Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/12249
Full metadata record
DC FieldValueLanguage
dc.creatorGalvão, Patrícia Gonçalves
dc.date.accessioned2023-11-19T22:51:50Z-
dc.date.available2023-11-19T22:51:50Z-
dc.date.issued2012-03-01
dc.identifier.citationGALVÃO, Patrícia Gonçalves. Análise proteômica de estirpes selvagem PAL5T e mutante lao - de Gluconacetobacter diazotrophicus na presença e ausência de triptofano e o efeito de sua inoculação em plantas micropropagadas de cana-de-açúcar. 2012. 147 f. Tese (Doutorado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2012.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/12249-
dc.description.abstractThe objective of this study was to evaluate the protein profile expression of G. diazotrophicus PAL5 and its defective mutant in the indole compound production (lao-) grown in the presence or absence of tryptophan through 2DE-PAGE technique. The spectrometric analysis allowed the identification of 24 differentially expressed proteins. The majority of the proteins down regulated in the wild type PAL5 cultivated with tryptophan as compared to the cultivation without the amino acid belonged to the category of transductional modification, protein turnover and chaperones. For the mutant lao- grown in the same conditions, the majority of the proteins that presented differential expression belonged to the category of production and conversion of energy. In addition, the majority of the protein differentially expressed in the mutant lao- as compared to the wild-type PAL5 strains belonged to carbohydrates metabolism and transport. On the other hand, no proteins related to the tryptophan biosynthesis were detected in any condition, possibly due to the low yield of the proteins during the spectrometric analysis. Furthermore, mutants lao- and nif- of G. diazotrophicus were used for inoculation of micropropagated sugarcane plants in order to determine the influence of auxins produced by the bacteria in the plant growth promotion in comparison with PAL5. The first experiment, carried out in hydroponic conditions for 10 days showed a significant inoculation effect of the wild type on plant shoot. The other experiment was conducted in a period of 120 days in pots containing sand:vermiculite substrate fertilized with 30 and 60 ppm with ammonium sulphate enriched with 15N. The plants were inoculated in vitro with the wild type and mutants lao- and nif-, and the results showed a visual difference in the roots inoculated with PAL5 that showed higher volume suggesting a higher number of secondary roots and root hairs. On the other hand, the plants inoculated with the lao- mutant were ticker and showed lower number of secondary roots and root hairs. The shoot biomass of plants inoculated with PAL5 was higher than those inoculated with the mutant strains for both N dose, however the difference was not significant. Plants grown with 60 kg N dose and inoculated with the mutants showed lower accumulation of dry shoot mass than plants inoculated with the wild type strain. In conclusion, the present study showed the occurrence of several differentially expressed proteins either in the wild type strain or in the mutant lao- grown in LGI-P with and without tryptophan. The role played by these proteins in the metabolism of the bacteria requires additional studies, including different growth conditions. In addition, the inoculation of micropropagated sugarcane plants suggested a hormonal effect of the bacteria mainly on the root development e consequently in the N use efficiency. However, the size of the pots may have limited the plant development, suggesting that new experiments should be carried out in more appropriated conditions to confirm the influence of the indol production and the BNF during the association of the G. diazotrophicus and sugarcane plantseng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjecttryptophaneng
dc.subjectproteomiceng
dc.subjecttriptofano, , , ,por
dc.subjectproteomapor
dc.subjectinoculaçãopor
dc.subjectfitormoniopor
dc.subjectdiazotrofopor
dc.subjectinoculationpor
dc.subjectphytohormonepor
dc.subjectdiazotrophpor
dc.titleAnálise proteômica de estirpes selvagem PAL5T e mutante lao- de Gluconacetobacter diazotrophicus na presença e ausência de triptofano e o efeito de sua inoculação em plantas micropropagadas de cana-de-açúcarpor
dc.title.alternativeProteomic analysis of PAL5 wild strain and lao- mutant strain of Gluconacetobacter diazotrophicus cultivated in the presence and absence of tryptophan and the inoculation effect on sugarcane micropropagated plantseng
dc.typeTesepor
dc.contributor.advisor1Baldani, José Ivo
dc.contributor.advisor1ID538.864.458-87por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8391182235603982por
dc.contributor.advisor-co1Vidal, Marcia Soares
dc.contributor.advisor-co1ID026.210.947-67por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3036544314910366por
dc.contributor.referee1Médici, Leonardo Oliveira
dc.contributor.referee2Hemerly, Adriana Silva
dc.contributor.referee3Teixeira, Kátia Regina dos Santos
dc.contributor.referee4Urquiaga, Segundo
dc.creator.ID101.431.757-69por
dc.creator.Latteshttp://lattes.cnpq.br/4144728642626556por
