Please use this identifier to cite or link to this item:
https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/12464
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Pereira, Tatiana Pires | |
dc.date.accessioned | 2023-11-19T23:03:22Z | - |
dc.date.available | 2023-11-19T23:03:22Z | - |
dc.date.issued | 2016-07-27 | |
dc.identifier.citation | PEREIRA, Tatiana Pires. Determinação de tanino condensado em leguminosas forrageiras tropicais como indutor da fermentação ruminal e de sua ação anti-helmíntica. 2016. 78 f. Tese (Doutorado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/12464 | - |
dc.description.abstract | This work was divided in four chapters, in which the first was performed with the goal of quantifying the condensed tannin (CT) content by the Stiasny’s reaction and to determine the classes of secondary metabolites present by the phytochemical prospection technique and magnetic resonance in the tropical forage legumes Cajanus cajan (guandu - GUA), Gliricidia sepium (gliricidia - GLI), Flemingia macrophylla (flemingia - FLE), Cratylia argêntea (cratilia - CRA), Mimosa caesalpineafolia (sabiá) (this legume divided into bark and leaf fraction – SABc and SABf) among the treatments. The extracts obtained were divided into: total extract, number of Stiasny (NS), CT and non-tannins. The FLE, CRA, GUA,GLI, SABf and SABc had obtained the following values for total extract: 13.20; 13.06; 8.28; 14.73; 15.67 and 6.22%, respectively. The reactivity by NS, in the same order of legumes, was 11.25; 4.54; 7.37; 6.70; 23.06 and 71.62%, whereas the CT presented the following values: 1.52; 0.59; 0.61; 0.96; 3.6 and 4.43%, and non-tannin was 11.68; 12.46; 7.67; 13.75; 12.07 and 1.76%, respectively. The following classes of secondary metabolites were identified with greater evidence: saccharides, carbohydrates, non-protein amino acids and glicosídeos cardioativos. For the CT, the intensity was low for most of the legumes, with greater content in CRA, GUA and SABf. The wain compound in the extracts was methyl-inositol (sugar). The second chapter had the objective of assaying in the legumes mentioned above and one more specie, Stylosanthes spp. (estilosantes-EST), condensed tannin (CT) constituents, with the use of organic solvents, soluble CT (ECT), CT adhered to protein (PBCT), CT adhered to fiber (FBCT), and total CT (TCT), CT structural pro-pelargonidin (PP); prodelfinidin (PD) and procyanidin (PC), molecular weight (polymerization degree (DP), molecular distance distributed of the polymer (PDI); average weight of molecular mass (Mw), and average number of molecular mass (Mn), and the biological activity through precipitated proteins by phenols (PPP). The variables ECT, PBCT, and TCT presented were influenced by different species (P≤0.05). The FBCT fraction was not found in the legumes. Molecular weights (DP, PDI, Mw e Mn) were affected by the different species (P≤0.05), ranging from 737 to 1168 da. The structural characteristics (PP, PD, PC and PD:PC) varied among the species. In the third chapter I evaluated methanogenesis (total methane (CH4total)), incubated (CH4inc) and fermented (CH4ferm) and ruminal fermentation parameters total gas production (PGT), pH, ammonium (N-NH3), short-chain fatty acids (SCFA) and in vitro organic matter disappearance (IVOMD) as they related to CT present in the legumes and Urochloa brizantha cv. marandu hay as control (CTL). The effect of polyethylene glycol (PEG) on the leaf fraction of sabiá was tested as well, which had a CT content of 15.97%. No alteration in the pH (P≥0.05) for the treatments evaluated. However, a decrease of total gas and methane production for all the treatments with presence of CT (P≤0.05). When PEG was added, there was a 27.01 (8% PEG) and 35.01 (16% PEG) increase in total gas production and 3.59 (8% PEG) and 4.15 (16% PEG) of methane production. GUA, FLE, SABc and SABf were capable of modifying (P≤0.05) the content of NH3-N (mg/dL), along with the CTL, which also presented lower values compared to legumes with no or only traces of CT (ETL, CRA and GLI). There was significant difference (P≤0.05) for IVOMD between the legumes and control, it was observed lower disappearance (P≤0.05) for FLE, GUA and SABf in relation to CTL, while SABc did disappear. The SABf IVOMD was affected by the addiction of PEG. There was lower digestibility for FLE, GUA and SABf in relation to the CTL, while the bark fraction of SAB did not disappear at all. On the SCFA profile, there was difference (P≤0.05) among the treatments evaluated, with lower values for the legumes with presence of CT. In the fourth chapter I tested the effect of CT from the legumes in study (FLE, CRA, GUA, GLI, EST, SABf and SABc) on larval migration inhibition (LMI) in vitro, on the infective larvae L3 of the nematode Haemonchus contortus (HC), compared with Ivermectin and a negative control (rumen fluid and buffer). Among the legumes studied, SABf and GUA did not differ (P≥0.05), with the greater (P≤0.05) LMI percentage (34.75% and 34.33%) than the other entries. The legumes GUA, FLE and SABc did not differ (P≥0.05), presenting moderate values of LMI (30.25%, 30.0% and 29.75%, respectively). Among the legumes studied, the lowest LMI percentage was CRA (18.46%), GLI (23.75%) and negative control (rumen fluid and buffer), with values near (P≥0.05) from to Ivermectin (22.0%). | eng |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Enteric methane | eng |
dc.subject | Secondary metabolite | eng |
dc.subject | Structural characteristics | eng |
dc.subject | Características estruturais. . | por |
dc.subject | Metabólito secundário | por |
dc.subject | Metano entérico | por |
dc.title | Determinação de tanino condensado em leguminosas forrageiras tropicais como indutor da fermentação ruminal e de sua ação anti-helmíntica | por |
dc.title.alternative | Determination of condensed tannins in tropical forage legumes as an inducer of ruminal fermentation and its anthelmintic action | eng |
