Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/12450
Full metadata record
DC FieldValueLanguage
dc.creatorMelo, Emanuela Paula
dc.date.accessioned2023-11-19T23:03:08Z-
dc.date.available2023-11-19T23:03:08Z-
dc.date.issued2018-08-29
dc.identifier.citationMELO, Emanuela Paula. Desempenho zootécnico de juvenis de camarão de água doce Macrobrachium rosenbergii em sistema de bioflocos. 2018. 106 f.. Tese(Doutorado em Zootecnia) - Instituto de Zootecnia - Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2018 .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/12450-
dc.description.abstractBiofloc technology has become available as an alternative to promote a sustainable and environmentally friendly aquaculture, thus improving water quality and production indexes. Several studies have been performed with focus on penaeidae shrimp rearing in biofloc systems, however, few studies are focused on the freshwater prawns Macrobrachium rosenbergii. Therefore, the general aim of this study is to assess the zootechnical performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc system and collect information, that makes possible to improve commercial production technics on this species in heterotrophic systems. In order to achieve that, three experiments were performed at the Marine Biological Station of Federal University of Rio de Janeiro, Mangaratiba, RJ (MBS). The juveniles of M. rosenbergii were purchased from Farm Santa Helena, located in Silva Jardim, Rio de Janeiro, then, the juveniles were brought to the MBS and acclimated for 7 days in cisterns with treated freshwater, under continuous aeration and fed with commercial diets of 35% CP. In the first experiment the influences of stocking densities (150 e 250 m2), and sources of organic carbon (sugarcane molasses, brewery residue) were assessed regarding the performance of M. rosenbergii juveniles in biofloc systems, during a period of 43 days. The results demonstrate that it is possible to stock the animals in densities of 150m2 and use brewery residue as a source of organic carbon in order to improve water quality and zootechnical performance. In the second experiment, three commercial diets were evaluated (30, 35 e 40% CP) for feeding M. rosenbergii in biofloc systems, during 44 days, in order assess the possibility of using food with lower crude protein levels in the diets of juveniles. Results demonstrate that it is possible to reduce protein levels in commercial diets of Macrobrachium rosenbergii prawns from 40 to 30% CP in biofloc systems, however, further studies are needed regarding water quality monitoring, to improve the productivity indexes. In the third experiment, the effect of using artificial substrate for the rearing of M. rosenbergii in biofloc systems was assessed for 44 days. The addition of artificial substrate in biofloc systems do not improve the process of water nitrification and centesimal composition of the tissue of prawn M. rosenbergii. The decrease in water quality and the high levels of total suspended solids in biofloc systems with artificial substrates, do not improve survival and feed conversion of prawns, when compared with clear water systems, clear-water systems with artificial substrate, and biofloc systems.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMelaço de Cana-de-Açúcarpor
dc.subjectResíduo de Cervejariapor
dc.subjectSistema Heterotróficopor
dc.subjectSugarcane Molasseseng
dc.subjectBrewery Residueeng
dc.subjectHeterotrophic Systemseng
dc.titleDesempenho zootécnico de juvenis de camarão de água doce Macrobrachium rosenbergii em sistema de bioflocospor
dc.title.alternativeZootechnical performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc systemeng
dc.typeTesepor
dc.contributor.advisor1Oshiro, Lidia Miyako Yoshii
dc.contributor.advisor1ID987.007.668-87por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8112019853480327por
dc.contributor.advisor-co1Pereira, Marcelo Maia
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9342701451815217por
dc.contributor.referee1Oshiro, Lidia Miyako Yoshii
dc.contributor.referee2Ramos, Leonardo Rocha Vidal
dc.contributor.referee3Keunecke, Karina Annes
dc.contributor.referee4Santos, Alejandra Filippo Gonzalez Neves dos
dc.contributor.referee5Sakabe, Róberson
dc.creator.ID001.712.253-84por
dc.creator.Latteshttp://lattes.cnpq.br/2233872265236742por
dc.description.resumoA tecnologia de bioflocos surgiu como alternativa para promover uma aquicultura ambientalmente amigável e sustentável, melhorando a qualidade de água e os índices de produção. Diversos estudos já foram realizados com camarões peneídeos criados em bioflocos, entretanto estudos com o camarão de água doce Macrobrachium rosenbergii são escassos. Portanto, o objetivo geral desse estudo foi avaliar o desempenho zootécnico de juvenis do camarão de água doce M. rosenbergii no sistema de bioflocos e obter informações, que possibilitem aprimorar as técnicas para a produção comercial dessa espécie em sistema heterotrófico. Assim, foram realizados três experimentos na Estação de Biologia Marinha da UFRRJ, Mangaratiba, RJ (EBM). Os juvenis de M. rosenbergii foram adquiridos da Fazenda Santa Helena em Silva Jardim, RJ, trazidos para EBM e aclimatados durante 7 dias em tanques com água doce tratada, sob aeração contínua e alimentados com dieta comercial de 35% PB. No primeiro experimento foi avaliada a influência das densidades de estocagem (150 e 250 m2) e de fontes de carbono orgânico (melaço de cana-de-açúcar, resíduo de cervejaria) no desempenho dos juvenis M. rosenbergii em sistema de bioflocos, durante um período 43 dias. Os resultados demonstraram que é possível estocar os animais em densidades de 150 m2 e utilizar o resíduo de cervejaria como fonte de carbono orgânico para melhorar a qualidade de água e os índices zootécnicos. No segundo experimento foram avaliadas três diferentes dietas comercias (30, 35 e 40% PB) na alimentação do M. rosenbergii em sistema de bioflocos, afim de verificar a possibilidade da utilização de rações com menores níveis de proteína bruta na dieta dos juvenis, ao longo de 44 dias. Os resultados demonstraram a possiblidade de reduzir o nível proteico da dieta comercial do camarão Macrobrachium rosenbergii de 40 para 30% PB em sistema de bioflocos, entretanto são necessários mais estudos quanto ao monitoramento da qualidade da água, para melhorar os índices de produção. Já, no terceiro experimento foi avaliado o efeito do uso de substratos artificiais em associação com o cultivo do M. rosenbergii em sistema de bioflocos, durante 44 dias. A adição de substratos artificiais em sistema de bioflocos não melhoraram o processo de nitrificação da água e composição centesimal do tecido do camarão M. rosenbergii. A degradação da qualidade de água e os elevados níveis de sólidos suspensos totais no sistema de bioflocos na presença de substratos artificiais, não permitiram melhoria na sobrevivência e conversão alimentar do camarão, quando comparado aos sistemas de água clara, sistemas de água clara na presença de substratos artificiais e sistemas de bioflocospor
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Zootecniapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Zootecniapor