dc.description.resumoEste estudo teve por objetivo avaliar o perfil de expressão de proteínas de G. diazotrophicus PAL5 e seu mutante defectivo na produção de compostos indólicos (lao-) cultivados na presença e ausência de triptofano através da técnica de 2DE-PAGE. A análise por espectrometria de massa permitiu a identificação de 24 proteínas diferencialmente expressas. A maioria das proteínas com a expressão diminuída em PAL5 cultivada em meio com triptofano em relação ao meio de cultivo sem esse aminoácido pertenceu à categoria modificação pós-traducional, turnover de proteínas e chaperonas. No mutante lao- cultivado nas mesmas condições, a maioria das proteínas que apresentaram expressão diferencial pertencia à categoria produção e conversão de energia. Em adição, a maioria das proteínas que foram diferencialmente expressas no mutante lao- em comparação com a estirpe selvagem PAL5 pertencia à categoria metabolismo e transporte de carboidratos. Por outro lado, não foram observadas proteínas relacionadas à biossíntese de triptofano em nenhuma condição analisada possivelmente devido ao baixo rendimento das identificações por espectrometria. Além das análises dos perfis de proteínas, os mutantes lao- e nif- de G. diazotrophicus foram inoculados em plantas de cana-de-açúcar micropropagadas com o objetivo de determinar a influência das auxinas na promoção do crescimento dessa cultura em comparação com a estirpe selvagem PAL5. O primeiro experimento, conduzido em condições de hidroponia pelo período de 10 dias, mostrou efeito significativo da inoculação da estirpe selvagem na promoção de crescimento da parte área das plantas, enquanto que o mutante lao-, não diferiu estatisticamente do controle não inoculado. O outro experimento, foi conduzido por 120 dias em vasos com substrato areia:vermiculita contendo 30 ou 60 ppm de sulfato de amônio enriquecido com 15N e as plântulas foram inoculadas in vitro. Os resultados mostraram uma diferença visual nas raízes das plantas inoculadas com PAL5, que se mostraram mais volumosas, aparentando um número mais elevado de raízes secundárias e pêlos radiculares. Já as plantas inoculadas com lao- apresentaram raízes mais grossas, com um número muito reduzido de ramificações ou pêlos radiculares. A biomassa seca da parte aérea das plantas inoculadas com PAL5 foi superior àquelas inoculadas com as estirpes mutantes para as duas doses de nitrogênio, porém essa diferença não foi significativa. Não foram observadas evidências de contribuição da FBN, porém as plantas inoculadas com PAL5 foram menos eficientes na recuperação do N fertilizante. Em conclusão, o presente estudo mostra a ocorrência de diversas proteínas diferencialmente expressas tanto na estirpe selvagem como em lao- quando crescidas na presença e ausência do aminoácido triptofano. A definição do papel dessas proteínas no metabolismo da bactéria requer estudos adicionais, inclusive em diferentes condições de cultivo. Em adição, a inoculação dessas bactérias em plantas de cana-de-açúcar mostrou o efeito hormonal da bactéria no desenvolvimento das raízes e, por conseguinte na maior eficiência de uso do N aplicado. Entretanto, dado a limitação de espaço físico dos vasos para o desenvolvimento das plantas, sugere-se a realização de novos experimentos, em condições mais apropriadas, para confirmar a influência da produção de índoles e da FBN durante a associação da bactéria com as plantas de cana-de-açúcar.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesADAMS, D.O.; YANG, S.F. Ethylene, the gaseous plant hormone: mechanism and regulation of biosynthesis. Trends in Biochemistry. Sciences, v.6, p.161-164, 1981. ADDICOTT, F. F.; LYON, J. L. Physiology of abscisic acid and related substances. Annual Review of Plant Physiology, v.20, p.139-164, 1969. AKIYOSHI, D.E., KLEE, H., AMASINO, R.M., NESTER, E.W.; GORDON, M.P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proceedings of the National Academy of Sciences. USA . v.81, p. 5994–5998, 1984. ANTELMANN, H.; TJALSMA, H.; VOIGT, B.; OHLMEIER, S.; BRON, S.; VAN DIJL, J.M.; HECKER, M. A proteomic view on genome-based signal peptide predictions. Genome Research, v.11, n.9, p.1484– 1502, 2001. ANTOUN, H.; KLOEPPER, J.W. Plant Growth promoting rhizobacteria. In: Brenner, S., and Miller, J.F. (Ed.) Encyclopedia of Genetics. p. 1477-1480, 2001. ARDISSONE S, FRENDO P, LAURENTI E, JANTSCHKO W, OBINGER C, PUPPO A, FERRARI, R.P. Purification and physical-chemical characterization of the three hydroperoxidases from the symbiotic bacterium Sinorhizobium meliloti. Biochemistry. v.43:12, p.692-12699, 2004. ARSHAD, M.; FRANKENBERGER, W.T. Plant growth-regulating substances in the rhizosphere: microbial production and functions. Advances in Agronomy, v.62, p.45-151, 1998. ASGHAR, H.N.; ZAHIR, Z.A.; ARSHAD, M. Screening rhizobacteria for improving the growth, yield and oil content of canola (Brassica nappus L.). Australian Journal of Agricultura Research, v.55, p.187-194, 2004. ASGHAR, H.; ZAHIR, Z.; ARSHAD, M.; KHALIQ, A. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils, v.35, p.231-237, 2002. ASHCROFT, A.E. Protein and peptide identification: the role of mass spectrometry in proteomics. Natural Product Reports, v.20, n.2, p.202-215, 2003. BABALOLA, O.O.; OSIR, E.O.; SANNI, A.I.; ODHIAMBO, G.D.; BULIMO, W.D. Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. African Journal of Biotechnology, v.2, p.157-160, 2003. BACA, B.E: AND ELMERICH, C. Microbial production of plants hormones by microorganisms. In: Associative Nitrogen-fixation Bacteria and Cyanobacteria. IV. 2007. Series: Nitrogen Fixation: Origins, Applications, and Research Progress, vol. 2007. p.113-137. ELMERICH, C.; NEWTON, W. (Eds). Springer Life Science. The Netherlands. 2007. 114 BA-IDRISS, E.E.; MAKAREWICZ, O.; FAROUK, A.; ROSNER, K.; GREINER, R.; BOCHOW, H.; RICHTER, T.; BORRISS, R. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plantgrowth-promoting effect. Microbiology, v.148, p. 2097-2109, 2002. BALDANI, J.I.; BALDANI, V.L.D. History of the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciência. v.77 (3), p.549-579, 2005. BALDANI, J.I.; REIS, V.M.; BALDANI, V.L.D.; DOBEREINER, J. A brief story of nitrogen fixation in sugarcane – reasons for success in Brazil. Functional Plant Biology, v. 29, p. 417-423, 2002. BALDANI, J.I.; AZEVEDO, M.S.; REIS, V.M.; TEIXEIRA, K.R. dos S.; OLIVARES, F.L.; GOI, S.R.; BALDANI, V.L.D.; DÖBEREINER, J. Fixação biológica de nitrogênio em gramíneas: avanços e aplicações. In: SIQUEIRA, J.O.; MOREIRA, F.M.S.; LOPES, A.S.; GUILHERME, L.R.G.; FAQUIN, V.; FURTINI NETO, A.E.; CARVALHO, J.G. Inter-relação fertilidade, biologia do solo e nutrição de plantas. Viçosa: SBCS; Lavras: UFLA/DCS, p. 621-666, 1999. BALDANI, J.I.; BALDANI, V.L.D.; GOI, S.R.; DOBEREINER, J. Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, v. 29, p. 911-922, 1997. BARASH; MANULIS-SASSON. Virulence mechanisms and host specificity of gall-forming Pantoea agglomerans. Trends in Microbiology. v.15, n.12, p.538-545, 2007. BARBIERI; GALLI. Effect on wheat root development of inoculation with an Azospirillum brasiliensis mutant with altered indolo-3-acetic acid production. Research in Microbiology, v.144, p.69-75, 1993. BARBIERI, P.; ZANELLI, T.; GALLI, E.; ZANETTI, G. Wheat inoculation with Azospirillum brasiliense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiology Letters, v.36, p.87-90, 1986. BAREA, J.M., NAVARRO, E.; MONTOYA, E. Production of plant-growth regulators by rhizosphere phosphate-solubilizing bacteria. Journal of Applied Bacteriology v.40, p.129–134, 1976. BARON, C.; ZAMBRYSKI, P.C. The plant response in pathogenesis, symbiosis and wounding: variations on a commom theme? Annual Review of Genetics. v. 29, p. 107-129, 1995. BASTIÁN, F.; COHEN, A.; PICCOLI, P.; LUNA, V.; BARALDI, R.; BOTTINI, R. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation, v.24, p.7-11, 1998. 115 BEATTIE, G.A. Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: S.S. Gnanamanickam (ed). Plant-Associated Bacteria. Springer, Netherlands, p. 1–56. 2006. BELIMOV, A.A.; HONTZEAS, N.; SAFRONOVA, V.I.; DEMCHINSKAYA, S.V.; PILUZZA, G.; BULLITTA, S.; GLICK, B.R. Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, v.37, p.241–250, 2005. BELIMOV, A.A.; SAFRONOVA, V.I.; SERGEYEVA, T.A.; EGOROVA, T.N.; MATVEYEVA, V.A.; TSYGANOV, V.E.; BORISOV, A.Y.; TIKHONOVICH, I.A.; KLUGE, C.; PREISFELD, A.; DIETZ, K.J.; STEPANOK, V.V. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1- aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, v.47, p.642–652, 2001. BENT, E.; TUZUN, S.; CHANWAY, C.P.; ENEBAK,S. Alterations in plant growth and in root hormone levels of lodge pole pines inoculated with rhizobacteria. Canadian Journal of Microbiology, v.47, p.793-800, 2001. BERLETH, T.; SACHS, T. Plant morphogenesis: long-distance coordination and local patterning. Current Opinion in Plant Biology, v. 4, p. 57-62, 2001. BERTALAN, M.; ALBANO, R.; DE PÁDUA, V.; ROUWS, L.,; ROJAS, C.; HEMERLY, A.; TEIXEIRA, K.; SCHWAB, S.; ARAUJO, J.; OLIVEIRA, A.; FRANÇA, L.; MAGALHÃES, V.; ALQUÉRES, S.; CARDOSO, A.; ALMEIDA, W.; LOUREIRO, M. M.; NOGUEIRA, E.; CIDADE, D.; OLIVEIRA, D.; SIMÃO, T.; MACEDO, J.; VALADÃO, A.; DRESCHSEL, M.; FREITAS, F.; VIDAL, M.; GUEDES, H.; RODRIGUES, E.; MENESES, C.; BRIOSO, P.; POZZER, L.; FIGUEIREDO, D.; MONTANO, H.; JUNIOR, J.; DE SOUZA FILHO, G.; MARTIN QUINTANA FLORES, V.; FERREIRA, B.; BRANCO, A.; GONZALEZ, P.; GUILLOBEL, H.; LEMOS, M.; SEIBEL, L.; MACEDO, J.; ALVES-FERREIRA, M.; SACHETTO-MARTINS, G.; COELHO, A.; SANTOS, E.; AMARAL, G.; NEVES, A.; PACHECO, A. B.; CARVALHO, D.; LERY, L.; BISCH, P.; RÖSSLE, S. C.; URMÉNYI, T.; RAEL PEREIRA, A.; SILVA, R.; RONDINELLI, E.; VON KRÜGER, W.; MARTINS, O.; BALDANI, J. I.; FERREIRA, P. C. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus PAL5. BMC Genomics. v.10, p.1-17, 2009. BISHOP, P.E.; PREMAKUMAR, R. In Biological Nitrogen Fixation (STACEY, G., BURRIS, R. H. AND EVANS, E. J., eds.), Chapman and Hall, New York, p. 736-762, 1992. BJELLQVIST, B., EK, K. Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications. Journal of Biochemical and Biophysical Methods. v.6, n.4, p.317-339, 1982. BLACKSTOCK, W.P.; WEIR M.P. Proteomics: quantitative and physical mapping of cellular proteins. Trends in Biotechnology. v.17 (3), p.121-127, 1999. BLAHA, D.; PRIGENT-COMBARET, C.; MIRZA, M.S.; MOE¨NNE-LOCCOZ, Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in 116 phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiology Ecology, v.56, p.455–470, 2006. BLATTNER, F.R, PLUNKETT, I.I.I.G.; BLOCH, C.A.; PERNA, N.T.; BURLAND, V., RILEY, M. et al. The complete genome sequence of Escherichia coli K-12. Science. v. 277 p.1453–62, 1997. BLOEMBERG, G.V.; LUGTENBERG, B.J.J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, Oxford, v.4, n.4, p.343-350, 2001. BODDEY, R.M., POLIDORO, J.C., RESENDE, A.S., ALVES, B.J.R., URQUIAGA, S. Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugarcane and other grasses. Australian Journal of Plant Physiology v.28, p.889–895, 2001. BOIERO, L.; PERRIG, D.; MASCIARELLI, O.; PENA, C.; CASSÁN, F.; LUNA, V. Phytohormone production by strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology, v.74, p.874–880, 2007. BOOGAARD, R. VAN DEN; VENEKLAAS, E.J.; LAMBERS, H. The association of biomass allocation with growth and water use efficiency of two Triticum aestivum cultivars. Australian Journal of Plant Physiology, v.23, p.751-761, 1996. BRADFORD, M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. v.72, p. 248–254, 1976. BRANDL, M.T.; LINDOW, S. E. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Applied and Environmental Microbiology. v.62, p.4121-4128, 1996. BRAUN, R.J., KINKL, N., BEER, M., UEFFING, M. Two-dimensional electrophoresis of membrane proteins. Analytical and Bioanalytical Chemistry. v. 389, p.1033-1045, 2007. BROWN, M.E. Seed and root bacterization. Annual Review of Phytopathology., v.12, p.181-197, 1974. BUKAU, B., A.L. HORWICH. The Hsp70 and Hsp60 chaperone machines. Cell v. 92, p. 351–366, 1998. BURD, G.I.; DIXON, D.G. ; GLICK, B.R. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Applied and Environmental Microbiology, v.64, p.3663–3668, 1998. BURDMAN, S.; JURKEVITCH, E.; OKON, Y. Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: N.S. SUBBA RAO Y.R. DOMMERGUES, (eds.), Microbial Interactions in Agriculture and Forestry. Science Publishers, Enfield, USA, V. 2, p.229-250, 2000. 