dc.type | Tese | por |
dc.contributor.advisor1 | Modesto, Elisa Cristina | |
dc.contributor.advisor1ID | CPF: 992.419.196-04 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/4560148363510585 | por |
dc.contributor.advisor-co1 | Carvalho, Mario Geraldo de | |
dc.contributor.advisor-co1ID | CPF: 257.152.327-91 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/9794451665032168 | por |
dc.contributor.referee1 | Muir, James Pierre | |
dc.contributor.referee2 | Ferreira, Evandro Maia | |
dc.contributor.referee3 | Almeida, João Carlos de Carvalho | |
dc.contributor.referee4 | Nepomuceno, Delci de Deus | |
dc.creator.ID | CPF: 088.520.986-90 | por |
dc.creator.Lattes | http://lattes.cnpq.br/8530217517371963 | por |
dc.description.resumo | Este trabalho foi dividido em quatro capítulos. O primeiro realizou-se com o objetivo de quantificar o teor de tanino condensado (TC) através da Reação de Stiasny e conhecer as classes de metabólitos secundários presentes pela técnica de prospecção fitoquímica e ressonância magnética nas leguminosas forrageiras tropicais Cajanus cajan (guandu-GUA), Gliricidia sepium (gliricidia-GLI), Flemingia macrophylla (flemingia-FLE), Cratylia argêntea (cratilia-CRA), Mimosa caesalpineafolia (sabiá) sendo que essa leguminosa tinha a fração casca e folha (SABc e SABf) entre os tratamentos. Os extratos obtidos foram divididos em: extrato total, número de Stiasny (NS), TC e não taninos. A FLE, CRA, GUA, GLI, SABf e SABc apresentaram os valores para o extrato total 13,20; 13,06; 8,28; 14,73; 15,67 e 6,22%, respectivamente. A reatividade pelo NS, na mesma ordem das leguminosas, foi de 11,25; 4,54; 7,37; 6,70; 23,06 e 71,62%, já o TC apresentou os seguintes valores 1,52; 0,59; 0,61; 0,96; 3,6 e 4,43% e o não tanino foi de 11,68; 12,46; 7,67; 13,75; 12,07 e 1,76%, respectivamente. Foram identificadas as seguintes classes de compostos secundários em maiores evidências: os sacarídeos, carboidratos, aminoácidos não protéicos e os glicosídeos cardioativos. Já para o TC, a intensidade foi baixa para grande parte das leguminosas, prevalecendo maior teor para CRA, GUA e SABf. Foi constatado como componente principal nos extratos o metil-inositol (açúcar). O segundo capítulo teve como objetivo avaliar nas leguminosas citadas acima e mais uma espécie, o Stylosanthes spp (estilosantes-EST), analisar os constituintes do TC com uso de solvente orgânico, tanino solúvel (TCE), tanino aderido à proteína (TCPB), tanino aderido à fibra (TCFB) e taninos condensados totais (TCT), características estruturais tais como: propelargonidina (PP); prodelfinidina (PD) e procianidina (PC); peso molecular (grau de polimerização–(DP); distância do peso molecular distribuído do polímero (PDI); peso médio da massa molecular (Mw); número médio da massa molecular (Mn); além de determinar a atividade biológica, através da técnica de proteínas precipitáveis por fenóis (PPP). As variáveis TCE, TCPB e TCT apresentadas foram influenciadas pelas diferentes espécies (P≤0,05). A fração TCFB não foi constatada nas leguminosas. Os pesos moleculares (Mw) foram influenciados pelas diferentes espécies (P≤0,05), variando de 737 a 1168 Da. As características estruturais (PP, PD, PC e PD:PC) tiveram variação entre as espécies estudadas. Objetivou-se com o terceiro capítulo avaliar a metanogênese (metano total (CH4-total), incubado (CH4 inc.) e fermentado (CH4 ferm.) e os parâmetros de fermentação ruminal (produção de gás total (PGT), pH, amônia (N-NH3), ácidos graxos de cadeia curta (AGCC) e digestibilidade in vitro da matéria orgânica (DIVMO) frente aos TC presentes nas leguminosas e feno de Urochloa brizantha cv. marandu como controle (CTL). Foi testado também o efeito do polietileno glicol (PEG) sobre a fração folha do sabiá, que teve conteúdo de TC de 15,97%. Não foi observado alteração no pH (P≥0,05) para os tratamentos avaliados. No entanto, foram observadas diminuição da produção total de gás e produção de metano para todos os tratamentos com presença de TC (P≤0,05). Para o tratamento com PEG houve aumento de 27,01 (8% PEG) e 35,01 (16% PEG) na produção total de gás e 3,59 (8% PEG) e 4,15 (16% PEG) na produção de metano. GUA, FLE, SABc e SABf foram capazes de modificar (P≤0,05) a concentração de N-NH3 (mg/dL) juntamente com o CTL, que também apresentou valores inferiores comparado as leguminosas com traços e ausência do TC (ETL, CRA e GLI). Houve diferença (P≤0,05) para DIVMO entre as leguminosas e o controle, observou-se menor digestibilidade (P≤0,05) para FLE, GUA e SABf, em relação ao CTL, não sendo digestível o SABc. A DIVMO foi afetada pela adição de PEG na dieta do SABf. No perfil dos AGCC houve diferença (P≤0,05) para os tratamentos avaliados, com menor valor para as leguminosas com presença de TC. O quarto capítulo teve como objetivo testar o efeito da técnica de inibição da migração larval (IML) in vitro do TC proveniente das leguminosas em estudo (FLE, CRA, GUA, GLI, EST, SABf e SABc) sobre as larvas infectantes L3 do nematóde o Haemonchus contortus (HC) comparando com Ivermectina e controle negativo (líquido ruminal e tampão). Entre as leguminosas estudadas o SABf e GUA não diferiram entre si (P≥0,05), com as maiores porcentagens IML (34,75% e 34,33%). As leguminosas GUA, FLE e SABc não diferiram entre si (P≥0,05), apresentando moderados valores de IML (30,25%, 30,0% e 29,75%, respectivamente). Entre as leguminosas estudadas a menor porcentagem de IML foi para CRA (18,46%), GLI (23,75%) e controle negativo (líquido de rúmen e tampão) valores próximos do controle positivo com Ivermectina (22,0%). | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Zootecnia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Zootecnia | por |