dc.relation.referencesAHMAD, I.; RANI, A. B.; VERMA, A. K.; MAQSOOD, M. Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International, v. 25, n. 3, p. 1215-1226, 2017. ANAND, P. S.; KOHLI, M. P. S.; ROY, S. D.; SUNDARAY, J. K.; KUMAR, S.; SINHA, A.; KUMAR SUKHAM, M. Effect of dietary supplementation of periphyton on growth performance and digestive enzyme activities in Penaeus monodon Aquaculture, v. 392, p. 59-68, 2013. ARNOLD, S. J.; COMAN, F. E.; JACKSON, C. J.; GROVES, S. A. High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density. Aquaculture, v. 293, n. 1-2, p. 42-48, 2009. ASADUZZAMAN, M.; RAHMAN, M. M.; AZIM, M. E.; ISLAM, M. A.; WAHAB, M. A.; VERDEGEM, M. C. J.; VERRETH, J. A. J. Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, v. 306, n. 1- 4, p. 127-136, 2010. ASADUZZAMAN, M.; WAHAB, M. A.; VERDEGEM, M. C. J.; HUQUE, S.; SALAM, M. A.; AZIM, M. E. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, v. 280, n. 1-4, p. 117-123, 2008. AVNIMELECH, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, v. 264, n. 1-4, p. 140-147, 2007. AZIM, M. E. e LITTLE, D. C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus) Aquaculture, v. 283, p. 29-35, 2008. AZIM, M. E.; LITTLE, D. C.; BRON, J. E. Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresource Technology, v. 99, n. 9, p. 3590-3599, 2008. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O.; EMERENCIANO, M.; DE ABREU, L.; WASIELESKY JR, W. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, v. 16, n. 2, p. 163-172, 2010. BALLESTER, E. L. C.; MARZAROTTO, S. A.; SILVA DE CASTRO, C.; FROZZA.; A. PASTORE, I.; ABREU, P. C. Productive performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc system. Aquaculture Research, v. 48, n. 9, p. 4748- 4755, 2017. 25 BALLESTER, E. L. C.; WASIELESKY, W. J.; CAVALLI, R. O.; SANTOS, M. H. S.; ABREU, P. C. O. V. D. Influência do biofilme no crescimento do camarão-rosa Farfantepenaeus paulensis em sistema de berçário, Atlântica, v. 25, n. 2, p. 117- 122, 2003. BARROS, H. P. e VALENTI, W. C. Food intake of Macrobrachium rosenbergii during larval development. Aquaculture, v. 216, p. 165-176, 2003. BECERRA-DORAME, M. J.; MARTÍNEZ-PORCHAS, M.; MARTÍNEZ-CÓRDOVA, L. R.; RIVAS-VEGA, M. E.; LOPEZ-ELIAS, J. A.; PORCHAS-CORNEJO, M. A. Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) intensively pregrown in microbial heterotrophic and autotrophic-based systems. The Scientific World Journal, 2012. BERTINI, G. e VALENTI, W. C. Polo de biotecnologia da mata atlântica: relatos de pesquisas e outras experiências vividas no vale do Ribeira, In: BERTINI, G. & VALENTI, W. C. (Ed). Importância econômica dos Camarões-de-água-doce, Unesp, Jaboticabal, 2010. cap. 08. BOOCK, M. V.; DE ALMEIDA MARQUES, H. L.; MALLASEN, M.; BARROS, H. P.; MORAES-VALENTI, P.; VALENTI, W. C. Effects of prawn stocking density and feeding management on rice–prawn culture. Aquaculture, v. 451, p. 480-487, 2016. BURFORD, M. A.; THOMPSON, P. J.; MCINTOSH, R. P.; BAUMAN, R. H.; PEARSON, D. C. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, v. 232, n. 1-4, p. 525-537, 2004. CAVALLI, R. O.; TAMTIN, M.; LAVENS, P.; SORGELOOS, P. Variations in lipid classes and fatty acid content in tissues of wild Macrobrachium rosenbergii de Man/ females during maturation. Aquaculture, v. 193, p. 311- 324, 2001. CHAVEZ, H. M. Effects of Artificial Substrate on Growth Performance, Survival and Production of Freshwater Prawn, Macrobrachium rosenbergii (de Man 1879) in Cages in Laguna de Bay, Philippines. Asian Fisheries Science, v. 28, n. 4, p. 154-16, 2015. CHEN, S. M. e CHEN, J. C. Effects of pH on survival, growth, molting and feeding of giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, v. 218, n. 1-4, p. 613-623, 2003. CHENG, W.; CHEN, S. M.; WANG, F. I.; HSU, P. I.; LIU, C. H.; CHEN, J. C. Effects of temperature, pH, salinity and ammonia on the phagocytic activity and clearance efficiency of giant freshwater prawn Macrobrachium rosenbergii to Lactococcus garvieae. Aquaculture, v. 219, n. 1-4, p. 111-121, 2003. COELHO, P. A.; PORTO, M. R.; SOARES, C. M. A. Cultivo de camarões do gênero Macrobrachium bate (Decapoda, Palaemonidae) no Brasil. Rio Grande do Norte: Emparn, n. 6, 1981. COYLE, S. e TIDWELL, J. Effect of different feeds and feeding technologies on prawn production. World Aquaculture, 2003. 26 COYLE, S.; TIDWELL, J. H.; VANARNUM, A.; BRIGHT, L. A. A comparison of two feeding technologies in freshwater prawns, Macrobrachium rosenbergii, raised at high biomass densities in temperate ponds. Journal of Applied Aquaculture, v. 14, n. 1-2, p. 125- 135, 2003. CRAB, R.; AVNIMELECH, Y.; DEFOIRDT, T., BOSSIER, P.; VERSTRAETE, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, v. 270, n. 1-4, p. 1-14, 2007. CRAB, R.; CHIELENS, B.; WILLE, M.; BOSSIER, P.; VERSTRAETE, W. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, v. 41, n. 4, p. 559-567, 2010. CRAB, R.; DEFOIRDT, T.; BOSSIER, P.; VERSTRAETE, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, v. 356-357, p. 351-356, 2012. CUVIN‐ARALAR, M. L. A.; ARALAR, E. V.; LARON, M.; ROSARIO, W. Culture of Macrobrachium rosenbergii (De Man 1879) in experimental cages in a freshwater eutrophic lake at different stocking densities. Aquaculture Research, v. 38, n 3, p. 288-294, 2007. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T.; BOON, N.; VERSTRAETE, W. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, v. 277, n. 3-4, p. 125- 137, 2008. DECAMP, O.; CONQUEST, L.; CODY, J.; FORSTER, I.; TACON, A. G. Effect of shrimp stocking density on size‐fractionated phytoplankton and ecological groups of ciliated protozoa within zero‐water exchange shrimp culture systems. Journal of the World Aquaculture Society, v. 38, n. 3, p. 395-406, 2007. DOMINGOS, J. A. S. e VINATEA, L. Efeito do uso de diferentes quantidades de substratos artificiais na engorda do camarão marinho Litopenaeus vannamei (Boone, 1931), em um sistema de cultivo semi-intensivo. Boletim do Instituto de Pesca, v. 34, n. 1, 2008. DUBE, M. A.; TREMBLAY, A. Y.; LIU. J. Biodiesel production using a membrane reactor. Bioresource. Technology, v. 98, p. 639-647, 2007. EBELING, J. M. e TIMMONS, M. B. Stoichiometry of ammonia-nitrogen removal in zeroexchange systems. World aquaculture, v. 38, n. 2, p. 22- 27, 2007. EL-SHERIF, M. S. e ALI MERVAT, A. M. Effect of Rearing Sytems (Mono - and Poly – Culture) on the performance of Freshwater Prawn (M. rosenbergii) Juveniles. Journal of Fisheries and Aquatic Science, v. 4, n. 3, p 117-128, 2009. EMERENCIANO, M. G. C.; WASIELESKY JR, W.; SOARES, R. B.; BALLESTER, E. C.; IZEPPI, E. M.; CAVALLI, R. O. Crescimento e sobrevivência do camarão-rosa (Farfantepenaeus paulensis) na fase de berçário em meio heterotrófico. Acta Scientiarum Biological Sciences, Maringá, v. 29, n. 1, p. 1-7, 2007. 27 EMERENCIANO, M.; BALLESTER, E. L.; CAVALLI, R. O.; WASIELESKY, W. Biofloc technology application as a food source in a limited water Exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1871) Aquaculture Research, v. 43, n. 3, p. 447- 457, 2012. FAO, Food and Agricultural Organization of the United Nations: The state of world fisheries and aquaculture. Rome: FAO, 2016, 200 p. FAO. Fishstat J, version 2.11.4. Rome: FAO (2015). FAO. Fishstat P, version 2.30. Rome. FAO (2016). FERREIRA, L. M.; LARA, G.; WASIELESKY JR, W.; ABREU, P. C. Biofilm versus biofloc: Are artificial substrates for biofilm production necessary in the BFT system?. Aquaculture international, v. 24, n. 4, p. 921-930, 2016. FÓES, G. K.; FRÓES, C.; KRUMMENAUER, D.; POERSCH, L.; WASIELESKY, W. J. Nursery of pink shrimp Farfantepenaeus paulensis in biofloc technology culture system: survival and growth at different stocking densities. Journal of Shellfish Research, v. 30, n. 2, p. 367-373, 2011. FRÓES, C.; FÓES, G.; KRUMMENAUER, D.; POERSCH, L. H.; JUNIOR, W. W. Densidade de estocagem na engorda de camarão-branco cultivado em sistema de biofloco. Pesquisa Agropecuária Brasileira, v. 48, n. 8, p. 878-884, 2003. FUGIMURA, M. M. S.; FLOR, H. R.; MELO, E. P. DE.; COSTA, T. V.; WASIELESKY, W.; OSHIRO, L. M. Y. Brewery residues as a source of organic carbon in Litopenaeus schmitti white shrimp farms with BFT systems. Aquaculture International, v. 23, n. 2, p. 509-522, 2015. GANDINI, F. A.; JÚNIOR, J. R. D. O. N.; MEDEIROS, C. S.; OSHIRO, L. M. Y.; SANT’ANA, N. FARIA. Avaliação de diferentes fontes de carboidratos para o sistema de bioflocos e crescimento do camarão branco. Boletim do Instituto de Pesca, v. 42, n. 4, p. 831-843, 2017. HABASHY, M. M.; SHARSHAR, K. M.; HASSAN, M. M. S. Morphological and histological studies on the embryonic development of the freshwater prawn, Macrobrachium rosenbergii (Crustacea, Decapoda). The Journal of Basic & Applied Zoology, v. 65, p. 157- 165, 2012. HASAN, M. N.; RAHMAN, M. S.; HOSEN, M. F.; BASHAR, M. A. Effects of addition of tilapia on the abundance of periphyton in freshwater prawn culture ponds with periphyton substrates. Journal of the Bangladesh Agricultural University, v. 10, n. 2, p. 313-324, 2013. HERRERA, F. D.; URIBE, E. S.; RAMIREZ, L. F. B.; MORA, A. G. Critical thermal maxima and minima of Macrobrachium rosenbergii (Decapoda: Palaemonidae). Journal of Thermal Biology, v. 23, n. 6, p. 381-385, 1998. 