117 BUYER, J.S.; KRATZKE, M.G.; SIKORA, L.J. A method for detection of pseudobactin, the siderophore produced by a plant-growth-promoting Pseudomonas strain, in the barley rhizosphere. Applied and Environmental Microbiology, v.59, p.677-681, 1993. CAHILL, D.J.; NORDHOFF, E.; O´BRIEN, J.; KLOSE, J.; EICKHOFF, H.; LEHRACH, H. Bridging genomics and proteomics. In: PENNINGTON, S.R; DUNN, M.J (Ed.). Proteomics from protein sequence to function. BIOS Scientific Publishers Limited, 2001. p.1-22. CALVINS, T.J.; WHIPKER B. E.; FONTENO, W.C.; HARDEN, B.; McCALL, I.; GIBSON, J. L. Monitoring and managing pH and EC using the PourThru Extraction Method. Horticulture Information Leaflet / NCSU, Raleigh, n.590, 2000. CAMPBELL, B.G.; THOMSON, J. A. 1-Aminocyclopropane- 1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiology Letters, v.138, p.207-210, 1996. CAMPBELL, W.H. Nitrate reductase and its role in nitrate assimilation in plants. Physiologia Plantarum, Copenhagen, v. 74, p. 214-219, 1988. CANDIANO, G.; BRUSCHI, M.; MUSANTE, L.; SANTUCCI, L.; GHIGGERI, G.M.; CARNEMOLLA, B.; ORECCHIA, P.; ZARDI, L.; RIGHETTI, P.G.; Blue Silver: A very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis. v.25, p. 1327-1333, 2004. CATTELAN, A.J.; HARTEL, P.G.; FUHRMANN, J.J. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, v.63, p.1670-1680, 1999. CAVALCANTE, V.A.; DÖBEREINER, J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil. v.108, p.23-31, 1988. CHAVES, D.F.S.; FERRER, P.P.; CRUZ, L.M.; MONTEIRO, R.A. ; SOUZA, E.M.; PEDROSA, F.O. A two-dimensional proteome reference map of Herbaspirillum seropedicae proteins. Proteomics, v.7, p.3759-3763, 2007. CHAVES, D.F.S. Análise e identificação de proteínas celulares e proteínas secretadas por Herbaspirillum seropedicae. Curitiba, 2008. 156 f. Tese (doutorado em Ciências – Bioquímica). Setor de Ciências Biológicas, Universidade Federal do Paraná. CHEN, S.; HARMON, A.C. Advances in plant proteomics. Proteomics. v.6, p.5504-16, 2006. CLARKE, L.M., DILWORTH, M.J.; GLENN, A.R. Survival of Rhizobium meliloti WSM419 in laboratory culture: effect of combined pH shock and carbon substrate stress. Soil Biology and Biochemistry. v.25, p.1289-1291, 1993. COHEN, A.C.; BOTTINI, R.; PICCOLI, P.N. Azospirillum brasilense Sp245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regulation. v.54, p.97-103, 2008. 118 CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira de cana-de-açúcar. Disponível em: <http://www.conab.gov.br/> Acesso em: fevereiro de 2012. COSTACURTA, A.; VANDERLEYDEN, J. Synthesis of phytohormones by plant-associated bacteria. Critical Reviews in Microbiology, v.21, p.1-18, 1995 CRAWFORD, I.P.; GUNSALUS, I.C. Inducibility of tryptophan synthetase in Pseudomonas putida. Proceedings of the National Academy of Sciences, v.56, p.717-724, 1966. CRAWFORD, I.P. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annual Review of Microbiology., v.43, p.567-600, 1989. CRAWFORD, I.P. Gene arrangements in the evolution of the tryptophan synthetic pathway. Bacterial. Rev., v.39, p.87- 120, 1975. CRAWFORD, I.P.; NICHOLS, B.P.; YANOFSK, Y.C. Nucleotide sequence of the trpB gene in Escherichia coli and Salmonella typhimurium. Journal of Molecular Biology. v.42, p.489-502, 1980. CRAWFORD, T.; BATES, J. H. Analysis of plasmids in Mycobacterium avium-intracellulare isolates from persons with acquired immunodeficiency syndrome. American Review of Respiratory Diseases, v.134, p.659-661, 1986. CREIGHTON, T.E.; YANOFSKY, C. Indole-3-glycerol phosphate synthetase of Escherichia coli, an enzyme of the tryptophan operon. The Journal of Biological Chemistry. v.241, p.4625-4637, 1966. CRESPI, M.; MESSENS, E.; CAPLAN, A.B.; VAN MONTAGU, M.; DESOMAR, J. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO Journal, v.11, p.795-804, 1992. CZEKSTER, C.L. A enzima Indol-3-gliceral fosfato sintase de Mycobacterium tuberculosis H37Rv: estudos cinéticos e mecanismo químico. Dissertação apresentada ao Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, da Universidade Federal do Rio Grande do Sul, como pré-requisito para obtenção de Mestre em Bioquímica, Porto Alegre, 74pp, 2008. DAVID, C.; HERVE, C.; NICOLAS, F.; ISABELLE, S.J.; MOHAMED, A.; FRANC. P. The crystal structure of the pyoverdine outer membrane receptor FpyA from Pseudomonas aeruginosa at 3.6 A resolution. Journal of Molecular Biology, v.347, p.121-134, 2005. DAVIES, P.J. The plant hormones: their nature, occurrence and functions. In: DAVIES P.J, ed, Plant Hormones: Physiology, Biochemistry and Molecular Biology, Ed 5. Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 1-12, 1995. DAVISON, J. Plant beneficial bacteria. Biotechnology, v.6, p.282-286, 1988. 119 DE SALAMONE, G.; GIORDANO, M.; TREVANI, A.S.; GAMBERALE, R.; VERMEULEN, M.; SCHETTINNI, J.; GEFFNER, J.R. Promotion of neutrophil apoptosis by TNF-alpha. Journal of Immunology. v.166, p.3476–3483, 2001. DEY, R.; PAL, K.K.; BHATT, D.M.; CHAUHAN, S.M. Growth promotion and yield enhancement of peanut (Aracis hypoggaea L.) by application of plant growth promoting rhizobacteria. Microbiological Research. v.159, p.371–394, 2004. DOBBELAERE, S.; CROONENBORGHS, A.; THYS, A.; PTACEK, D.; VANDERLEYDEN, J.; DUTTO, P.; LABANDERA-GONZALEZ, C.; CABALLERO-MELLADO, J.; AGUIRRE, J.F.; KAPULNIK, Y.; BRENER, S.; BURDMAN, S.; KADOURI, D.; SARIG, S.; OKON, Y. Response of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology. v.28: p.871-879, 2001. DOBBELAERE, S.; CROONENBORGHS, A.; TRYS, A.; VANDE BROEK, A.; VANDERLEYDEN, J. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, v.212, p.155-164, 1999. DOBBELAERE, S.; OKON, Y. The plant growth-promoting effect and plant responses. In: ELMERICH, C.; NEWTON, W.E. (Eds.). Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. Springer, p.145-170, 2007. DÖBEREINER, J.; BALDANI, V.L.D.; REIS, V.M. Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: FENDRIK, I.; DEL GALLO, M.; VANDERLEYDEN, J.; DE ZAMAROCZY, M. eds. Azospirillum VI and related microorganisms. Berlin, Heidelberg: Springer-Verlag, p.15-30. 1995a. DÖBEREINER, J. History and new perspective of diazotrophs in association with nonleguminous plants. Symbiosis, v. 13, p. 1-13, 1992. DÖBEREINER, J. Influência da cana-de-açúcar na população de Beijerinckia no solo. Revista Brasileira de Biologia, v. 19, p. 251-258, 1959. DÖBEREINER, J.; BALDANI, V L.D.; BALDANI, J.I. Como isolar e identificar bactérias diazotróficas em plantas não leguminosas. Itaguai-RJ: EMBRAPA - SPI, 1995b. DÖBEREINER, J.; RUSCHEL, A.P. Uma nova espécie de Beijerinckia. Research Biology, v.1, p. 261-272, 1958. DONG, Z.; CANNY, M.J. A nitrogen-fixing endophyte of sugarcane stems. Plant Physiology, v.105, p.1139-1147, 1994. DOS SANTOS, M.F. Proteoma diferencial da bactéria Gluconacetobacter diazotrophicus co-cultivada com plântulas de cana-de-açúcar. Tese de Doutorado. Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, 2008. DOS SANTOS, M.F.; PÁDUA, V.L.M.; NOGUEIRA, E.M.; HEMERLY, A.S.; DOMONT, G.B. Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets. Journal of Proteomics. v.73, p. 91 7 - 931, 2010. 120 DUAN, J.; MULLER, K.M.; CHARLES, T.C.; VESELY, S.; GLICK, B.R. 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia: Isolation, characterization and regulation. Proceedings of the 7th International PGPR Workshop, Amsterdam, p.50, 2006. DUNN, B. Splitting image. Nature Structural & Molecular Biology. v.4, p.969–972, 1997. DUNN, W.B.; BAILEY, N.J.C.; JOHNSON, H.E. Measuring the metabolome: current analytical technologies. Analyst. v.130, p.606–625, 2005. DUTTA, D.; GACHHUI, R. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. International Journal Of Systematic And Evolutionary Microbiology. v.57, p.353–357, 2007. ELLIS, R.J. Chaperomics: in vivo GroEL function defined. Current Biology. v.15, p.661–3, 2005. ERMOLENKO, D.N.; MAKHATADZE, G.I. Bacterial cold-shock proteins. Cellular and Molecular Life Sciences. v.59, p.1902-1913, 2002. ETESAMI, H.; ALIKHANI, H.A.; AKBARI, A.A. Evaluation of Plant Growth Hormones Production (IAA) Ability by Iranian Soils Rhizobial Strains and Effects of Superior Strains Application on Wheat Growth Indexes. World Applied Sciences Journal, v.6, n.11, p.1576-1584, 2009. FAO - Organização das Nações Unidas para Agricultura e Alimentação. Current World fertilizer trends and Outlook to 2014. FAO, Roma, 2010, 40 p. FAYET, O.; ZIEGELHOFFER, T.; GEORGOPOULOS, C. The GroES and GroEL heat shock gene products of E. coli are essential for bacterial growth at all temperatures. Journal of Bacteriology. v.171, p.1379-1385, 1989. FEKKES, P.; DRIESSEN, A.J.M. Protein targeting to the bacterial cytoplasmic membrane. Microbiology and Molecular Biology Reviews. v.63, p.161–173, 1999. FRANKENBERGER, W.T.Jr.; ARSHAD, M; Phytohormones in soils: Microbial production and function. Marcel Dekker, Inc. New York, 1995. FREIFELDER, D.M. Microbial Genetics. Jones and Bartlett Publishers inc., USA, 1987. FUENTES-RAMIREZ, L.E.; BUSTILLOS-CRISTALES, R. Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. International Journal of Systematic and Evolutionary Microbiology. v.51 (Pt 4), p.1305-14, 2001. FUENTES-RAMÍREZ, L.E.; JIMÉNEZ-SALGADO, T.; ABARCA-OCAMPO, I.R.; CABALLERO-MELLADO, J. Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant and Soil, v.154, p.145-150, 1993. 121 FURTADO, Celso. Formação econômica do Brasil. 30.ed. São Paulo: Companhia Editora Nacional, 2001. 248p GALPERIN, M.Y.; KOLKER, E. New metrics for comparative genomics. Current Opinion in Biotechnology, v.17, n.5, p.440-7, 2006. GAUDIN, V.; VRAIN, D.; JOUANIN, L. Bacterial genes modifying hormonal balance in plant. Plant Physiology and Biology, v.32, p.11-29, 1994. GHOSH, S.; PENTERMAN, J.N.; LITTLE, R.D.; CHAVEZ, R.; GLICK, B.R. Three newly isolated plant growth-promoting bacilli facilitate the growth of canola seedlings. Plant Physiology and Biochemistry, v.41, p.277–281, 2003. GILLIS, M.; KERSTERS, K. Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. International Journal of Systematic Bacteriology, v.39, n.3, p.361-364, 1989. GLICK B.R., BASHAN Y. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, v.15, p. 353-378, 1997. GLICK, B. R.; KARATUROVI´C, D. M.;NEWELL, P. C. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian Journal of Microbiology, v.41, p.533–536, 1995. GLICK, B. R.; PATTEN, C. L.; HOLGUIN, G.; PENROSE, D.M. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press. London, 1999. GLICK, B.R.; PENROSE, D.M.; LI, J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, v.190, p.63–68, 1998. GLICKMANN, E.; GARDAN, L.; JACQUET, S.; HUSSAIN, S.; ELASRI, M.; PETIT, A.; DESSAUX, Y. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Molecular Plant-Microbe Interactions, v.11, p.156-162, 1998. GOLDSTEIN, A.H. Bacterial mineral phosphate solubilization: historical perspectives and future prospects. American Journal of Alternative Agriculture. v.1, p.57–65, 1986. GOMEZ-ROLDAN, V.; FERMAS, S.; BREWER, P.B.; PUECH-PAGÈS, V.; DUN, E. A.; PILLOT, J.P.; LETISSE, F.; MATUSOVA, R.; DANOUN, S.; PORTAIS, J.C.; BOUWMEESTER, H.; BÉCARD, G.; BEVERIDGE, C.A.; RAMEAU, C.; ROCHANGE, S.F. Strigolactone inhibition of shoot branching. Nature, v. 455, n.7210, p.180–194, 2008. GÖRG, A.; WEISS, W. Current two-dimensional electrophoresis technology for proteomics. Proteomics, v.4, p.3665-3685, 2004. GÖRG, A.; WEISS, W., IN: RABILLOUD, T. (Ed.), Proteome Research: Two-Dimensional Gel Electrophoresis and Identification Methods, Springer, Berlin, Heidelberg. p. 57–106, 2000. 122 GOURION, B., M. ROSSIGNOL; J.A. VORHOLT, A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proceedings of the National Academy of Sciences. v.103, p.13186-13191, 2006. GRACIOLLI, L.A.; FREITAS, J.R.D.E.; RUSCHEL, A.P. Bactérias fixadoras de nitrogênio nas raízes, caules e folhas de cana-de-açúcar (Saccharum sp.). Revista de Microbiologia. v.14, p.191-196, 1983. GRAVES, P.R.; HAYSTEAD, T.A. Molecular biologist's guide to proteomics. Microbiology and Molecular Biology Reviews, v.66, n.1, p.39-63, 2002. GREINER, R.; HALLER, E.; KONIEZNY, U.; JANY, K.D. Purification and characterization of a phytase from Klebsiella terrigena. Archives of Biochemistry and Biophysics, v.341, p.201-206, 1997. GRICHKO, V.P.; GLICK, B.R. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, v.39, p.11–17, 2001. GUTIERREZ-MANERO, F.J.; RAMOS-SOLANO, B.; PROBANZA, A.; MEHOUACHI, J.; TADEO, F.R.; TALON, M. The plant growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, v.111, p.206-211, 2001. GYANESHWAR, P.; KUMAR, G. N.; PAREKH, L. J.; POOLE, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, v.245, p.83-93, 2002. HARARI, A.; KIGEL, J.; OKON, Y. Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant and Soil, v.110, p.275-282, 1988. HARDOIM, P.R.; VAN OVERBEEK, L.S.; ELSAS, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, v.16 p. 463–471, 2008. HARTMAN, A.; SINGH, M.; KLINGMULER, W. Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Canadian Journal of Microbiology. v.29, p.916–923, 1983. HAYNES, D.; RALPH, P.; PRANGE, J.; DENNISON, B. The impact of the herbicide diuron on photosynthesis in three species of tropical seagrass. Marine Pollution Bulletin, v.41, n.7-12, p. 288-293, 2000. HERRMANN, K.M.; WEAVER, L.M. The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology v.50, p.473–503, 1999. HOAGLAND, D.R; ARNON, D.I. The water culture method for growing plants without soils. Berkeley: California Agricultural Experimental Station, 1950. 347p. 123 HOLMGREN, E.; CRAWFORD, I.P. Regulation of tryptophan genes in Rhizobium leguminosarum. Journal of Bacteriology v.149, p.1135–1137, 1982. HONMA, M.; SHIMOMURA, T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry., v.42, p.1825-1831, 1978. HONMA, M. Stereospecific reaction of 1-aminocyclopropane-1-carboxylate deaminase. In J. C. PECH, A. LATCHÉ, C. BALAGUÉ (Eds.), Cellular and molecular aspects of the plant hormone ethylene (pp. 111–116). Dordrecht, The Netherlands: Kluwer Academic Publishers, 1993. HONTZEAS, N.; RICHARDSON, A. O.; BELIMOV, A.A.; SAFRONOVA, V.I.; ABU-OMAR, M.M.; GLICK, B.R. Evidence for horizontal gene transfer (HGT) of ACC deaminase genes Applied and Environmental Microbiology, 71 pp. 7556–7558, 2005. HUANG, L.; SHEN, M.; CHERNUSHEVICH, I.; BURLINGAME, A.L.; WANG, C.C.; ROBERTSON, C.D. Identification and isolation of three proteasome subunits and their encoding genes from Trypanosoma brucei. Molecular and Biochemical Parasitology. v.102, p. 211–223, 1999. HUNT, S.M.N.; THOMAS, M.R. Optimal Replication and the importance of experimental design for gel-based quantitative proteomics. Journal of Proteome Research, v.4, n.3, p.809-819, 2005. HUREK, T.; REINHOLD, B.; VANMONTAGU, M.; KELLENBERGER, E. Root colonization and systemic spreading of Azoarcus sp. strain-BH72 in grasses. Journal of Bacteriology, v. 176, n. 7, p. 1913-1923, 1994. HÜTTER, R.; NIEDERBERGER, P.; DEMOSS, J.A. Tryptophan biosynthetic genes in eukaryotic microorganisms. Annual Review of Microbiology. v.40, p.55–77, 1986. JACOBSON, C.B.; PASTERNAK, J.J.; GLICK, B.R. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Canadian Journal of Microbiology, v.40, p.1019–1025, 1994. JAMES, E.K.; OLIVARES, F.L. Futher observation on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. Journal of Experimental Botany, v.52, n.357, p.747-760, 2001. JAMES, P.; QUADRONI, M. Protein identification in DNA databases by peptide mass fingerprinting. Protein Science, v.3, p.1347-1350, 1994. JAMESON, P.E. Cytokinins and auxins in plant-pathogen interactions – An overview. Plant Growth Regulation. v.32, n.2, p.369-380, 2000. JIA, Y.J.; KAKUTA, Y.; SUGAWARA, M.; IGARASHI, T.; OKI, N.; KISAKI, M.; SHOJI, T.; KANETUNA, Y.; HORITA, T.; MATSUI, H.; HONMA, M. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Bioscience, Biotechnology and Biochemistry, v.63, p.542–549, 1999. 124 JIMENEZ-SALGADO, T.; FUENTES-RAMIREZ, L. E. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogenfixing acetobacteria. Applied and Environmental Microbiology, v.63, n. 9, p.3676-83, 1997. KAKIMOTO, T. Perception and signal transduction of cytokinins. Annual Review of Plant Biology. v.54, p.605–627, 2003. KASTRITIS, P.L.; BONVIN, A.M. Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. Journal of Proteomic Research. v.9, p.2216–2225, 2010. KATIYAR, V.; GOEL, R. Siderophore-mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regulation, v.42, p.239-244, 2004. KAZEMI-POUR, N.; CONDEMINE, G.; HUGOUVIEUX-COTTE-PATTAT, N. The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics v.4, p.3177-3186, 2004. KAZMI, S.; KRULL, I. S. Proteomics and the current state of protein separations science, Part one. Pharma Genomics, p.14-29, August, 2001. KERNER, K.J.; NAYLOR, D.J.; ISHIHAMA, Y.; MAIER, T.; CHANG, H-C.; STINES, A.P., et al. Proteome-wide analysis of chaperonin dependent protein folding in Escherichia coli. Cell. V.122, p.209–20, 2005. KEROVUO, J.; LAURAEUS, M.; NURMINEN, P.; KALKKINEN, N., APAJALAHTI, J. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Applied and Environmental Microbiology, v.64, p.2079-2085, 1998. KEVIN, V.J. Plant growth promoting rhizobacteria as biofertilizers; Plant and Soil v.255, p.571–586, 2003. KHALID, A.; ARSHAD, M.; ZAHIR, Z.A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, v.96, p.473-480, 2004. KIM, K.Y.; JORDAN, D.; MCDONALD, G.A. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry, v.30, p.995-1003, 1998. KLEE, H.J.; HAYFORD, M.B.; KRETZMER, K.A.; BARRY, G.F.; KISHORE, G.M. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell, v.3, p.1187–1193, 1991. KLOEPPER, J.W.; SCHROTH, M.N. Plant growth promoting rhizobacteria on radishes. In: Proceedings of the fourth International Conference on Plant Pathogenic Bacteria, INRA, v.2, p.879-892, 1978. 125 KLOEPPER, J.W. A review of mechanisms for plant growth promotion by PGPR, in: Abstracts and short papers. 6th International PGPR workshop, 5-10, 2003. KLOEPPER, J.W.; ZABLOKOVICZ, R.M.; TIPPING, E.M.; LIFSHITZ, R. Plant growth promotion mediated by bacterial rhizosphere colonizers. In: D. L. KEISTER; P. B. CREGAN (Eds.). The rhizosphere and plant growth, p.315-326, 1991. KLOEPPER, J.W.; LIFSHITZ, R.; ZABLOTOWICZ, R.M. Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology. v.7, p.39-43, 1989. KLOSE, J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Humangenetik, v.26, p.231-243, 1975. KOBAYASHI, M.; KAKIZONO, T.; NAGAI, S. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Applied and Environmental Microbiology v.59, p.867-873, 1993. KOBAYASHI, N.; TANIGUCHI, K.; KOJIMA, K.; URASAWA, S.; UEHARA, N.; OMIZU, Y.; KISHI, Y.; YAGIHASHI, A.; KUROKAWA. I. Analysis of methicillin-resistant and methicillin-susceptible Staphylococcus aureus by molecular typing method based on coagulase gene polymorphisms. Epidemiology and Infection., v. 115, p. 419-426, 1995. KOGA, J.; ADACHI, T.; HIDAKA, H. Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Molecular and General Genetics. v.226, p. 10-16, 1991. KORMUTÁK, A.; SALAJ, T.; VOOKOVÁ, B. Storage protein dynamics in zygotic and somatic embryos of white fir. Biologia Bratislava, v. 61, p. 479-485, 2006. KUCEY R.M.N.; JANZEN H.H.; LEGGETT M.E. Microbially mediated increases in plant-available phosphorus. Advances in Agronomy, v.42, p.199-227, 1989. KÜHNER, S.; VAN NOORT, V.; BETTS, M.J.; LEO-MACIAS, A.; BATISSE, C.; RODE, M.; YAMADA, T.; MAIER, T.; BADER, S.; BELTRAN-ALVAREZ, P.; CASTAÑO-DIEZ, D.; CHEN, W.H.; DEVOS, D.; GÜELL, M.; NORAMBUENA, T.; RACKE, I.; RYBIN, V.; SCHMIDT, A.; YUS, E.; AEBERSOLD, R. Proteome organization in a genome-reduced bacterium. Science (New York, NY) v.326, p.1235–1240, 2009. KUMAR, V.; NARULA, N. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils, v.28, n.3, p.301-305, 1999. LAEMMLI, U.K. SDS-PAGE. Nature, v.227, p.680-685, 1970. LAMBERT, B.; JOOS, H. Fundamental aspects of rhizobacterial plant growth promotion research. Trends in Biotechnology, v.7, p.215– 9, 1989. LAPORT, M.S., CASTRO, A.C.D., VILLARDO, A., LEMOS, J.A.C., BASTOS, M.C. F., GIAMBIAGI-DEMARVAL, M. Expression of the Major Heat Shock Proteins DnaK and GroEL in Streptococcus pyogenes: A Comparison to Enterococcus faecalis and Staphylococcus aureus. Current Microbiology, v. 42, p. 264–268, 2001. 126 LEHNINGER, ALBERT L. Princípios de bioquímica. 4 ed: São Paulo. Sarvier, 2006. LERY, L.M.S.; HEMERLY, A.S.; NOGUEIRA, E.M.; VON KRÜGER, W.M.A.; BISCH, P.M. Quantitative Proteomic Analysis of the Interaction Between the Endophytic Plant-Growth-Promoting Bacterium and Sugarcane. Molecular Plant-Microbe Interactions, v. 24, p. 562-576, 2011. LERY, L.M.S.; VON KRÜGER, W.M.A.; VIANA, F.C.; TEIXEIRA, K.R.S.; BISCH, P.M.A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound. Biochimica et Biophysica Acta, v.1784, n.11, p.1578-1589, 2008b. LERY, L.M.; COELHO, A.; VON KRUGER, W.M.; GONÇALVES, M.S.; SANTOS, M.F.; VALENTE, R.H.; SANTOS, E.O.; ROCHA, S.L.; PERALES, J.; DOMONT, G.B.; TEIXEIRA, K.R.; BERTALAN, M.; FERREIRA, P.C.; BISCH, P.M. Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugarcane endophytic plant growth- promoting bacterium. Proteomics. v.8, n.22, p.4833, 2008a. LETHAM, D.S. Zeatin, a factor inducing cell division isolated from zea mays. Life Sciences, v.2, p.569-573, 1963. LICHTER, A.; BARASH, I.; VALINSKY, L.; MANULIS, S. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: Characterization and role in gall formation. Journal of Bacteriology. v.177, p.4457-4465, 1995a. LICHTER, A.; MANULIS, S.; SAGEE, O.; GAFNI, Y.; GRAY, J.; MEILAN, R.; MORRIS, R. O.; BARASH, I. Production of cytokinins by Erwinia herbicola pv. gypsophilae and isolation of a locus conferring cytokinin biosynthesis. Molecular Plant-Microbe Interactions. v.8, p.114-121. 1995b. LIMA, E.; BODDEY, R.M. Quantification of biological nitrogen fixation associated with sugarcane using a 15N aided nitrogen balance. Soil Biology Biochemistry,v.19, n.2. p.165-170, 1987. LUCY, M.; REED, E.; GLICK, B.R. Applications of free living plant growth-promoting rhizobacteria. Antonie Leeuwenhoek, v.86, p.1-25, 2004. LUGTENBERG, B.; KAMILOVA, F. Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology, v. 63, p.541-556, 2009. MA, Z.; BASKIN, T.I.; BROWN, K.M.; LYNCH, J.P. Regulation of Root Elongation under Phosphorus Stress Involves Changes in Ethylene Responsiveness. Plant Physiology, v.131, p.1381–1390, 2003. MADHAIYAN, M.; POONGUZHALI, S.; RYU, J.H.; SA, T.M. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta. v.224, p.268-78, 2006. 127 MANTELIN, S.; TOURAINE, B. Plant growth-promoting bacteria and nitrate availability: impact of development and nitrate uptake. Journal of Experimental Botany, v.55, p.27-34, 2004. MANULIS, S.; HAVIV-CHESNER, A.; BRANDL, M.T.; LINDOW, S.E.; BARASH, I. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Molecular Plant-Microbe Interactions, v.11, n.7, p.634-42, 1998. MASALHA, J.; KOSEGARTEN, H.; ELMACI, O.; MENGEL, K. The central role of microbial activity for iron acquisition in maize and sunflower. Biology and Fertility of Soils, v.30, p.433-439, 2000. MATHESIUS, U., SCHLAMAN, H.R.M., SPAINK, H.P., SAUTTER, C., ROLFE, B.G., AND DJORDJEVIC, M.A. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivates of chitin oligosaccharides. The Plant Journal, v.14, n.1, p.23-34, 1998. MAYAK, S.; TIROSH, T.; GLICK, B. Plant growth-promoting bacteria that confer resistence in tomato plants to salt stress. Plant Physiology and Biochemistry., v.42, p.565-572, 2004. MEHTA, A.; ROSATO, Y.B. Identification of differentially expressed genes of Xanthomonas axonopodis pv. citri by representational difference analysis of cDNA. Genetics and Molecular Biology v.28, p. 140–149, 2005. MENESES, C.H.G.; ROUWS, L.F.M.; SIMÕES-ARAÚJO, J.L.; VIDAL, M.S.; BALDANI, J.I. Exopolysaccharide Production Is Required for Biofilm Formation and Plant Colonization by the Nitrogen-Fixing Endophyte Gluconacetobacter diazotrophicus. The American Phytopathological Society. v.24, n.12, p.1448–1458, 2011. MIERNYK, J.A. Abscisic acid inhibition of kinetin nucleotide formation in germinating lettuce seeds. Plant Physiology, v.45, p.63–66, 1979. MILLER, C.O.; SKOOG, F.; OKUMURA, F.S.; SALTZA, M.H.V.; STRONG, F. M. Structure and synthesis of kinetin. Journal of the American Chemical Society, v.77, n.9, p.2662-2663, 1955. MINAMI, Y.; HIGUCHI, S.; YAGI, F.; TADERA, K. Isolation and some properties of the antimicrobial peptide (Pa-AMP) from the seeds of pokeweed (Phytolacca americana). Bioscience, Biotechnology, and Biochemistry, v.62, p.2076–2078, 1998. MORRIS, R.O. Genes specifying auxin and cytokinin biosynthesis in prokaryotes. In Davies, P.J. (ed.), Plant Hormones: Physiology, Biochemistry and Molecular Biology, Kluwer Academic Publishers, p.318–339, 1995. MUÑOZ-ROJAS, J.; CABALLERO-MELLADO, J. Population dynamics of Gluconacetobacter diazotrophicus in sugarcane and its effect on plant growth. Microbial Ecology, v. 46, p. 454-464, 2003. 