dc.relation.references | AERTS, R.J.; BARRY, T.N., MCNABB, W.C. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agriculture, Ecosystems and Environment, v.75, p. 1-2, 1999. ADEMOLA, I.O.; ELOFF, J.N. In vitro anthelmintic activity of Combretum molle (R. Br. ex G. Don) (Cunbretaceae) against Haemonchus contortus ova and larvae. Veterinary Parasitology, v. 169, p. 198-203, 2010. ADEMOLA, I.O.; IDOWU, S.O. Anthelmintic activity of Leucaena leucocephala seed extract on Haemonchus contortus infective larvae. Veterinary Record. v.158, p.485-486, 2006. ADEMOLA, I.O.; FAGBEMI, B.O.; IDOWU, S.O. Anthelmintic activity of extracts of Spon-dias mombin against gastrointestinal nematodes of sheep: studies in vitro and in vivo. Tropical Animal Health and Production, v.37, p.223-235, 2005. ALONSO-DÍAZ, M.A.; TORRES-ACOSTA, J.F.J.; SANDOVALCASTRO, C.A.; HOSTE, H. Comparing the sensitivity of two in vitro assays to evaluate the anthelmintic activity of tropical tannin rich plant extracts against Haemonchus contortus. Veterinary Parasitology, v.181, p. 360-364, 2011. ALONSO-DÍAZ, M.A.; TORRES-ACOSTA, J.F.J.; SANDOVAL-CASTRO, C.A.; AGUILAR CABALLERO, A.J.; HOSTE, H. In vitro larval migration and kinetics of exsheathment of Haemonchus contortus exposed to four tropical tanniniferous plant extracts. Veterinary Parasitology, v.153, p.313-319, 2008a. ALONSO-DÍAZ, M.A.; TORRES-ACOSTA, J.F.J.; SANDOVAL-CASTRO, C.A.; CAPETILLO-LEAL, C.M.; BRUNET, S.; HOSTE, H. Effects of four tropical tanniniferous plant extracts on the inhibition of larval migration and the exsheathment process of Trichostrongylus colubri- formis infective stage. Veterinary Parasitology, v.153, p.187-192, 2008b. ÁLVAREZ DEL PINO, M.C.; HERVÁS, G.; MANTECÓN, A.R.; GIRÁLDEZ F.J.; FRUTOS, P. Comparison of biological and chemical methods, and internal and external standards, for assaying tannins in shrub species. Journal of the Science of Food and Agriculture, v.85, p.583-590, 2005. ANANTASOOK, N.; WANAPAT, M.; CHERDTHONG, A.; GUNUN, P. Effect of tannins and saponins in Samaneasaman on rumen environment, milk yield and milk composition in lactating dairy cows. Journal of animal physiology and animal nutrition, v.99, p.335-344, 2014. AOAC. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. Washington, Association of Official Analytical Chemistsa, 15th ed., p.369-406. ARCHIMÈDE, H.; EUGÈNE, M.; MARIE MAGDELEINE, C.; BOVAL, M.; MARTIN, C.; MORGAVI, D.P.; LECOMTE, P.; DOREAU, M. Comparison of methane production 62 between C3 and C4 grasses and legumes. Animal Feed Science and Technology, v.166, p.59-64, 2011. ARMSTRONG, S.A.; KLEIN, D.R.; WHITNEY, T.R.; SCOTT, C.B.; MUIR, J.P.; LAMBERT, B.D.; CRAIG, T.M. Effect of using redberry juniper (Juniperus pinchotii) to reduce Haemonchus contortus in vitro motility and increase ivermectin efficacy. Veterinary Parasitology, v.197, p. 271-276, 2013. ATHANASIADOU, S.; KYRIAZAKIS, I.; JACKSON, F.; COOP, R.L. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Veterinary Parasitology, v.99, p. 205-219, 2001. BAE, H.D.; McALLISTER, T.A.; YANKE, J. Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Applied and Environmental Microbiology, v.59, p. 2132-2138, 1993. BALOGUN, R.O.; JONES, R.J.; HOLMES, J.H.G. Digestibility of some tropical browse species varying in tannin content. Animal Feed Science and Technology, v.76, p.77-88, 1998. BARRAU, E.; FABRE, N.; FOURASTE, I.; HOSTE, H. Effect of bioactive compounds from Sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitology, v. 13, p. 531-538, 2005. BARRY, T. N.; McNABB, W.C. The implications of condensed tannins on the nutritive value of temperateforages fed to ruminants. British Journal of Nutrition, v. 81, p. 263-272, 1999. BARRY, T.N.; MANLEY, T.R.; DUNCAN, S.J. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep: IV. Sites of carbohydrate and protein digestion as influenced by dietary reactive tannin concentration. British Journal of Nutrition, v.55, p.137, 1986. BATE-SMITH, E.C. Hemanalysis of tannin-Concept of relative astringency. Phytochemistry, v.12, p.907-912, 1973. BEN SALEM, H.A.; NEFZAOUI, L.; BEN SALEM, A.; TISSER, J.L. Deactivation of condensed tannins in Acacia cyanophylla Lindl. Foliage by polyethylene glycol in feed blocks effect on feed intake, diet digestibility, nitrogen balance, microbial synthesis and growth by sheep. Livestock Production Science, v.64, p.51-60, 2000. BEN-SALEM, H.; NEFZAOUI, A.; BEN-SALEM, L.; TISSERAND, J.L. Different means of administering polyethylene glycol to sheep: effect on the nutritive value of Acacia cyanophylla Lindl. Foliage Animal Science, v.68, p.809-818, 1999. BHATTA, R.; SARAVANAN, M.; BARUAH, L.; SAMPATH, K.T.; PRASAD, C.S. Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. Journal of Applied Microbiology, v.115, p.455-465, 2013. 63 BHATTA, R.; SHINDE, A.K.; VERMA, D.L.; SANKHYAN, S.K.; VAITHIYANATHAN, S. Effect of supplementation containing polyethylene glycol (peg)-6000 on intake, rumen fermentation pattern and growth in kids fed foliage of Prosopis cineraria. Small Ruminant Research, v. 52, p. 45-52, 2004. BHATTA, R.; SHINDE, A.K.; VAITHIYANATHAN, S.; SANKHYAN, S.K.; VERMA, D.L. Effect of polyethylene glycol-6000 on nutrient intake, digestion and growth of kids browsing prosopis cineraria. Animal Feed Science and Technology, v.101, p.45-54, 2002. BHATTA, R.; KRISHNAMOORTHY, U.; MOHAMMED, F. Effect of tamarind (Tamarindus indica) seed husk tannins on in vitro rumen fermentation. Animal Feed Science and Technology, v.90, p.143-152, 2001. BRAZ-FILHO, R. Contribuição da fitoquímica para o desenvolvimento de um país emergente. Química Nova, v.33, p. 229-239, 2010. BRITO, C. J. F. A.; RODELLA, R. A.; DESCHAMPS, F.C. Perfil químico da parede celular e suas implicações na digestibilidade de Brachiaria brizantha e Brachiaria humidicola. Revista Brasileira de Zootecnia, v.32, p.1835-1844, 2003. BRODERICK, G.A.; KANG, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, v.63, p.64- 75, 1980. BRUNET, S.; HOSTE, H. Monomers of condensed tannins affect the larval exsheathment of parasitic nematodes of ruminats. Journal of Agricultural and Food Chemistry, v. 54, p. 7481-7487, 