28 IBAMA. 2008. Estatística da Pesca 2006. Brasil: grandes regiões e unidades da Federação. IBAMA, Brasília. 174 p. INDULKAR S.T. e BELSARE S. G. Live and inert foods for postlarvae of the giant freshwater prawn Macrobrachium rosenbergii. The Israeli Journal of Aquaculture, v. 56, n.1, p. 45-50, 2004. KHATOON, H.; YUSOFF, F.; BANERJEE, S.; SHARIFF, M.; BUJANG, J. S. Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackish water shrimp ponds. Aquaculture, v. 273, n. 4, p. 470-477, 2007. PEIXOTO, S.; CAVALLI, R. O.; POERSCH, L. H.; WASIELESKY, W. Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. Journal of the World Aquaculture Society, v. 42, n. 5, p. 726-733, 2011. KUMAR, V. S.; PANDEY, P. K.; ANAND, T.; BHUVANESWARI, R.; KUMAR, S. Effect of periphyton (aquamat) on water quality, nitrogen budget, microbial ecology, and growth parameters of Litopenaeus vannamei in a semi-intensive culture system. Aquaculture, v. 479, p. 240-249, 2017. LARA, G.; KRUMMENAUER, D.; POERSCH, L. H.; WASIELESKY, W. Sistemas de Bioflocos: Processos de assimilação e remoção do nitrogênio. Panorama da Aquicultura. v. 22, n. 133, 2012. LOBÃO, V. L.; ROVERSO, E. A.; LACE, M.; HORTENCIO, E. Ciclo de muda e crescimento em Macrobrachuim amazonicum Heller, 1962 e Macrobrachium rosenbergii De man (Decapoda Palaemonidae). Boletim do Instituto de Pesca, v. 23, p. 31-45, 1996. LUANA, M.; GRAZIANI, C.; VILLARROEL, E.; LEMUS, M.; CÉSAR LODEIROS, C.; SALAZAR, G. Evaluación de tres dietas con diferente contenido proteico en el cultivo de postlarvas del langostino de río Macrobrachium rosenbergii. Zootecnia Tropical, v. 25, n. 2, 2007. MAMUN, M. A. A.; HOSSAIN, M. A.; HOSSAIN, M. S.; ALI, M. L. Effects of different types of artificial substrates on nursery production of freshwater prawn, Macrobrachium rosenbergii (de Man) in recirculatory system. Journal of the Bangladesh Agricultural University, v. 8, n. 2, p. 333-340, 2010. MANUSH, S. M.; PAL, A. K.; CHATTERJEE, N.; DAS, T.; MUKHERJEE, S. C. Thermal tolerance and oxygen consumption of Macrobrachium rosenbergii acclimated to three temperatures. Journal of Thermal Biology, v. 29, n. 1, p. 15-19, 2004. MARTINEZ‐CORDOVA, L. R.; CAMPAÑA‐TORRES, A.; PORCHAS‐CORNEJO, M. A. The effects of variation in feed protein level on the culture of white shrimp, Litopenaeus vannamei (Boone) in low‐water exchange experimental ponds. Aquaculture Research, v. 33, n. 12, p. 995-998, 2002. MEERATANA, P.; WITHYACHUMNARNKUL, B.; DAMRONGPHOL, P.; WONGPRASERT, K.; SUSEANGTHAM, A.; SOBHON, P. Serotonin induces ovarian 29 maturation in giant freshwater prawn broodstock, Macrobrachium rosenbergii de Man. Aquaculture, v. 260, p. 315-325, 2006. MELO, F. P.; FERREIRA, M. G. P.; LIMA, J. P. V.; CORREIA, E. S. Cultivo do camarão marinho com bioflocos sob diferentes níveis de proteína com e sem probiótico. Revista Caatinga, v. 28, n. 4, p. 202-210, 2015. MELO, G. A. S. Família Palaemonidae. In: MELO, G. A. S. (ed.). Manual de identificação dos Crustacea Decapoda de água doce do Brasil. São Paulo: Loyola, p. 317-398, 2003. MITRA, G.; MUKHOPADHYAY, P. K.; CHATTOPADHYAY, D. N. Nutrition and Feeding in Freshwater Prawn (Macrobrachium rosenbergii) Farming, Aqua Feeds: Formulation & Beyond, v. 2, n. 1, 2005. MORAES-RIODADES, P. M. C.; KIMPARA, J. M.; VALENTI, W. C. Effects of the Amazon River prawn Macrobrachium amazonicum culture intensification on ponds hydrology. Acta Limnologica Brasiliensia, São Carlos, v. 18, p. 311-319, 2006. NEW, M. B. Farming freshwater prawns: A manual for the culture of giant river prawn (Macrobrachium rosenbergii). FAO Fisheries Technical Paper, n. 428, 2002, 212p. NEW, M. B. Status of freshwater farming: a review. Aquaculture Research, v. 26, n. 1, p. 1- 54, 1995. NEW, M. B.; VALENTI, W. C.; TIDWELL, J. H.; D’ABRAMO, L. R.; KUTTY, M. N. Freshwater prawns: Biology and Farming. 1. ed. Oxford: Wiley-blackwell, 2010. O’DONOVAN, P.; ABRAHAM, M.; COHEN, D. The ovarian cycle during the intermoult in ovigerous Macrobrachium rosenbergii. Aquaculture, v. 36, p. 347-358, 1984. PÉREZ-FUENTES, J. A.; PÉREZ-ROSTRO, C. I.; HERNÁNDEZ-VERGARA, M. P. Pondreared Malaysian prawn Macrobrachium rosenbergii with the biofloc system. Aquaculture, v. 400-401, p. 105-110, 2013. PINHEIRO, M. A. A. e HEBLING, N. J. Biologia de Macrobrachium amazonicum (De Man, 1879). In VALENTI, W. C. (Ed.). Carcinicultura de água doce: Tecnologia para Produção de Camarões, São Paulo: FAPESP, 1998, p. 21-46. POSADAS, B. C.; WALTERS, S. C.; LONG, R. D. Effects of using different protein levels on freshwater prawn Macrobrachium rosenbergii pond production. World Aquaculture, 2002. PRETO, A. D. L.; CAVALLI, R. O.; PISSETTI, T. L.; ABREU, P. C. O. V. D.; WASIELESKY, W. J. F. B. Efeito da densidade de estocagem sobre o biofilme e o desempenho de pós-larvas do camarão-rosa Farfantepenaeus paulensis cultivadas em gaiolas. Ciência Rural, n. 35, n. 6, p.1417-1423, 2005. RAY, A. J. e LOTZ, J. M. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquacultural engineering, v. 63, p. 54-61, 2014. 30 SAMPAIO, L.; TESSER, M. B.; WASIELESKY. W. J. Avanços da maricultura na primeira década do século XXI: piscicultura e carcinocultura marinha. Revista Brasileira de Zootecnia, v. 39, supl. spe, p. 102-111, 2010. SANTOS, M. J. M. e PINHEIRO, M. A. A. Ablação ocular no camarão Macrobrachium rosenbergii (De Man) (Crustacea, Decapoda, Palaemonidae): efeitos sobre a reprodução, pigmentação epidérmica e atividade alimentar. Revista Brasileira de Zoologia, v. 17, n. 3, p. 667 - 680, 2000. SCHVEITZER, R.; ARANTES, R.; BALOI, M. F.; COSTÓDIO, P. F. S.; ARANA, L. V.; SEIFFERT, W. Q.; ANDREATTA, E. R. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: Effects on microbial activity, water quality and production rates. Aquacultural engineering, v. 54, p. 93-103, 2013. SHORT, J. W. A revision of Australian river prawn, Macrobrachium (Crustacea, Decapoda, Palaemonidae). Hydrobiologia, vol. 525, p. 1-110, 2004. SILVA, A. F.; LARA, G. R.; BALLESTER, E. C.; KRUMENNAUER, D.; ABREU, P. C.; WASIELESKY, W. Efeito das altas densidades de estocagem no crescimento e sobrevivência de Litopenaeus vannamei na fase final de engorda, cultivados em sistemas de Bioflocos (bft). Ciência Animal Brasileira, v. 14, n. 3, p. 279-287, 2013. THANH, N. M.; PONZONI, R. W.; NGUYEN, H. N.; VU, N. T.; BARNES, A.; MATHER, P. B. Evaluation of growth performance in a diallel cross of three strains of giant freshwater prawn (Macrobrachium rosenbergii) in Vietnam. Aquaculture, v. 287, p. 75-83, 2009. THOMAZ, L. A.; OSHIRO, L. M. Y.; BAMBOZZI, A. C.; SEIXAS FILHO, J. T. Desempenho Larval do Camarão-d'Água-Doce (Macrobrachium rosenbergii De Man,1879) Submetido a diferentes regimes alimentares. Revista Brasileira de Zootecnia, v. 33, n. 6, p. 1934-1941, 2004 (Supl. 2). TULY, D. M.; ISLAM, M. S.; HASNAHENA, M.; HASAN, M. R.; HASAN, M. T. Use of artificial substrate in pond culture of freshwater prawn (Macrobrachium rosenbergii): a new approach regarding growth performance and economic return. Journal of Fisheries, v. 2, n. 1, p. 53-58, 2014. VALENTI, W. C. Aquicultura sustentável. In: Congresso de Zootecnia, 12., 2002. Vila Real, Portugal. Anais... Vila Real: Associação Portuguesa dos Engenheiros Zootécnicos, 2002a. p. 111-118. VALENTI, W. C. Carcinicultura de água doce: Tecnologia para produção de camarões. Brasília: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais renováveis, 1998. 