SECKL JR, MONDER C, WILLIAMS BC, EDWARDS CRW 11-beta-hydroxysteroid dehydrogenase in vascular smooth muscle and heart - implications for cardiovascular responses to glucocorticoids Endocrinology, 129 (1991), pp. 3305–3312 WEN C, LI M, WHITWORTH JA Role of nitric oxide in adrenocorticotrophin-induced hypertension: L-arginine effects reversed by N-nitro-L-arginine Clin. Exp. Pharmacol. Physiol., 27 (2000), pp. 887–890 WEN C, FRASER T, LI M, TURNER SW, WHITWORTH JA Haemodynamic mechanisms of corticotropin (ACTH)-induced hypertension in the rat J. Hypertens., 17 (1999), pp. 1715–1723 51 WEN C, FRASER T, LI M, WHITWORTH JA Hemodynamic profile of corticotropin-induced hypertension in the rat J. Hypertens., 16 (1998), pp. 187–194 WHITNALL MH. 1993. Regulation of the hypothalamic corticotropin‐releasing hormone neurosecretory system. Prog Neurobiol 40: 573-629. WHITWORTH JA, COGHLAN JP, DENTON DA, FAN JSK, MCDOUGALL JG, SCOGGINS BA Exaggerated natriuresis in ACTH hypertension in sheep Nephron, 22 (1978), pp. 473–478 WILBER, J.F., UTIGER, R. D. The Effect of Glucocorticoids on Thyrotropin Secretion 1969 J Clin Invest. 1969 November; 48(11): 2096–2103. WILLEBERG P, PRIESTER WA Epidemiological aspects of clinical hyperadrenocorticism in dogs (canine Cushing‟s syndrome) J. Am. Anim. Hosp. Assoc., 18 (1982), pp. 717–724 WILSON, J. D., FOSTER, D. W. Introduction. In: WILSON J. D. & FOSTER, D. W. William‟s textbook of endocrinology. Philadelphia: W.B. Saunders Co., 1985. P. 1-8. WILBER JF, UTIGER RD. (1969) The effect of glucocorticoids on thyrotropin secretion. Journal of Clinical Investigation. 48(11):2096-2103. WING, S. S., GOLDBERG A. L.. 1993. Glucocorticoids activate the ATPubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am. J.Physiol. 264:E668-E676. | por |
dc.subject.cnpq | Medicina Veterinária | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/60826/2012%20-%20Renata%20Ribeiro%20Novais%20de%20carvalho.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/3657 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-06-23T14:23:48Z No. of bitstreams: 1 2012 - Renata Ribeiro Novais de carvalho.pdf: 795930 bytes, checksum: f98d37d96d56779f2a5af18f56398735 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2020-06-23T14:23:49Z (GMT). No. of bitstreams: 1 2012 - Renata Ribeiro Novais de carvalho.pdf: 795930 bytes, checksum: f98d37d96d56779f2a5af18f56398735 (MD5) Previous issue date: 2012-08-28 | eng |
Appears in Collections: | Mestrado em Medicina Veterinária (Patologia e Ciências Clínicas) |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2012 - Renata Ribeiro Novais de carvalho.pdf | 2012 - Renata Ribeiro Novais de Carvalho | 777.28 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.