2006. BUTTER, N. L.; DAWSON, J. M.; WAKELIN, D.; BUTTERY, P.J. Effect of dietary tannin and protein concentration on nematode infection (Trichostrongylus colubriformis) in lambs. Journal of Agricultural Science, v. 134, p. 89-99, 2000. CALDERON-QUINTAL, J.A.; TORRES-ACOSTA, J.F.J.; SANDOVAL-CASTRO, C.A.; ALONSO- DÍAZ, M.A.; HOSTE, H.; AGUILAR-CABALLERO, A. Adaptation of Haemonchus contortus to condensed tannins: can it be possible. Archivos de Medicina Veterinaria, v.42, p.165-171, 2010. CARNEIRO A.; BENEDITO B.; FREDERICO P.G.; CARVALHO A.M.; VIDAURRE G. Propriedades de chapas de aglomerado fabricadas com adesivo tânico de angico-vermelho (Anadenanthera peregrina) e ureia-formadeído. Revista Árvore, v. 33, p.521-531, 2009. CENCI, F.B.; LOUVANDINI, H.; McMANUS, C.M.; DELL’PORTO, A.; COSTA, D.M.; ARAÚJO, S.C.; MINHO, A.P., ABDALLA, A.L. Effects of condensed tannin from Acacia mearnsii on sheep infected naturally gastrintestinal helminthes. Veterinary Parasitology, v.144, p.132-137, 2007. CERRI, C. C.; BERNOUX, M.; MAIA, S.M.F. Greenhouse gas mitigations in Brazil for landuse change, livestock and agriculture. Scientia Agricola, v. 67, p.102-116, 2010. 64 CHIQUETTE, J.; CHENG, K.J.; COSTERTON, J.W.; MILLIGAN, L.P. Effect of tannins on the digestibility of two isosynthetic strains of birdsfoot trefoil (Lotus corniculatus L.) using in vitro and in sacco techniques. Canadian Journal of Animal Science, v.68, p.751-760, 1988. COSTA, B.M. DA, SANTOS, I.C.V., OLIVEIRA, G.J.C., PEREIRA, I.G. Avaliação de folhas de Gliricidia sepium (Jacq.) Walp por ovinos. Archivos de Zootecnia, v.58, p. 33-41, 2009. DALTO, A.G.C.; BANDARRA, P.M.; PEDROSO, P.M.O.; GUAGNINI, F.S.; LEAL, J.S.; RAYMUNDO, D.L.; DRIEMEIER, D. Timpanismo espumoso em bovinos leiteiros em pastagens de Trifolium spp. (Leg. Caesalpinoideae). Pesquisa Veterinária Brasileira, v.29, p.401-403, 2009. DECANDIA, M.; SITZIA, M.; CABIDDU, A.; KABABYA, D.; MOLLE, G. The use of polyethylene glicol to reduce the anti-nutritional effects of tannins in goats fed woody species. Small Ruminant Research, v.38, p.157-164, 2000. FAGUNDES, G. M. Desempenho produtivo e composição do leite de cabras alimentadas com dietas contendo diferentes níveis de Flemingia macrophylla (willd.) Merrill com e sem polietilenoglicol. 2012. 103f. Dissertação (Mestrado em Produção Animal) Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2012. FALKENBERG, M. B.; SANTOS, R. I.; SIMÕES, C.M.O. Introdução à análise fitoquímica. In: SIMÕES, C.M.O.; SCHENKEL, E.P.; GOSMANN, G.; MELLO, J.C.P.; MENTZ, L.A.; PETROVICK, P.R. Farmacognosia: da planta ao medicamento. Editora UFRGS, Porto Alegre, Editora UFSC, Florianópolis, 2004. FERREIRA, E. S. Utilização dos polifenóis da casca de pinus para produção de adesivos para compensados. 79 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) – Área de Concentração em Tecnologia e Utilização de Produtos Florestais da Universidade Federal Rural do Rio de Janeiro, Seropédica, 2004. FORKNER, R.E.; MARQUIS, R.; TILL, J.L. Condensed tannins as anti- herbivore defenses in leaf-chewing herbivore communities of Quercus. Ecological Entomology, v.29, p.174- 187, 2004. FRUTOS, P.; HERVÁS, G.; RAMOS, G.; GIRÁLDEZ, F. J.; MANTECÓN, A.R. Condensed tannin content of several shrub species from a mountain area in northern Spain, and its relationship to various indicators of nutritive value. Animal Feed Science and Technology, v. 95, p. 215-226, 2002. GEA, A.; STRINGANO, E.; BROWN, R.H.; MUELLER-HARVEY, I. In situ analysis and structural elucidation of sainfoin (Onobrychis viciifolia) tannins for high throughput germplasm screening. Journal of Agricultural and Food Chemistry, v.59, p.495–503, 2011. GETACGEW, G.; MAKKAR, H.P.S.; BECKER, K. Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. British Journal of Nutrition, v.84, p.73-83, 2000. 65 GETACHEW, G.; ROBINSON, P.H.; DEPETERS, E.J.; TAYLOR, S.J.; GISI, D.D.; HIGGINBOTHAM, G.E.; RIORDAN, T.J. Methane production from commercial dairy rations estimated using an in vitro gas technique. Animal Feed Science and Technology, v.124, p.391–402, 2005. GONÇALVES, C. A.; LELIS, R. C. C.; BRITO, E. O.; NASCIMENTO, A.M. Produção de chapas de madeira aglomerada com adesivo uréia-formaldeído modificado com tanino de Mimosa caesalpiniaefolia Benth (sabiá), Floresta e Ambiente, v. 10, p.18-26, 2003. GRAMINHA, C.V.; MARTINS, A.L.M.; FAIÃO, C.A. Viabilidade de alguns aditivos utilizados no confinamento no Brasil. In: CONFINAMENTO: GESTÃO TÉCNICA E ECONÔMICA, I, 2007, Jaboticabal. Anais... Jaboticabal, 2007, v.1, p.103-132. GRAINGER, C.; CLARKE, T.; AULDIST, M.J.; BEAUCHEMIN, K.A.; MCGINN, S.M.; WAGHORN, G.C.; ECKARD, R.J. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Journal of Animal Science, v.89, p.241-251, 2009. GRIFFITHS, D.W.; BIRCH, A.N.E.; HILLMAN, J.R. Antinutritional compounds in the Brassicaceae: analysis, biosynthesis, chemistry and dietary effects. Journal of Horticultural Science and Biotechnology, v. 73, p. 1-18, 1998. GUIMARÃES-BEELEN, P. M.; BERCHIELLI, T. T.; BUDDINGTON, R.; BEELEN, R. Efeito dos taninos condensados de forrageiras nativas do semi-árido nordestino sobre o crescimento e atividade celulolítica de Ruminococcus flavefaciens FD1. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 58, p. 910-917, 2006. HAGERMAN, A.E.; BUTLER, L.G. Protein precipitation method for the quantitative determination of tannins. Journal of Agricultural and Food Chemistry, v. 26, p.809-812, 1978. HAMMOND, J.A.; FIELDING, D.; BISHOP, S.C. Prospects for plant anthelmintics in tropical veterinary medicine. Veterinary Research Communications, v.21, p.213-228, 1997. HECKENDORN, F.; HÄRING, D.A.; MAURER, V.; SENN, M.; HERTZBERG, H. Individual administration of three tanniferous forage plants to lambs artificially infected with Haemonchus contortus and Cooperia curticei. Veterinary Parasitology, v.146, p.123-34, 2007. HERN-ANDEZ-ORDUNO, G.; TORRES-ACOSTA, J.F.J.; SANDOVAL-CASTRO, C.; AGUILAR-CABALLERO, A.J.; REYES-RAMÍREZ, R.R.; HOSTE, H.; CALDERONQUINTAL, J.A. In vitro anthelmintic effect of Acacia gaumeri, Havardia albicans and Quebracho tannin extracts on a Mexican strain of Haemonchus contortus L3 larvae. Tropical and Subtropical Agroecosystems, v.8, p.191-197, 2008. HESS, H.D.; MONSALVE, L.M.; LASCANO, C.E.; CARULLA, J.E.; DIAZ, T.E.; KREUZER, M. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Australian Journal of Agricultural Research, v.54, p.703-713, 2003. 66 HIXSON, J.L.; BINDON, K.A.; SMITH, P.A. Evaluation of Direct Phloroglucinolysis and Colorimetric Depolymerization Assays and Their Applicability for Determining Condensed Tannins in Grape Marc. Journal of Agricultural and Food Chemistry, v.63, p. 9954−9962, 2015. HOONG, Y.B.; PARIDAHA, M.T.; LUQMANB, C.A.; KOHC, M.P.; LOH, Y.F. Fortification of sulfited tannin from the bark of Acacia mangium with phenol–formaldehyde for use as plywood adhesive. Industrial Crops and Products. v.30, p.416-421, 2009. HOSTE, H. Adaptive physiological processes in the host during gastrointestinal parasitism. Int. Journal of Parasitology. v.31, p.231-244, 2001. HOSTE, H.; JACKSON, F.; ATHANASIADOU, S.; THAMSBORG, S.M.; HOSKIN, S. O. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends in Parasitology, v. 22, n. 6, p. 253- 261, 2006. HOLMES, P.H. Pathophysiology of nematode infections. University of Glasgow Veterinary Scholl, Bearsden Road, Glasgow, G61 (Scotland) U.K. p.443-451, 1987. HUANG, X.D.; LIANG, J.B.; TAN, H.Y.; YAHYA, R.; KHAMSEEKHIEW, B.; HO, Y.W. Molecular weight and protein binding affinity of Leucaena condensed tannins and their effects on in vitro fermentation parameters. Animal Feed Science and Technology, v.159, p.81-87, 2010. JOHNSON, K. A.; JOHNSON, D.E. Methane emissions from cattle. Journal of Animal Science, v. 73, p. 2483-2492, 1995. JONES, W.T.; BROADHURST, R.B.; LYTTLETON, J.W. The condensed tannins of pasture legume species. Phytochemistry, v.15, p.1407-1409, 1976. JONES, W.T.; MANGAN, J. L. Complexes of the condensed tannins of sainfoin (Onobrychis viciaefolia Scop) with fraction 1 leaf protein and with submaxillary mucoprotein and their reversal by PEG and pH. Journal of the Science of Food and Agriculture, v.28, p.126-136, 1977. KOTHARI, R.; SINGH, D.P.; TYAGI, V.V.; TYAGI, S.K. Fermentative hydrogen production – An alternative clean energy source. Renewable and Sustainable Energy Reviews, v.16, p. 2337– 2346, 2012. KUNG, L.; BRACHT, J. P.; TAVARES J.Y. Effects of various compounds on in vitro ruminal fermentation and production of sulfide. Animal Feed Science and Technology, v.84, p.69–81. 2000. LASCANO, C.E.; CÁRDENAS, E. Alternatives for methane emission mitigation in livestock systems. Revista Brasileira de Zootecnia, v.39, p.175-182, 2010. LELIS, R. C. C. Zur Bedeutung der Kerninhaltsstoffe obligatorisch verkernter Nadelbaumarten bei der Herstellung von feuchtebeständigen und biologisch resistenten Holzspanplatten, am Beispiel der Douglasie (Pseudotsuga menziesii Mirb. Franco). 175f. 67 Tese (Doutorado em Ciências Florestais). Forstliche Fakultät, Universität Göttingen, Göttingen, Alemanha, 1995. LEINMULLER, E.; MENKE, K.H. Tannine in Futtermittenln fur Wiederkauer. 1. Chemische Eigenschaften und Reaktionen mit Makromolekulen. Ubers Tierernahr, v.18, p.91–114, 1990. LIN, Y. M..; LIU, J. W.; XIANG, P.; LIN, P.; DING, Z. H.; STERNBERG, L.S. L. Tannins and nitrogen dynamics in mangrove leaves at different age and decay stages (Jiulong River Estuary,China). Hydrobiologia, v.583, p.285-295, 2007. LITTLEFIELD, K. A.; MUELLER, J. P.; MUIR J. P.; LAMBERT B. D. Correlation of Plant Condensed Tannin and Nitrogen Concentrations to White-Tailed Deer Browse Preferences in the Cross Timbers. Texas Journal of Agriculture and Natural Resources, v.24, p.1-7, 2011. LONGO, C.; HUMMEL, J.; LIEBICH, J.; BUENO, I.C.S. ; BURAUEL, P.; AMBROSANO, E.J.; BDALLA, A.L.; ANELE, U.Y. ; SÜDEKUM, K.H. Chemical characterization and in vitro biological activity of four tropical legumes, Styzolobium aterrimum L., Styzolobium deeringianum, Leucaena leucocephala and Mimosa caesalpiniae folia, as compared to a tropical grass, Cynodon spp for the use in ruminant diets. Czech Journal of Animal Science, v.57, p.255-264, 2012. LUCIANO, G.;VASTA, V.; MONAHAN, F. J.; LÓPEZ-ANDRÉS, P.; BIONDI, L.; LANZA M.; PRIOLO, A. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimusdorsi muscle from lambs fed a tannin-containing diet. Food Chemistry. v. 124, p.1036-1042, 2011. MAKKAR, H.P.S.; BLÜMMEL, M.; BECKER, K. In vitro effects and interactions of tannins and saponins and fate of tannins in rumen. Journal of the Science of Food and Agriculture, v.69, p.481-493, 1995. MAKKAR H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin rich feeds, Small Ruminant Research, v.49, p.241-256, 2003. MAKKAR, H.P.S.; VERCOE, P.E. Measuring Methane Production from Ruminants. p.138, 2007. MANE, C.; SOMMERER, N.; YALCIN, T.; CHEYNIER, V.; COLE, R.B.; FULCRAND, H. Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes. Analytical Chemistry, v.79, p.2239-2248, 2007. MANSFIELD, J.L.; CURTIS, P.S.; ZAK, D.R.; PREGITZER, K.S. Genotypic variation for condensed tannin production in trembling aspen (Populus tremuloides, Salicaceae) under elevated CO2 and in high and low fertility soil. American Journal of Botany, v.86, p.1154- 1159, 1999. 68 MARIE-MAGDELEINE, C.; MAHIEU, M.; PHILIBERT, L.; DESPOIS, P.; ARCHIMEDE, H. Effect of cassava (Manihot esculenta) foliage on nutrition, parasite infection and growth of lambs. Small Ruminant Research, v.93, p.10-18, 2010. MARIE-MAGDELEINE, C.; UDINO, L.; PHILIBERT, L.; BOCAGE, B.; ARCHIMEDE, H. In vitro effects of Musa x paradisiaca extracts on four developmental stages of Haemonchus contortus. Research in Veterinary Science, v.96, p.127-132, 2014. MATOS, F.J.A. Introdução a fitoquímica experimental. Edições UFC, Fortaleza. 