383p. VALENTI, W. C. Criação de camarões de água doce. In: Congresso de Zootecnia, 12., 2002. Vila Real, Portugal, Anais... Vila Real: Associação Portuguesa dos Engenheiros Zootécnicos, 2002b, p. 229-237. 31 VALENTI, W. C. Criação de Camarões em Águas Interiores. Boletim Técnico do CAUNESP, n. 2, Jaboticabal: FUNEP, 1996. 81p. VALENTI, W. C. e MALLASEN, M. Concentrações de amônia, nitrito e nitrato em larvicultura do camarão Macrobrachium rosenbergii (De Man), realizada em sistema fechado com água salobra natural e artificial. Acta Scientiarum. Animal Sciences, v. 24, n. 1, p 1185-1189, 2002. VALENTI, W. C. e MORAES-RIODALES, P. M. C. Moorphotypes in male Amazon River Prawns, Macrobrachium amazonicum. Aquaculture, v. 236, n. 1-4, p. 297-307, 2004. VALENTI, W. C.; MELLO, J. D. T. C. D.; CASTAGNOLLI, N. The effect of stocking density on Macrobrachium rosenbergii (De Man) growth curves in earthen ponds (Crustacea, Palaemonidae). Revista Brasileira de Zoologia, v. 10, n. 3, p. 427-438. 1993. VALENTI, W.C. e TIDWELL, J. H. Economics and management of freshwater prawn culture in western hemisphere. In: LEUNG, P. S. and ENGLE, C. (Ed.). Shrimp Culture: Economics, Market, and Trade. Blackwell Science, Oxford, 2006, 443p. WASIELESKY JR, W.; ATWOOD, H.; STOKES, A. L.; BROWDY, C. L. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei, Aquaculture, v. 258, p. 396-403, 2006. WASIELESKY, W.; POERSCH, L. H.; JENSEN, L.; BIANCHINI, A. Effect of stocking density on growth of pen reared pink shrimp Farfantepenaeus paulensis (Pérez-Farfante, 1967) (Crustacea, Penaeidae). Náuplius, v. 9, p. 163-167, 2001. XU, W. J. e PAN, L. Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, v. 356, p. 147-152, 2012. XU, W. J.; PAN, L. Q.; ZHAO, D. H.; HUANG, J. Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, v. 350, p. 147-153, 2012. AOAC. Official methods of analysis. 17. ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. ARNOLD, S. J., SELLARS, M. J., CROCOS, P. J.; COMAN, G. J. Response of juvenile brown tiger shrimp (Penaeus esculentus) to intensive culture conditions in a flow through tank system with three-dimensional artificial substrate. Aquaculture, v. 246, n. 1-4, p. 231- 238, 2005. ASADUZZAMAN, M.; WAHAB, M. A.; VERDEGEM, M. C. J.; HUQUE, S.; SALAM, M. A.; AZIM, M. E. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, v. 280, n. 1-4, p. 117-123, 2008. AVNEMELECH, Y. Tilapia Production Using Biofloc Technology: Saving Water, Waste Recycling Improves Economics. Global Aquaculture Advocate, may/june. 2011. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, n. 176, v. 3-4, p. 227-235, 1999. AVNIMELECH, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, v. 264, n. 1-4, p. 140-147, 2007. AZIM, M. E. e LITTLE, D. C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus) Aquaculture, v. 283, p. 29-35, 2008. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O.; EMERENCIANO, M.; DE ABREU, L.; WASIELESKY JR, W. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, v. 16, n. 2, p. 163-172, 2010. BALLESTER, E. L. C.; MARZAROTTO, S. A.; SILVA DE CASTRO, C.; FROZZA.; A. PASTORE, I.; ABREU, P. C. Productive performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc system. Aquaculture Research, v. 48, n. 9, p. 4748- 4755, 2017. BRANCO, S. M. Hidrologia Aplicada à Engenharia Sanitária. 2. ed. São Paulo: Companhia de Tecnologia de Saneamento Ambiental, 1978. 620 p. BURFORD, M. A.; THOMPSON, P. J.; MCINTOSH, R. P.; BAUMAN, R. H.; PEARSON, D. C. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219, v. 1-4, p. 393-411, 2003. CRAB, R.; DEFOIRDT, T.; BOSSIER, P.; VERSTRAETE, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, v. 356-357, p. 351-356, 2012. 54 CUVIN‐ARALAR, M. L. A.; ARALAR, E. V.; LARON, M.; ROSARIO, W. CULTURE OF Macrobrachium rosenbergii (De Man 1879) in experimental cages in a freshwater eutrophic lake at different stocking densities. Aquaculture Research, v. 38, n. 3, p. 288-294, 2007. DE LARA, R.; CASTRO, T.; CASTRO, J.; CASTRO, G. Cultivo del nematodo Panagrellus redivivus (Goodey, 1945) en un medio de avena enriquecida con Spirulina sp. Revista de biología marina y oceanografía, v. 42, n. 1, p. 29-36, 2007. DECAMP, O.; CONQUEST, L.; CODY, J.; FORSTER, I.; TACON, A. G. Effect of shrimp stocking density on size‐fractionated phytoplankton and ecological groups of ciliated protozoa within zero‐water exchange shrimp culture systems. Journal of the World Aquaculture Society, v. 38, n. 3, p. 395-406, 2007. DUBE, M. A.; TREMBLAY, A. Y.; LIU, J. Biodiesel production using a membrane reactor. Bioresource. Technology, v. 98, p. 639-647, 2007. EMERENCIANO M.; GAXIOLA G.; CUZON G. Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: MATOVIC, M. D. (Ed). In: Biomass Now: Cultivation and Utilization. Canadá: InTech, 2013. cap.12 p. 301-328. EMERENCIANO, M. G. C.; MARTÍNEZ-CÓRDOVA, L. R.; MARTÍNEZ-PORCHAS, M.; MIRANDA-BAEZA, A. Biofloc technology (BFT): a tool for water quality management in aquaculture. In: TUTU, H. (Ed) Water Quality. InTechOpen, 2017, cap. 5, p. 91-109. EMERENCIANO, M. G. C.; WASIELESKY JR, W.; SOARES, R. B.; BALLESTER, E. C.; IZEPPI, E. M.; CAVALLI, R. O. Crescimento e sobrevivência do camarão-rosa (Farfantepenaeus paulensis) na fase de berçário em meio heterotrófico. Acta Scientiarum Biological Sciences, Maringá, v. 29, n. 1, p. 1-7, 2007. EMERENCIANO, M.; BALLESTER, E. L.; CAVALLI, R. O.; WASIELESKY, W. Biofloc technology application as a food source in a limited water Exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1871) Aquaculture Research, v. 43, n. 3, p. 447- 457, 2012. FARHADIAN, O.; YUSOFF, F. M.; MOHAMED, S. Nutritional values of Apocyclops dengizicus (Copepoda: Cyclopoida) fed Chaetocerous calcitrans and Tetraselmis tetrathele. Aquaculture research, v. 40, n. 1, p. 74-82, 2009. FOCKEN, U.; GROTH, A.; COLOSO, R. M.; BECKER, K. Contribution of natural food and supplemental feed to the gut content of Penaeus monodon Fabricius in a semi-intensive pond system in the Philippines. Aquaculture, v. 164, n. 1-4, p. 105-116, 1998. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G. H. A simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry, v. 226, n. 497-507, 1957. FUGIMURA, M. M. S.; FLOR, H. R.; MELO, E. P. DE.; COSTA, T. V.; WASIELESKY, W.; OSHIRO, L. M. Y. Brewery residues as a source of organic carbon in Litopenaeus schmitti white shrimp farms with BFT systems. Aquaculture International, v. 23, n. 2, p. 509-522, 2015. 55 FURTADO, P. S.; GAONA, C. A.; POERSCH, L. H.; WASIELESKY, W. Application of different doses of calcium hydroxide in the farming shrimp Litopenaeus vannamei with the biofloc technology (BFT). Aquaculture international, v. 22, n. 3, p. 1009-1023, 2014. GANDINI, F. A.; JÚNIOR, J. R. D. O. N.; MEDEIROS, C. S.; OSHIRO, L. M. Y.; SANT’ANA, N. FARIA. Avaliação de diferentes fontes de carboidratos para o sistema de bioflocos e crescimento do camarão branco. Boletim do Instituto de Pesca, v. 42, n. 4, p. 831-843, 2017. GAONA, C. A. P.; DA PAZ SERRA, F.; FURTADO, P. S.; POERSCH, L. H.; WASIELESKY, W. Biofloc management with different flow rates for solids removal in the Litopenaeus vannamei BFT culture system. Aquaculture international, v. 24, n. 5, p. 1263- 1275, 2016. GAONA, C. A. P.; DE ALMEIDA, M. S.; VIAU, V.; POERSCH, L. H.; WASIELESKY JR, W. Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, v. 48, n. 3, p. 1070- 1079, 2017. HUTCHINSON, G. E. A treatise on limnology, Vol. 2: Introduction to lake biology and the limnoplankton. New York, London and Sydney: John Wiley & Sons Inc, 1967. 1115 p. KRUMMENAUER, D.; SEIFERT JR.; C. A.; POERSCH, L. H.; FOES, G. K.; LARA, G. R.; WASIELESKY JR, W. Cultivo de camarões marinhos em sistema de bioflocos: análise da reutilização da água. Atlântica, Rio Grande, v. 34, n. 2, p. 103-111, 2012. KRUMMENAUER, D.; PEIXOTO, S.; CAVALLI, R. O.; POERSCH, L. H.; WASIELESKY, W. Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. Journal of the World Aquaculture Society, v. 42, n. 5, p. 726-733, 2011. KUDO, R. R. Protozoologia. 1.ed. México, Espanha, Argentina, Chile: Compania Editorial Continental, S.A, 1966. 905 p. LÓPEZ-TÉLLEZ, N. A.; VIDAL-MARTÍNEZ, V. M.; OVERSTREET, R. M. Seasonal variation of ectosymbiotic ciliates on farmed and wild shrimps from coastal Yucatan, Mexico. Aquaculture, v. 287, n. 3-4, p. 271-277, 2009. LOUREIRO, C. K.; JUNIOR, W. W.; ABREU, P. C. The use of protozoan, rotifers and nematodes as live food for shrimp raised in bft system. Atlântica, n. 34, v. 1, p. 5-12, 2012. MALLASEN, M e VALENTI, W. C. Effect of nitrite on larval development of giant river prawn Macrobrachium rosenbergii. Aquaculture, v. 261, n. 4, p. 1292-1298, 2006. MANAN, H.; MOH, J. H. Z.; KASAN, N. A.; SURATMAN, S.; IKHWANUDDIN, M. Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Applied Water Science, v. 7, n. 5, p. 2437-2446, 2017. 56 MARTINS, T. G.; ODEBRECHT, C.; JENSEN, L. V.; D'OCA, M. G.; WASIELESKY JR, W. The contribution of diatoms to bioflocs lipid content and the performance of juvenile Litopenaeus vannamei (Boone, 1931) in a BFT culture system. Aquaculture research, v. 47, n. 4, p. 1315-1326, 2016. MELO, F. P.; FERREIRA, M. G. P.; LIMA, J. P. V.; CORREIA, E. S. Cultivo do camarão marinho com bioflocos sob diferentes níveis de proteína com e sem probiótico. Revista Caatinga, v. 28, n. 4, p. 202-210, 2015. MONROY-DOSTA, M. D. C.; LARA-ANDRADE, D.; CASTRO-MEJÍA, J.; CASTROMEJÍA, G.; COELHO-EMERENCIANO, M. G. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Revista de biología marina y oceanografía, v. 48, n. 3, p. 511-520, 2013. NEEDHAM, P. R. Guias para el reconocimiento de algas e invertebrados dulceacuícuolas. 5. ed. 1973. 224 p. NEGRINI, C.; CASTRO, C. S. D.; BITTENCOURT-GUIMARÃES, A. T.; FROZZA, A., ORTIZ-KRACIZY, R.; CUPERTINO-BALLESTER, E. L. Stocking density for freshwater prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae) in biofloc system. Latin american journal of aquatic research, v. 45, n. 5, p. 891-899, 2017. NEW, M. B. Farming freshwater prawns: A manual for the culture of giant river prawn (Macrobrachium rosenbergii). FAO Fisheries Technical Paper.no 428. Rome, FAO. 2002. 212p. NEW, M. B.; VALENTI, W. C.; TIDWELL, J. H.; D’ABRAMO, L. R.; KUTTY, M. N. Freshwater prawns: Biology and Farming. 1. ed. Oxford: Wiley-blackwell, 2010. OTOSHI, C. A.; SCOTT, M. S.; NAGUWA, F. C.; MOSS, S. M. Shrimp Behavior May Affect Culture Performance at Super-Intensive Stocking densities. Global Aquaculture Advocate, v. 10, n. 12 p. 67-69, 2007. PÉREZ-FUENTES, J. A.; PÉREZ-ROSTRO, C. I.; HERNÁNDEZ-VERGARA, M. P. Pondreared Malaysian prawn Macrobrachium rosenbergii with the biofloc system. Aquaculture, v. 400-401, p. 105-110, 2013. RAJKUMAR, M.; PANDEY, P. K.; ARAVIND, R.; VENNILA, A.; BHARTI, V.; PURUSHOTHAMAN, C. S. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, v. 47, n. 11, p. 3432-3444, 2016. SAMOCHA, T. M.; PATNAIK, S., SPEED, M., ALI, A. M.; BURGER, J. M.; ALMEIDA, R. V.; BROCK, D. L. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, v. 36, n. 2, p. 184- 191, 2007. SAMPAIO, L. S.; TESSER, M. B.; WASIELESKY JÚNIOR.; W. Avanços da maricultura na primeira década do século XXI: piscicultura e carcinocultura marinha. Revista Brasileira de Zootecnia, v. 39, p. 102-11, 2010. 57 SAMPAIO, I. B. M. Estatística Aplicada à experimentação animal. 3. ed. reimpressão. Belo Horizonte: Fundação de Estudo e Pesquisa em Medicina Veterinária e Zootecnia, 2010. 264 p. SCHLECHTRIEM, C.; RICCI, M.; FOCKEN, U.; BECKER, K. Mass produced nematodes Panagrellus redivivus as live food for rearing carp larvae: preliminary results. Aquaculture Reserch, v. 35, p. 547-551, 2004. SERRA, F. P.; GAONA, C. A.; FURTADO, P. S.; POERSCH, L. H.; WASIELESKY, W. Use of different carbon sources for the biofloc system adopted during the nursery and growout culture of Litopenaeus vannamei. Aquaculture international, v. 23, n. 6, p.1325-1339, 2015. SILVA, A. F.; LARA, G. R.; BALLESTER, E. C.; KRUMENNAUER, D.; ABREU, P. C.; WASIELESKY, W. Efeito das altas densidades de estocagem no crescimento e sobrevivência de Litopenaeus vannamei na fase final de engorda, cultivados em sistemas de Bioflocos (bft). Ciência Animal Brasileira, v. 14, n. 3, p. 279-287, 2013. SILVA, C. F.; BALLESTER, E.; MONSERRAT, J.; GERACITANO, L.; WASIELESKY, W. JR.; ABREU, P. C. Contribution of microorganisms to the biofilm nutritional quality: protein and lipid contents. Aquaculture Nutrition, v. 14, n. 6, p. 507-514, 2008. STICKLAND, J. H. D. e PARSONS, T. R. A practical handbook of seawater analysis. 2. ed. Canada: Fishery Research Board, 1972. 311 p. THANH, N. M.; PONZONI, R. W.; NGUYEN, H. N.; VU, N. T.; BARNES, A.; MATHER, P. B. Evaluation of growth performance in a diallel cross of three strains of giant freshwater prawn (Macrobrachium rosenbergii) in Vietnam. Aquaculture, v. 287, p. 75-83, 2009. THOMPSON, F. L.; ABREU, P. C.; WASIELESKY, W. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, v. 203, n. 3-4, p. 263-278, 2002. VALENTI, W. C.; MALLASEN, M.; BARROS, H. P. Sistema de recirculação e rotina de manejo para larvicultura de camarões de água doce Macrobrachium rosenbergii em pequena escala. Boletim do Instituto de Pesca, v. 35, p. 141-151, 2009. VALENTI, W.C.; NEW, M. B.; SALIN, K. R.; YE, J. Grow-out systems-monoculture. In: NEW, M. B.; VALENTI, W. C.; TIDWELL, J. H.; D’ABRAMO, L. R.; KUTTY, M. N. Freshwater prawns: Biology and farming. 1. ed. Oxford: Wiley-blackwell, 2010. p. 154-179. VALÉRIO GERON, L. J.; ZEOULA, L. M.; FERRIANI BRANCO, A.; ARNOUD ERKE, J.; PIRES DO PRADO, O. P.; JACOBI, G. Caracterização, fracionamento proteico, degradabilidade ruminal e digestibilidade in vitro da matéria seca e proteína bruta do resíduo de cervejaria úmido e fermentado. Acta Scientiarum Animal Sciences, v. 29, n. 3, 2007. VILANI, F. G.; SCHVEITZER, R.; FONSECA ARANTES; R., NASCIMENTO VIEIRA, F.; ESPÍRITO SANTO, C. M.; SEIFFERT, W. Q. Strategies for water preparation in a biofloc 58 system: Effects of carbon source and fertilization dose on water quality and shrimp performance. Aquacultural Engineering, v. 74, p.70-75, 2016. WASIELESKY JR, W.; ATWOOD, H.; STOKES, A. L.; BROWDY, C. L. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei, Aquaculture, v. 258, p. 396-403, 2006. WASIELESKY, W.; POERSCH, L. H.; JENSEN, L.; BIANCHINI, A. Effect of stocking density on growth of pen reared pink shrimp Farfantepenaeus paulensis (Pérez-Farfante, 1967) (Crustacea, Penaeidae). Náuplius, v. 9, p. 163-167, 2001. WEI, Y.; LIAO, S. A.; WANG, A. L. The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, v. 465, p. 88-93, 2016. XU, W. J.; PAN, L. Q.; ZHAO, D. H.; HUANG, J. Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, v. 350, p. 147-153, 2012. ZIMMERMANN, S. Manejo de Alimentos e Alimentação dos Camarões. In: VALENTI, W. C. (Ed). Carcinicultura de Água Doce: Tecnologia para a Produção de Camarões. Brasília: IBAMA/FAPESP, 1998. cap. 12. p. 239-267. AOAC. Official methods of analysis. 17. ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. AVINEMELECH, Y. Tilapia Production Using Biofloc Technology: Saving Water, Waste Recycling Improves Economics. Global Aquaculture Advocate, may/june. 2011. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, n. 176, v. 3-4, p. 227-235,1999. AVNIMELECH, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, v. 264, n. 1-4, p. 140-147, 2007. AZEVEDO, C. M. S. B.; SALES, R. B. S.; ARRUDA, A. M. V.; SIMÃO, B. R.; BRITO, L. O. Desempenho do camarão Litopenaeus vannamei em sistema sem renovação de água com diferentes níveis de proteína bruta e adição de melaço. Arquivos de Ciência do Mar, n. 46, v. 2, p. 40-46, 2013. AZIM, M. E e LITTLE, D. C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus) Aquaculture, v. 283, p. 29 - 35, 2008. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O.; EMERENCIANO, M.; DE ABREU, L.; WASIELESKY JR, W. Effect of practical diets with different protein levels on the performance of 7Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, v. 16, n. 2, p. 163-172, 2010. BALLESTER, E. L. C.; MARZAROTTO, S. A.; SILVA DE CASTRO, C.; FROZZA.; A. PASTORE, I.; ABREU, P. C. Productive performance of juvenile freshwater prawns Macrobrachium rosenbergii in biofloc system. Aquaculture Research, v. 48, n. 9, p. 4748- 4755, 2017. BRACCINI, J. A. L. e LEAL‐ZANCHET, A. M. Turbellarian assemblages in freshwater lagoons in southern Brazil. Invertebrate Biology, v. 132, n. 4, 305-314, 2013. BRANCO, S. M. Hidrologia Aplicada à Engenharia Sanitária. 2. ed. São Paulo: Companhia de Tecnologia de Saneamento Ambiental, 1978. 620 p. BROWN, M. R.; JEFFREY, S. W.; VOLKMAN, J. K.; DUNSTAN, G. A. Nutritional properties of microalgae for mariculture. Aquaculture, v. 151, n. 1-4, p. 315-331, 1997. BURFORD, M. A.; THOMPSON, P. J.; McINTOSH, R. P.; BAUMAN, R. H.; PEARSON, D. C. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity zero-exchange system. Aquaculture, v. 232, n. 1-4, p. 525-537, 2004. 77 CRAB, R.; DEFOIRDT, T.; BOSSIER, P.; VERSTRAETE, W. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, v. 356, p. 351-356, 2012. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T.; BOON, N.; VERSTRAETE, W. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, v. 277, n. 3-4, p. 125- 137, 2008. DECAMP, O.; CONQUEST, L.; CODY, J.; FORSTER, I.; TACON, A. G. Effect of shrimp stocking density on size‐fractionated phytoplankton and ecological groups of ciliated protozoa within zero‐water exchange shrimp culture systems. Journal of the World Aquaculture Society, v. 38, n. 3, p. 395-406, 2007. EMERENCIANO, M. G. C.; MARTÍNEZ-CÓRDOVA, L. R.; MARTÍNEZ-PORCHAS, M.; MIRANDA-BAEZA, A. Biofloc technology (BFT): a tool for water quality management in aquaculture. In: TUTU, H. (Ed) Water Quality. InTechOpen, 2017, cap. 5, p. 91-109. EMERENCIANO, M.; BALLESTER, E. L.; CAVALLI, R. O.; WASIELESKY, W. Biofloc technology application as a food source in a limited water Exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1871) Aquaculture Research, v. 43, n. 3, p. 447- 457, 2012. EMERENCIANO, M. G. C.; WASIELESKY JR, W.; SOARES, R. B.; BALLESTER, E. C.; IZEPPI, E. M.; CAVALLI, R. O. Crescimento e sobrevivência do camarão-rosa (Farfantepenaeus paulensis) na fase de berçário em meio heterotrófico. Acta Scientiarum Biological Sciences, Maringá, v. 29, n. 1, p. 1-7, 2007. FOCKEN, U.; GROTH, A.; COLOSO, R. M.; BECKER, K. Contribution of natural food and supplemental feed to the gut content of Penaeus monodon Fabricius in a semi-intensive pond system in the Philippines. Aquaculture, v. 164, n. 1-4, p. 105-116, 1998. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G. H. A simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry, v. 226, n. 497-507, 1957. FURTADO, P. S.; GAONA, C. A.; POERSCH, L. H.; WASIELESKY, W. Application of different doses of calcium hydroxide in the farming shrimp Litopenaeus vannamei with the biofloc technology (BFT). Aquaculture international, v. 22, n. 3, p. 1009-1023, 2014. GAONA, C. A. P.; DA PAZ SERRA, F., FURTADO, P. S.; POERSCH, L. H.; WASIELESKY JR, W. Effect of different total suspended solids concentrations on the growth performance of Litopenaeus vannamei in a BFT system. Aquacultural engineering, v. 72, p. 65-69, 2016. GAONA, C. A. P.; DE ALMEIDA, M. S.; VIAU, V.; POERSCH, L. H.; WASIELESKY JR, W. Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, v. 48, n. 3, p. 1070- 1079, 2017. 78 GARRAFFONI, A. R. e ARAÚJO, T. Q. Chave de identificação de Gastrotricha de águas continentais e marinhas do Brasil. Papéis Avulsos de Zoologia (São Paulo), v. 50, n. 33, p. 535-552, 2010. HUTCHINSON, G. E. A treatise on limnology, Vol. 2: Introduction to lake biology and the limnoplankton. New York, London and Sydney: John Wiley & Sons Inc, 1967. 1115 p. IZQUIERDO, M.; FORSTER, I.; DIVAKARAN, S.; CONQUEST, L.; DECAMP, O.; TACON, A. Effect of green and clear water and lipid source on survival, growth and biochemical composition of Pacific white shrimp Litopenaeus vannamei. Aquaculture nutrition, v. 12, n. 3, p. 92-202, 2006. JATOBÁ, A.; DA SILVA, B. C.; SILVA, J. S.; NASCIMENTO V. F.; MOURIÑO, J. L. P.; SEIFFERT, W. Q.; TOLEDO, T. M. Protein levels for Litopenaeus vannamei in semiintensive and biofloc systems. Aquaculture, v. 432, p. 365-371, 2014. KHANJANI, M. H.; SAJJADI, M. M.; ALIZADEH, M.; SOURINEJAD, I. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, v. 48, n. 4, p. 1491-1501, 2017. KRUMMENAUER, D.; SEIFERT JR.; C. A.; POERSCH, L. H.; FOES, G. K.; LARA, G. R.; WASIELESKY JR, W. Cultivo de camarões marinhos em sistema de bioflocos: análise da reutilização da água. Atlântica, Rio Grande, v. 34, n. 2, p. 103-111, 2012. KUDO, R. R. Protozoologia. 1. ed. México, Espanha, Argentina, Chile: Compania Editorial Continental, S. A, 1966. 905 p. KUMAR, S.; ANAND, P. S. S.; DE, D.; DEO, A. D.; GHOSHAL, T. K.; SUNDARAY, J. K.; LALITHA, N. Effects of biofloc under different carbon sources and protein levels on water quality, growth performance and immune responses in black tiger shrimp Penaeus monodon (Fabricius, 1978). Aquaculture Research, v. 48, n. 3, p. 1168-1182, 2107. LOUREIRO, C. K.; JUNIOR, W. W.; ABREU, P. C. The use of protozoan, rotifers and nematodes as live food for shrimp raised in bft system. Atlântica, n. 34, v. 1, p. 5-12, 2012. MALLASEN, M. e VALENTI, W. C. Effect of nitrite on larval development of giant river prawn Macrobrachium rosenbergii. Aquaculture, v. 261, n. 4, p. 1292-1298, 2006. MANAN, H.; MOH, J. H. Z.; KASAN, N. A.; SURATMAN, S.; IKHWANUDDIN, M. Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Applied Water Science, v. 7, n. 5, p. 2437-2446, 2017. MARTINEZ‐CORDOVA, L. R.; CAMPAÑA‐TORRES, A.; PORCHAS‐CORNEJO, M. A. The effects of variation in feed protein level on the culture of white shrimp, Litopenaeus vannamei (Boone) in low‐water exchange experimental ponds. Aquaculture research, v. 33, n. 12, p. 995-998, 2002. 79 MARTÍNEZ‐CÓRDOVA, L. R.; EMERENCIANO, M.; MIRANDA‐BAEZA, A.; MARTÍNEZ‐PORCHAS, M. Microbial‐based systems for aquaculture of fish and shrimp: an updated review. Reviews in Aquaculture, v. 7, n. 2, p. 131-148, 2015. MARTINS, T. G.; ODEBRECHT, C.; JENSEN, L. V.; D'OCA, M. G.; WASIELESKY JR, W. The contribution of diatoms to bioflocs lipid content and the performance of juvenile Litopenaeus vannamei (Boone, 1931) in a BFT culture system. Aquaculture research, v. 47, n. 4, p. 1315-1326, 2016. MELO, F. P.; FERREIRA, M. G. P.; LIMA, J. P. V.; CORREIA, E. S. Cultivo do camarão marinho com bioflocos sob diferentes níveis de proteína com e sem probiótico. Revista Caatinga, v. 28, n. 4, p. 202-210, 2015. NEEDHAM, P. R. Guias para el reconocimiento de algas e invertebrados dulceacuícuolas. 