126p. 1988. MBUGUA, D.M.; PELL, A.N.; FOX, D.G.; SCHOFIELD, P. The effects of proanthocyanidins from Calliandra calothyrsus and the alkaloid sparteine on in vitro fiber digestion. Animal Feed Science and Technology, v. 121, p. 89-107, 2005. McALLISTER, T.A.; BAE, H.D.; JONES, G.A.; CHENG, K.J. Microbial attachment and feed digestion in the rumen. Journal Animal Science, v.72, p.3004–3018, 1994. McALLISTER T.A.; MARTINEZ T.; BAE H.D.; MUIR A.D.; YANKEL.J.; JONES G.A. Characterization of condensed tannins purified from legume forages: chromophore production, protein precipitation, and inhibitory effects on cellulose digestion. Journal of Chemical Ecology, v.31, p.2049-2063, 2005. McDOUGALL, E.I. The composistion and output of a sheep’s saliva. Biochemical Journal, v.43, p.99–109, 1947. McGEOUGH, E.J.; O'KIELY, P.; HART, K.J.; MOLONEY, A.P.; BOLAND, T.M; KENNY, D.A. ‘Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content. Journal of Animal Science, v. 88, p. 2703-2716, 2010. McNABB, W.C.; WAGHORN, G.C.; BARRY, T.N.; SHELTON, I.D. The effect of condensed tannins in Lotus pedunculatus on the digestion and metabolism of methionine, cysteine and inorganic sulfur in sheep. British Journal of Nutrition. v. 70, p.647-661,1993. McSWEENEY, C. S.; PALMER, B.; BUNCH, R. Effect of the tropical forage calliandra on microbial protein synthesis and ecology in the rumen. Journal of Applied Microbiology, v. 90, p.78-88, 2001. MEALE, S. J.; MCALLISTER, T.A.; BEAUCHEMIN, K.A.; HARSTAD, O.M.; CHAVES, A.V. Strategies to reduce greenhouse gases from ruminant livestock. Acta Agricultura e Scandinavica, v. 62, p.199-211, 2012. MEZZOMO, R.; PAULINO, P.V.R.; DETMANN, E. Influence of condensed tannin on intake, digestibility and efficiency of protein utilization in beef steers fed high concentrate diet. Livestock Science, v. 141, p.1-11, 2011. MIN, B. R.; BARRY, T.N.; ATTWOOD, G.T.; McNABB, W.C. The effect of condensed tannins on thenutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology, v. 106, p. 3-19, 2003. 69 MINHO, A.P.; BUENO, I. C. S.; GENNARI, S. M.; JACKSON, F.; ABDALLA, A. L. Effect of Acacia molissima tannin extract on the control of gastrointestinal parasites in sheep. Animal Feed Science and Technology, v.147, p.172-181, 2008. MINHO, A.P.; FILIPPSEN, L.F.; AMARANTE, A.F.T.; ABDALLA, A.L. Efficacy of condensed tannin present in acacia extract on the control of Trichostongylus colubriformis in sheep. Ciência Rural, v. 40, p. 1360-1365, 2010. MOLE, S.; BUTLER, L.G.; IASON, G. Defense against tannin in herbivores: a survey for proline rich salivary proteins in mammals. Biochemical Systematics and Ecology, v.18, p.287-293, 1990. MOLAN, A.L.; DUNCAN, A.J.; BARRY, T.N.; MCNABB, W.C. Effect of condensed tannins and crude sesquiterpene lactones extracted from chicory on the motility of larvae of deer lungworms and gastrointestinal nematodes. Parasitology International, v.52, p.209- 218, 2003. MONTEIRO, J.E.B.A.; SENTELHAS, P.C.; CHIAVEGATO, E.J.; GUISELINI, C.; SANTIAGO, A.V.; PRELA, A. Estimulação da área foliar do algodoeiro por meio de dimensões e massa das folhas. Bragantia, v.64, p. 15-24, 2005. MORAIS, J.A.S.; BERCHIELLI, T.T.; REIS, R.A. Aditivos. In: Berchielli, T.T.; Pires, A.V.; Oliveira, S.G. (Eds.), Nutrição de Ruminantes. Funep, Jaboticabal, p. 583. 2006. MOREIRA, P.C.; MENDONÇA, A.C.; MARTINS, A.P.; WASCHECK, R.C.; SOUZA, P.R.; DUTRA, A.R.; GRANDSIRE, C.; REZENDE, P.L.P.; CARDOSO, J.R.; BENETTI, E.J.; SILVA, M.S.B. Avaliação do pH do fluido ruminal de vacas leiteiras. Estudos, Goiânia, v. 36, p. 1201-1218, 2009. MOSS, A.R.; JOUANY, J.P.; NEWBOLD, J. Methane production by ruminants: its contribution to global warming. Annales de Zootechnie, v. 49, p. 231-253, 2000. MUELLER-HARVEY. Review. Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture, v. 86, p.2010-2037, 2006. MUETZEL, S.; BECKER, K. Extractability and biological activity of tannins from various tree leaves determined by chemical and biological assays as affected by drying procedure. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, v. 125, p. 139-149, 2006. MUIR, J. P. The multi-faceted role of condensed tannins in the goat ecosystem.Small Ruminant research, v.98, p. 115-120, 2011. MUPEYO, B.; BARRY, T.N.; POMROY, W.E.; RAMÍREZ-RESTREPO, C.A.; LÓPEZVILLALOBOS, N.; PERNTHANER, A. Effects of feeding willow (Salix spp.) upon death of established parasites and parasite fecundity. Animal Feed Science and Technology, v.164, p.8-20, 2011. NAUMANN, H. D.; TEDESCHI, L. O.; MUIR, J. P.; LAMBERT, B. D.; KOTHMANN, M. M. Effect of molecular weight of condensed tannins from warm-season perennial legumes on 70 ruminal methane production in vitro. Biochemical Systematics and Ecology, v.50, p.154- 162, 2013. NAUMANN, H.D.; ARMSTRONGC, S.A.; LAMBERT, B.D.; MUIR, J.P.; TEDESCHID, L.O.; KOTHMANN, M.M. .Effect of molecular weight and concentration of legume condensed tannins on in vitro larval Migration inhibition of Haemonchus contortus, Veterinary Parasitology, v.199, p.93- 98, 2014. NAUMANN, H.D.; HAGERMAN, A.E.; LAMBERT, B.D.; MUIR, J.P.; TEDESCHI, L.O.; KOTHMANN, M.M. Molecular weight and protein-precipitating ability of condensed tannins from warm-season perennial legumes. Journal of Plant Interactions, v.9, p.212-219, 2014. NAUMANN, H.D.; LAMBERT, B.D.; ARMSTRONG, S.A.; FONSECA, M.A.; TEDESCHI, L.O.; MUIR, J. P.; ELLERSIECK, M.R. Effect of replacing alfalfa with panicled-tick clover or sericea lespedeza in corn-alfalfa-based substrates on in vitro ruminal methane production. Journal of Dairy Science, v. 98, p.3980-3987, 2015. NEPOMUCENO, D.D.; ALMEIDA, J.C.C.; CARVALHO, M.G.; FERNANDES, R.D.; JUNIOR, F.E.A.C. Classes of secondary metabolites identified in three legume species. Revista Brasileira de Zootecnia, v.42, p.700-705, 2013. NOVOBILSKÝ, A.; STRINGANO, E.; HAYOT CARBONERO, C.; SMITH, L.M.J.; ENEMARK, H.L.; MUEL-LER-HARVEY, I.; THAMSBORG, S.M. In vitro effects of extracts and purified tannins of sainfoin (Onobrychis viciifolia) against cattle nematodes. Veterinary Parasitology, v.196, p.532-537, 2013. NOZELLA, E. F. Valor nutricional de espécies arbóreo-arbustivas nativas da caatinga e utilização de tratamentos físicos-químicos para redução do teor de taninos. 2006. 99 f. Tese (Doutorado em Energia Nuclear na Agricultura) - Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 2006. NOZELLA, E.F., 2001. Determinação de taninos em plantas com potencial forrageiro para ruminantes. Centro de energia Nuclear na Agricultura. ESALQ, Piracicaba, p. 58. OLIVEIRA, S.G.; BERCHIELLI, T.T. Potencialidades da utilização de taninos na conservação de forragens e nutrição de ruminantes-revisão, Archives of Veterinary Science, v.12, p.1-9, 2007. OLIVEIRA, S. G.; BERCHIELLI, T.T.; NATARELLI, B.; MALHEIROS, E.B. Valor alimentício e aspectos econômicos de dietas com variação no teor de tanino e nível protéico em bovinos de corte. Revista Ceres, v. 55, p. 467-475, 2008. OLIVEIRA, M. V.; MOURA, M. S.; BARBOSA, F. C. Avaliação comparativa do método Famacha, volume globular e OPG em ovinos. PUBVET, v. 5, n. 7, Ed. 154, Art. 1039, 2011. OTERO, M.J.; HIDALGO, L.G. Taninos condensados en especies forrajeras de clima templado: efectos sobre productividad de rumiantes afectados por parasitosis gastrointestinales. Livestock Research for Rural Development, v.16, p.1-9, 2004. 71 PALMER, B.; MCSWEENEY, C.S. Tannins in Calliandra calothyrsus: effect of polyethylene glycol (PEG) and an evaluation of 19 accessions. In: Brooker, J.D. (Ed.), Tannins in ivestock and Human Nutrition. Proceedings of the International Workshop, Adelaide, Australia, May 31–June 2, 1999. ACIAR Proceedings, n. 92, p. 36–39, .2000. PATRA, A.K.; SAXENA, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, v.91, p.24-37, 2011. PELLIKAAN, W.H.; HENDRIKS, G.; UWIMANA, L.J.G.M.; BONGERS, P.M.; BECKER, J.W. CONE. A novel method to determine methane production simultaneously during in vitro gas production measurements. Proc. 4th Greenhouse Gases Anim. Agric. p. 228, 2010. PEREIRA, L.G.R.; MACHADO, F.S.; CAMPOS, M.M. Avanço conceitual em diagnóstico e estratégias de mitigação de metano entérico em bovinos de leite no Brasil. In: SIMPÓSIO NACIONAL DE BOVINOCULTURA LEITEIRA, 3., Viçosa, MG. Anais...Viçosa, 2011. p. 75-122. PONCET, C.; RÉMOND, D. Rumen digestion and intestinal nutrient flows in shepp consuming pea seeds: the effect of extrusion or chestnut tannin addition. Animal Research, v.51, p.201-216, 2002. PORDOMINGO, A. J.; VOLPI LAGRECA, G.; STEFANAZZI, I. N.; PORDOMINGO, A. B. Efecto de lainclusión de taninos versus monensina y de soja crudaen dietas basadasen grano entero, sin fibra larga en engorde de vaquillonas a corral. Boletín de DivulgaciónTécnica, EEA Anguil, n. 90, 2006. PORTER, L.J.; WOODRUFFE, J. Haemanalysis: The relative astringency of proanthocyanidin polymers. Phytochemistry, v.23, p.1255-1256, 1984. POSSENTI, R.A.; FRANZOLIN, R.; SCHAMMAS, E. A. Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos. Revista Brasileira de Zootecnia, v.37, p.1509-1516, 2008. PRICHARD, R.K. Anthelmintic resistance.Veterinary Parasitology, v.54, p.259-268, 1994. PUCHALA, R.; MIN, R.B.; GOETSCH, A.L. The effect of a condensed tannin-containing forage on methane emission by goats. Journal of Animal Science, v.83, p.182-186, 2005. QUIJADA, J.; FRYGANAS, C.; ROPIAK, H.M.; RAMSAY, A.; MUELLER-HARVEY, I.; HOSTE, H. Anthelmintic activities against Haemonchus contortus or Trichostrongylus colubriformis from small ruminants are influenced by structural features of condensed tannins. Journal of Agricultural and Food Chemistry, v.63, p.6346-6354, 2015. RAMÍREZ-RESTREPO, C. A.; BARRY, T.N. Alternative temperate 71 forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Animal Feed Science & Technology, v. 120, p.179-201, 2005. REED, J.D. Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science, v.73, p.1516-1528, 1995. 72 RUSSELL, J.B.; O'CONNOR, J.D.; FOX, D.G. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal Animal Science, v.70, p.3551-3561, 1992. SANTOS, S.C.; COSTA, W.F.; BATISTA, F.; SANTOS, L.R.; FERRI, P.H.; FERREIRA, H.D. Seasonal variation in the contento os tannins in barks os barbatimão species. Revista Brasileira de Farmacognosia, v.16, p.552-556, 2006. SCALBERT, A. Antimicrobial properties of tannins. Phytochemistry v.30, p.3875-3883, 1991. SCHOFIELD, P.; MBUGUA, D.M.; PELL, A.N. Analysis of condensed tannins: a review. Animal Feed Science and Technology, v.91, p.21-40, 2001. SILANIKOVE, N.; PEREVOLOTSKY, A.; PROVEZA, F.D. Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Animal Feed Science and Technology, v.91, p.69-81, 2001. SINGH, B.; BHAT, T.K.; SINGH, B. Potential therapeutic applications of some antinutritional plant secondary metabolites. Journal of Agricultural and Food Chemistry, v.51, p.5579-5597, 2003. STRAIN, S.A.J.; STEAR, M.J. The influence of protein supplementation on the immune response to Haemonchus contortus. Parasite Immunology, v. 23, p. 527-531, 2001. STRADIOTTI JUNIOR, D.; QUEIROZ, A.C.; LANA, R.P. Ação do extrato de própolis sobre a fermentação in vitro de diferentes alimentos pela tcnica de produção de gases. Revista Brasileira de Zootecnia, v. 33, p. 1093-1099, 2004. STÜRM, C.D.; TIEMANN, T.T.; LASCANO, C.E.; KREUZER, M.; HESS, H.D. Nutrient composition and in vitro ruminal fermentation of tropical legume mixtures with costrasting tannin contents. Animal Feed Science and Technology, v.138, p.29-46, 2007. SYKES, A.R. Parasitism and production in farm animals. Animal Production, v.59, p.155- 72, 1994. TERRILL, T.H.; ROWAN, A.M.; DOUGLAS, G.B.; BARRY, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. Journal of the Science of Food and Agriculture, v.58, p.321–329, 1992. TERRILL, T.H.; WAGHORN, G.C.; WOOLLEY, D.J.; MCNABB, W.C.; BARRY, T.N. Assay and digestion of14C labelled condensed tannins in the gastrointestinal tract of sheep. British Journal of Nutrition, v.72, p.467–477, 1994. TIEMANN, T.T.; LASCANO, C. E.; WETTSTEIN, H.R.; MAYER, A. C.; KREUZER, M.; HESS, H.D. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal, v.2, p.790–799, 2008. 73 TORAL, P. G.; HERVÁS, G.; BICHI, E.; BELENGUER, Á., FRUTOS, P. Tannins as fed additives to modulate ruminal biohydrogenation: effects on animal performance, milk fatty acid composition and ruminal fermentation in dairy ewes fed a diet containing sunflower oil. Animal Feed Science and Technology, v.164, p.199–206, 2011. VAN SOEST, P.J. Nutricional ecology of the ruminant. 2ed. Ithaca: Cornell Press/Constock Publish. p.476, 1994. VAN SOEST, P.J.; ROBERTSON, J.B.; LEWIS, B.A. Methods for dietary fibre, neutral detergent fibre and non-starch carbohydrate in relation to animal nutrition. Journal of Dairy Science, v.74, p.3583-3597, 2001. VAN WYK, J.A.; BATH, G.F. The FAMACHA system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Veterinary Research, v. 33, p.509-529, 2002. VIEIRA, L.S.; CAVALCANTE, A.C.R.; PEREIRA, M.F.; DANTAS, L.B.; XIMENES, L.J.F. Evaluation of anthelmintic efficacy of plants avaivable in Ceará State, Northeast Brazil, for the control of goat gatrointestinal nematodes. Revue Medicine Veterinaire, v.150, p.447- 52, 1999. VIEIRA, L. S. Alternativas de controle da verminose gastrintestinal dos pequenos ruminantes. Circular Técnica, n. 29, p. 1-10, EMBRAPA-CNPC, Sobral, CE, 2003. VIEIRA, L.S. Métodos alternativos de controle de nematóides gastrintestinais em caprinos e ovinos. Tecnologia & Ciência Agropecuária, v.2, p.49-56, 2008. VIEIRA, M.C.; LELIS, R.C.C.; RODRIGUES, N.D.R. Propriedades químicas de extratos tânicos da casca de pinus oocarpa e avaliação de seu emprego como adesivo. Cerne, v. 20, p. 47-54, 2014. VETELI, T. O.; MATTSON, W. J.; NIEMELÄ, P.; JULKUNEN-TIITTO, R.; KELLOMÄKI, S.; KUOKKANEN, K.; LAVOLA, A. Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees. Journal of Chemical Ecology, v.33, p.287–296, 2007. VON SON-DE FERNEX, E.; ALONSO-DIAZ, M. A.; VALLES-DE La MORA, B.; CAPETILLO-LEAL, C. M. In vitro anthelmintic activity of five tropical legumes on the exsheathment and motility of Haemonchus contortus infective larvae. Experimental Parasitology, v. 131, p. 413-418, 2012. WAGHORN, G.C.; JONES, W.T.; SHELTON, I.D.; MCNABB, W.C. Condensed tannins and the nutritive value of herbage. Proceedings of the New Zealand Grassland Association, v.51, p.171-176, 1990. WAGHORN, G.C.; McNABB, W.C. Consequences of plant phenolic compounds for productivity and health of ruminants. Proceedings of the Nutrition Society, v.62, p.383-392. 2003. 74 WHITNEY, A.E.; LEE, D.R.; KLEIN, C.B.; SCOTT. A modified in vitro larvae migration inhibition assay using rumen fluid to evaluate Haemonchus contortus viability. Veterinary Parasitology, v.176, p. 217–225, 2011. WILLIAMS, V.M.; PORTER, L.J.; HEMINGWAY, R.W. Molecular weight profiles of proanthocyanicin polymers. Phytochemistry, v.22, p.569-572,1983. WILLIAMS, C. M.; EUN, J. S.; MACADAM, J.W.; YOUNG, A.J.; FELLNER, V.; MIN, B. R. Effects of forage legumes containing condensed tannins on methane and ammonia production in continuous cultures of mixed ruminal microorganisms. Animal Feed Science and Technology, v.166-167, p.364-372, 2011. WISSING, A. The utilization of bark II: Investigation of the Stiasny-reaction for the precipitation of polyphenols in Pine bark extractives. Svensk Papperstidning. v.58, p. 745- 750, 1955. WOLFE, R.M.; TERRILL, T.H.; MUIR, J.P. Drying method and origin of standard affect condensed tannin (CT) concentrations in perennial herbaceous legumes using simplified butanol-HCl CT analysis. Journal of the Science of Food and Agriculture, v. 88, p.1060- 1067, 2008. WOODWARD, S.L., WAGHORN, G.C., ULYATT, M.J., LASSEY, K.R., Early indications that feeding Lotus will reduce methane emission from ruminants. The New Zealand Society of Animal Production, v, 61, p. 23–26. 2001. YANAGIDA, A.; SHOJI, T.; KANDA, T. Characterization of polymerized polyphenols by size-exclusion HPLC. Bioscience, Biotechnology, and Biochemistry, v.66, p.1972-1975, 2002. YANG, C.M.J.; RUSSELL, J.B. The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria. Journal of Animal Science, v.71, p.3470-3476, 1993. YUNES, R.A.; PEDROSA, R.C.; CECHINEL-FILHO, V. Fármacos e fitoterápicos: a necessidade do desenvolvimento da indústria de fitoterápicos e fitofármacos no Brasil. Química Nova, v.24, p.147-52, 2001. ZIMMER, N.; CORDESSE, R. Influence des tanins sur la valeur nutritive des aliments des ruminants. INRA Productions Animales, v.9, p.167-179, 1996. | por |
dc.subject.cnpq | Zootecnia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/6120/2016%20-%20Tatiana%20Pires%20Pereira.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/20966/2016%20-%20Tatiana%20Pires%20Pereira.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/27239/2016%20-%20Tatiana%20Pires%20Pereira.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/33672/2016%20-%20Tatiana%20Pires%20Pereira.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/40046/2016%20-%20Tatiana%20Pires%20Pereira.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/46458/2016%20-%20Tatiana%20Pires%20Pereira.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/52830/2016%20-%20Tatiana%20Pires%20Pereira.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/59280/2016%20-%20Tatiana%20Pires%20Pereira.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/2102 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-10-18T12:35:34Z No. of bitstreams: 1 2016 - Tatiana Pires Pereira.pdf: 2546753 bytes, checksum: c1673b0ae2c6812a3f60faa79b5fae75 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2017-10-18T12:35:34Z (GMT). No. of bitstreams: 1 2016 - Tatiana Pires Pereira.pdf: 2546753 bytes, checksum: c1673b0ae2c6812a3f60faa79b5fae75 (MD5) Previous issue date: 2016-07-27 | eng |
Appears in Collections: | Doutorado em Zootecnia |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2016 - Tatiana Pires Pereira.pdf | Tatiana Pires Pereira | 2.49 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.