5. ed. 1973. 224 p. NEW, M. B. Farming freshwater prawns: A manual for the culture of giant river prawn (Macrobrachium rosenbergii). FAO Fisheries Technical Paper, n. 428, 2002, 212p. PORTELLA, C. D. G.; SANT'ANA, L. S.; VALENTI, W. C. Chemical composition and fatty acid contents in farmed freshwater prawns. Pesquisa Agropecuária Brasileira, v. 48, n. 8, p. 1115-1118, 2103. RAJKUMAR, M.; PANDEY, P. K.; ARAVIND, R.; VENNILA, A.; BHARTI, V.; PURUSHOTHAMAN, C. S. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, v. 47, n. 11, p. 3432-3444, 2016. SAMOCHA, T. M.; PATNAIK, S.; SPEED, M.; ALI, A. M.; BURGER, J. M.; ALMEIDA, R. V.; BROCK, D. L. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, v. 36, n. 2, p. 184- 191, 2007. SAMPAIO, I. B. M. Estatística Aplicada à experimentação animal. 3. ed. reimpressão. Belo Horizonte: Fundação de Estudo e Pesquisa em Medicina Veterinária e Zootecnia, 2010. 264 p. SERRA, F. P.; GAONA, C. A.; FURTADO, P. S.; POERSCH, L. H.; WASIELESKY, W. Use of different carbon sources for the biofloc system adopted during the nursery and growout culture of Litopenaeus vannamei. Aquaculture international, v. 23, n. 6, p. 1325-1339, 2015. SILVA, A. F.; LARA, G. R.; BALLESTER, E. C.; KRUMENNAUER, D.; ABREU, P. C.; WASIELESKY, W. Efeito das altas densidades de estocagem no crescimento e sobrevivência de Litopenaeus vannamei na fase final de engorda, cultivados em sistemas de Bioflocos (bft). Ciência Animal Brasileira, v. 14, n. 3, p. 279-287, 2013. SILVA, C. F.; BALLESTER, E.; MONSERRAT, J.; GERACITANO, L.; WASIELESKY, W. JR.; ABREU, P. C. Contribution of microorganisms to the biofilm nutritional quality: protein and lipid contents. Aquaculture Nutrition., v. 14, n. 6, p. 507-514, 2008. 80 STICKLAND, J. H. D. e PARSONS, T. R. A practical handbook of seawater analysis. 2. ed. Canada: Fishery Research Board,1972. 311 p. TACON, A. G. J.; CODY, J. J.; CONQUEST, L. D.; DIVAKARAN, S.; FORSTER, I. P.; DECAMP, O. E. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture nutrition, v. 8, n. 2, p. 121-137, 2002. THOMPSON, F. L.; ABREU, P. C.; WASIELESKY, W. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, v. 203, n. 3-4, p. 263-278, 2002. WASIELESKY JR, W.; ATWOOD, H.; STOKES, A. L.; BROWDY, C. L. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei, Aquaculture, v. 258, p. 396-403, 2006. WEI, Y.; LIAO, S. A.; WANG, A. L. The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, v. 465, p. 88-93, 2016. XU, W. J. e PAN, L. Q. Dietary protein level and C/N ratio manipulation in zero‐exchange culture of Litopenaeus vannamei: Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquaculture Research, v. 45, n. 11, 1842-1851, 2014. XU, W. J. e PAN, L. Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, v. 356, p. 147-152, 2012. XU, W. J.; PAN, L. Q.; ZHAO, D. H.; HUANG, J. Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, v. 350, p. 147-153, 2012. ZIMMERMANN, S. Manejo de Alimentos e Alimentação dos Camarões. In: VALENTI, W. C. (Ed). Carcinicultura de Água Doce: Tecnologia para a Produção de Camarões. Brasília: IBAMA/FAPESP, 1998. cap. 12. p. 239-267. AOAC. Official methods of analysis. 17. Ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. ARNOLD, S. J.; COMAN, F. E.; JACKSON, C. J.; GROVES, S. A. High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density. Aquaculture, v. 293, n. 1-2, p. 42-48, 2009. ASADUZZAMAN, M.; RAHMAN, M. M.; AZIM, M. E.; ISLAM, M. A.; WAHAB, M. A.; VERDEGEM, M. C. J.; VERRETH, J. A. J. Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, v. 306, n. 1- 4, p. 127-136, 2010. ASADUZZAMAN, M.; WAHAB, M. A.; VERDEGEM, M. C. J.; HUQUE, S.; SALAM, M. A.; AZIM, M. E. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, v. 280, n. 1-4, p. 117-123, 2008. AVINEMELECH, Y. Tilapia Production Using Biofloc Technology: Saving Water, Waste Recycling Improves Economics. Global Aquaculture Advocate, may/june. 2011. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, n. 176, v. 3-4, p. 227-235,1999. AVNIMELECH, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, v. 264, n. 1-4, p. 140-147, 2007. AZIM, M. E e LITTLE, D. C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus) Aquaculture, v. 283, p. 29-35, 2008. AZIM, M. E.; LITTLE, D. C.; BRON, J. E. Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresource Technology, v. 99, n. 9, p. 3590-3599, 2008. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O.; EMERENCIANO, M.; DE ABREU, L.; WASIELESKY JR, W. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, v. 16, n. 2, p. 163-172, 2010. BALLESTER, E. L. C.; WASIELESKY JR, W.; CAVALLI, R. O.; ABREU, P. C. Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: biofilm composition and shrimp performance. Aquaculture, v. 269, n. 1-4, p. 355-362, 2007. BECERRA-DORAME, M. J.; MARTÍNEZ-PORCHAS, M.; MARTÍNEZ-CÓRDOVA, L. R.; RIVAS-VEGA, M. E.; LOPEZ-ELIAS, J. A.; PORCHAS-CORNEJO, M. A. Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei 102 (Boone, 1931) intensively pregrown in microbial heterotrophic and autotrophic-based systems. The Scientific World Journal, 2012. BETANCUR GONZÁLEZ, E. M.; RUALES, C. A. D.; GUTIÉRREZ, L. A. Diversidad del perifiton presente en un sistema de producción de tilapia en biofloc. Revista Lasallista de Investigación, v. 13, n. 2, p. 163-17, 2016. BRACCINI, J. A. L. e LEAL‐ZANCHET, A. M. Turbellarian assemblages in freshwater lagoons in southern Brazil. Invertebrate Biology, v. 132, n. 4, 305-314, 2013. BRANCO, S. M. Hidrologia Aplicada à Engenharia Sanitária.2. ed. São Paulo: Companhia de Tecnologia de Saneamento Ambiental, 1978. 620 p. CHAVEZ, H. M. Effects of Artificial Substrate on Growth Performance, Survival and Production of Freshwater Prawn, Macrobrachium rosenbergii (de Man 1879) in Cages in Laguna de Bay, Philippines. Asian Fisheries Science, v. 28, n. 4, p. 154-16, 2015. CRAB, R.; AVNIMELECH, Y.; DEFOIRDT, T.; BOSSIER, P.; VERSTRAETE, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, v. 270, n. 1-4, p. 1-14, 2007. CRAB, R.; DEFOIRDT, T.; BOSSIER, P.; VERSTRAETE, W. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, v. 356, p. 351-356, 2012. DOMINGOS, J. A. S. e VINATEA, L. Efeito do uso de diferentes quantidades de substratos artificiais na engorda do camarão marinho Litopenaeus vannamei (Boone, 1931), em um sistema de cultivo semi-intensivo. Boletim do Instituto de Pesca, v. 34, n. 1, 2008. EBELING, J. M. e TIMMONS, M. B. Stoichiometry of ammonia-nitrogen removal in zeroexchange systems. World Aquaculture, v. 38, n. 2, p. 22-27, 2007. EMERENCIANO, M. G. C.; MARTÍNEZ-CÓRDOVA, L. R.; MARTÍNEZ-PORCHAS, M.; MIRANDA-BAEZA, A. Biofloc technology (BFT): a tool for water quality management in aquaculture. In: TUTU, H. (Ed) Water Quality. InTechOpen, 2017, cap. 5, p. 91-109. EMERENCIANO, M. G. C.; WASIELESKY JR, W.; SOARES, R. B.; BALLESTER, E. C.; IZEPPI, E. M.; CAVALLI, R. O. Crescimento e sobrevivência do camarão-rosa (Farfantepenaeus paulensis) na fase de berçário em meio heterotrófico. Acta Scientiarum Biological Sciences, Maringá, v. 29, n. 1, p. 1-7, 2007. EMERENCIANO, M.; BALLESTER, E. L.; CAVALLI, R. O.; WASIELESKY, W. Biofloc technology as a food source in a limited water Exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1871) Aquaculture Research, v. 43, n. 3, p. 447- 457, 2012. FERREIRA, L. M.; LARA, G.; WASIELESKY JR, W.; ABREU, P. C. Biofilm versus biofloc: Are artificial substrates for biofilm production necessary in the BFT system? Aquaculture international, v. 24, n. 4, p. 921-930, 2016. 103 FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G. H. A simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry, v. 226, n. 497-507, 1957. FURTADO, P. S.; GAONA, C. A.; POERSCH, L. H.; WASIELESKY, W. Application of different doses of calcium hydroxide in the farming shrimp Litopenaeus vannamei with the biofloc technology (BFT). Aquaculture international, v. 22, n. 3, p. 1009-1023, 2014. GANDINI, F. A.; JÚNIOR, J. R. D. O. N.; MEDEIROS, C. S.; OSHIRO, L. M. Y.; SANT’ANA, N. FARIA. Avaliação de diferentes fontes de carboidratos para o sistema de bioflocos e crescimento do camarão branco. Boletim do Instituto de Pesca, v. 42, n. 4, p. 831-843, 2017. GAONA, C. A. P.; DE ALMEIDA, M. S.; VIAU, V.; POERSCH, L. H.; WASIELESKY JR, W. Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, v. 48, n. 3, p. 1070- 1079, 2017. GARRAFFONI, A. R. e ARAÚJO, T. Q. Chave de identificação de Gastrotricha de águas continentais e marinhas do Brasil. Papéis Avulsos de Zoologia (São Paulo), v. 50, n. 33, p. 535-552, 2010. HARGREAVES, J. A. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, v. 34, n. 3, p. 344-363, 2006. HUANG, Z.; WAN, R.; SONG, X.; HALLERMAN, E. Assessment of AquaMats for removing ammonia in intensive commercial Pacific white shrimp Litopenaeus vannamei aquaculture systems. Aquaculture international, v. 21, n. 6, p. 1333-1342, 2013. HUTCHINSON, G. E. A treatise on limnology, Vol. 2: Introduction to lake biology and the limnoplankton. New York, London and Sydney: John Wiley & Sons Inc, 1967. 1115 p. IZQUIERDO, M.; FORSTER, I.; DIVAKARAN, S.; CONQUEST, L.; DECAMP, O.; TACON, A. Effect of green and clear water and lipid source on survival, growth and biochemical composition of Pacific white shrimp Litopenaeus vannamei. Aquaculture nutrition, v. 12, n. 3, p. 92-202, 2006. JATOBÁ, A.; DA SILVA, B. C.; SILVA, J. S.; NASCIMENTO V. F.; MOURIÑO, J. L. P.; SEIFFERT, W. Q.; TOLEDO, T. M. Protein levels for Litopenaeus vannamei in semiintensive and biofloc systems. Aquaculture, v. 432, p. 365-371, 2014. KHANJANI, M. H.; SAJJADI, M. M.; ALIZADEH, M.; SOURINEJAD, I. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, v. 48, n. 4, p. 1491-1501, 2017. KUDO, R, R. Protozoologia. 1.ed. México, Espanha, Argentina, Chile: Compania Editorial Continental, S. A, 1966. 905 p. 104 LOUREIRO, C. K.; JUNIOR, W. W.; ABREU, P. C. The use of protozoan, rotifers and nematodes as live food for shrimp raised in bft system. Atlântica, n. 34, v. 1, p. 5-12, 2012. MALLASEN, M e VALENTI, W. C. Effect of nitrite on larval development of giant river prawn Macrobrachium rosenbergii. Aquaculture, v. 261, n. 4, p. 1292-1298, 2006. MARTÍNEZ‐CÓRDOVA, L. R.; EMERENCIANO, M.; MIRANDA‐BAEZA, A.; MARTÍNEZ‐PORCHAS, M. Microbial‐based systems for aquaculture of fish and shrimp: an updated review. Reviews in Aquaculture, v. 7, n. 2, p. 131-148, 2015. MONROY-DOSTA, M. D. C.; LARA-ANDRADE, D.; CASTRO-MEJÍA, J.; CASTROMEJÍA, G.; COELHO-EMERENCIANO, M. G. Composición y abundancia de comunidades microbianas associadas al biofloc em un cultivo de tilapia. Revista de biología marina y oceanografia, v. n. 48, n. 3, p. 511-520, 2013. NEEDHAM, P, R. Guias para el reconocimiento de algas e invertebrados dulceacuícuolas. 5. Ed. 1973. 224 p. NEW, M. B. Farming freshwater prawns: A manual for the culture of giant river prawn (Macrobrachium rosenbergii). FAO Fisheries Technical Paper, n. 428, 2002, 212p. PÉREZ A, J, D. Aplicación y evaluación de un reactor de contactores biológicos rotativos (RBC o biodiscos), a escala de laboratorio como tratamento de los lixiviados generados em el relleno sanitário de la Pradera. 2010. 259p. Tesis de Maestría Ingeniería Urbana, Facultad de Ingenierías, Universidad de Medellín, Medellín, 2010. RAJKUMAR, M.; PANDEY, P. K.; ARAVIND, R.; VENNILA, A.; BHARTI, V.; PURUSHOTHAMAN, C. S. Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, v. 47, n. 11, p. 3432-3444, 2016. RAY, A. J., SEABORN, G.; LEFFLER, J. W.; WILDE, S. B.; LAWSON, A.; BROWDY, C. L. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture, v. 310, n. 1-2, p. 130- 138, 2010a. RAY, A. J.; LEWIS, B. L.; BROWDY, C. L.; LEFFLER, J. W. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, v. 299, n. 1-4, p. 89-98, 2010b. SAMOCHA, T. M.; PATNAIK, S., SPEED, M., ALI, A. M.; BURGER, J. M.; ALMEIDA, R. V.; BROCK, D. L. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, v. 36, n. 2, p. 184- 191, 2007. SAMPAIO, I. B. M. Estatística Aplicada à experimentação animal. 3. Ed. reimpressão. Belo Horizonte: Fundação de Estudo e Pesquisa em Medicina Veterinária e Zootecnia, 2010. 264 p. 105 SCHVEITZER, R.; ARANTES, R.; BALOI, M. F.; COSTÓDIO, P. F. S.; ARANA, L. V.; SEIFFERT, W. Q.; ANDREATTA, E. R. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: Effects on microbial activity, water quality and production rates. Aquacultural engineering, v. 54, p. 93-103, 2013. SILVA, A. F.; LARA, G. R.; BALLESTER, E. C.; KRUMENNAUER, D.; ABREU, P. C.; WASIELESKY, W. Efeito das altas densidades de estocagem no crescimento e sobrevivência de Litopenaeus vannamei na fase final de engorda, cultivados em sistemas de Bioflocos (bft). Ciência Animal Brasileira, v. 14, n. 3, p. 279-287, 2013. STICKLAND, J. H. D. e PARSONS, T. R. A practical handbook of seawater analysis. 2. Ed. Canada: Fishery Research Board, 1972. 311 p. SUPONO, H. J.; PRAYITNO, S. B.; DARMANTO, Y. S. White shrimp (Litopenaeus vannamei) culture using Heterotrophic Aquaculture System on nursery Phase. International Journal of Waste Resources, v. 4, n. 2, p. 142, 2014. TIDWELL, J. e COYLE, S. Impact of substrate physical characteristics on grow out of freshwater prawn, Macrobrachium rosenbergii, in ponds and pond microcosm tanks. Journal of the World Aquaculture Society, v. 39, n. 3, p. 406-413, 2008. TULY, D. M.; ISLAM, M. S.; HASNAHENA, M.; HASAN, M. R.; HASAN, M. T. Use of artificial substrate in pond culture of freshwater prawn (Macrobrachium rosenbergii): a new approach regarding growth performance and economic return. Journal of Fisheries, v. 2, n. 1, p. 53-58, 2014. VARA, D. C. D. e LEAL-ZANCHET, A. M. Turbelários límnicos (Platyhelminthes) em ecossistemas de arroz irrigado da Planície Costeira do sul do Brasil. Biota Neotropica, v. 13, n. 4, p. 241-250, 2013. WASIELESKY JR, W.; ATWOOD, H.; STOKES, A. L.; BROWDY, C. L. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei, Aquaculture, v. 258, p. 396 – 403, 2006. XU, W. J. e PAN, L. Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, v. 356, p. 147-152, 2012. ZHANG, J.; CHEN, L.; DONG, H.; DUAN, Y.; LI, Z.; WEN, G.; XIE, J. Artificial substrates in zero‐water‐exchange culture system regulate the rearing performance of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) under the winter indoor condition. Aquaculture research, v. 47, n. 1, p. 91-100, 2016. ZHUKOVA, N.V. e KHARLAMENKO, V. I. Sources of essential fatty acids in the marine microbial loop. Aquatic Microbial Ecology, v. 17, n. 2, p. 153-157, 1999por
dc.subject.cnpqZootecniapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/65344/2018%20-%20Emanuela%20Paula%20Melo.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4702
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-05-28T11:45:38Z No. of bitstreams: 1 2018 - Emanuela Paula Melo.pdf: 949641 bytes, checksum: 9aea047122d26ae2a1829bf3a15f23af (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-05-28T11:45:38Z (GMT). No. of bitstreams: 1 2018 - Emanuela Paula Melo.pdf: 949641 bytes, checksum: 9aea047122d26ae2a1829bf3a15f23af (MD5) Previous issue date: 2018-08-29eng
Appears in Collections:Doutorado em Zootecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Emanuela Paula Melo.pdfEmanuela Paula Melo927.38 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.