128 MURASHIGE, T.; SKOOG, F.A. A revised medium for a rapid growth and bioassays with tobacco tissues cultures. Plant Physiology, v. 15, p. 473-479, 1962. MUTHUKUMARASAMY, R.; REVATHI, G.; LAKSHMINARASIMHAN, C. Influence of n fertilization on the isolation of Acetobacter diazotrophicus and Hesbaspirillum spp. from Indian sugar cane varieties. Biology and Fertility of Soil, v.29, p. 157-164, 1999. NAGASAWA, T.; MAUGER, J.; YAMADA, H. A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. European Journal of Biochemistry, v.194, p.765–772, 1990. NATERA, S.H.A., GUERREIRO, N.; DJORDJEVIC, N.A. Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Molecular Plant-Microbe Interactions, v.13, p.995–1009, 2000. NAVEED, M.; ZAHIR, Z.A.; KHALID, M.; ASGHAR, H.N.; AKHTAR, M.J.; ARSHAD, M. Rhizobacteria containing ACC-deaminase for improving growth and yield of wheat under fertilized conditions. Pakistan Journal of Botany v.40, n.3, p.1231-1241, 2008. NEILANDJS, B.; LEONGS, A. Siderophores in relation to plant growth and disease. Annual Review of Plant Physiology, v.31, p.187-208, 1986. NEUHOFF, V.; AROLD, N. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, v.9, n.6, p.255-62, 1988. NEVES, M.C.P.; FRANCO, A.A. Fixação biológica e metabolismo de nitrogênio em plantas. In: FERNANDES, M.S.; ROSSIELLO, R.O.; DÖBEREINER, J. NEVES, M.C.P.; PIMENTEL, C; MIRANDA, R. M. (Eds.) Anais do I Simpósio Brasileiro sobre N em Plantas. P. 127-167, Itaguaí, 1993. O'FARRELL, P. H. High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry v.250, p.4007, 1975. OKON, Y.; VANDERLEYDEN, J. Root-associated Azospirillum species can stimulate plants. Applied and Environmental Microbiology, v.63, n.7, p.366-370, 1997. OKON, Y.; LABANDERA-GONZALEZ, C.A. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biology and Biochemistry, v.26, p.1591-1601, 1994. OLIVARES, F.L.; BALDANI, V.L.D.; REIS, V.M.; BALDANI, J.I.; DÖBEREINER, J. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils, v.21, p.197-200, 1996. OLIVEIRA, A.L.M.; CANUTO, E.L.; URQUIAGA, S.; REIS, V.M.; BALDANI, J.I. Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant and Soil, v.284, p.23-32, 2006. 129 OLIVEIRA, A.L.M.; URQUIAGA, S.; DOBEREINER, J.; BALDANI, J.I. The effect of inoculating endophitic N2 –fixing bacteria on micropropagated sugarcane plants. Plant and Soil, v.242, p.205-215, 2002. ORTEGA, N.; BUSTO, M.D.; PEREZ-MATEO, M. Kinetics of cellulose saccarification by trichoderma reesei cellulases. International, Biodeterioration & Biodegradation, v.47, p7-14, 2001. PANDEY, A.; MANN, M. Proteomics to study genes and genomes. Nature, v.405, p.837 – 846, 2000. PAPPIN, D.J.; HOJRUP, P. Rapid identification of proteins by peptidemass fingerprinting. Current Biology, v.3, n.6, p.327-32, 1993. PARDANANI, A., WIEBEN, E.D., SPELSBERG, T.C., TEFFERI, A. Primer on medical genomics. Part IV: Expression proteomics. Mayo Clinic Proceedings. v.77, p.1185-1196, 2002. PARK, O.K. Proteomic Studies in Plants. Journal of Biochemistry and Molecular Biology. v.37, p.133-138, 2004. PATTEN, C.; GLICK, B.R. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, v.42, p.207-220, 1996. PATTEN, C.L.; GLICK, B.R. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary phase sigma factor RpoS. Canadian Journal of Microbiology, v,48, p.635-642, 2002a. PATTEN, C.L; GLICK, B.R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, v. 68, p. 3795-3801, 2002b. PENROSE, D.M.; MOFFATT, B.A.; GLICK, B.R. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Canadian Journal of Microbiology v.47, p.77-80, 2001. PERROT-RECHENMANN, C.; NAPIER, R.M. Auxins,Vitamins and Hormones, v. 72, p. 203-233, 2005. PERSELLO-CARTIEAUX, F.; NUSSAUME, L.; ROBAGLIA, C. Tales from the underground: molecular plant±rhizobia interactions. Plant, Cell and Environment. v.26, p.189-199, 2003. PERTRY, I.; VACLAVIKOVA, K.; DEPUYDT, S.; GALUSZKA, P.; SPICHAL, L.; TEMMERMAN, W.; STES, E.; SCHMULLING, T.; KAKIMOTO, T.; VAN, M.M.; et al. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proceedings of the National Academy of Sciences. v.106, p.929–934, 2009. 130 PITTARD, J. Byosynthesis of the aromatic amino acids. In Neidhardt FC (ed) Escherichia coli and salmonella: cellular and molecular biology, vol 1 ASM, Washington, DC, pp 458-484, 1996. PODILE, A.R.; KISHORE, G.K. Plant growth-promoting rhizobacteria. In: GNANAMANICKAM, S.S. Plant-Associated Bacteria, Springer. p. 195–230, 2006. POLLMANN, S.; MULLER, A.; PIOTROWSKI, M.; WEILER, E.W. Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana. Planta. v.216, p.155–16, 2002. PRASAD, T.K., STEWART, C.R. cDNA clones encoding Arabidopsis thaliana and Zea mays mitochondrial chaperonin HSP60 and gene expression during seed germination and heat shock. Plant Molecular Biology v.18, p. 873–85. 1992 PRINSEN, E.; COSTACURTA, A.; MICHIELS, K.; VANDERLEYDEN, J.; VAN ONCKELEN, H. Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Molecular Plant-Microbe Interactions, v.6, p.609–15, 1993. PRINSEN, E.; VAN DONGEN, W.; ESMANS, E.L.; VAN ONCKELEN, H.A. HPLC linked electrospray tandem mass spectrometry: a rapid and reliable method to analyze indole-3-acetic acid metabolism in bacteria. Journal of Mass Spectrometry, v.32, p.12–22, 1997. RAAIJMAKERS, J.M.; LEEMAN, M.; VAN OORSCHOT, M.M.P.; VAN DER SLUIS, I.; SCHIPPERS, B.; BAKKER, P.A.H.M. Dose response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology, v.85, p.1075-1081, 1995. RABILLOUD, T. Ed. Proteome Research: Two-dimensional gel electrophoresis and identification methods. Principles e Pratice. Berlin: Springer Verlag, v.I, p.248, 2000. REIS, J.R.; SILVA, L.G. Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar. Pesquisa Agropecuária Brasileira, v.35, n.5, p.985-994, 2000. REIS, V.M.; CRUZ, G.B.; FERREIRA, A.; FERREIRA, M.F.; FERREIRA, A.C.; REIS JÚNIOR, F.B.; SALLES, J.F.; WEBER, O.B. Produção e caracterização de soros policlonais para a detecção de bactérias diazotróficas. Seropédica, RJ: EMBRAPA-CNPAB. 11p. (EMBRAPA-CNPAB. Documentos, 30), 1997. REIS, V.M.; ESTRADA DE LOS SANTOS, P.; TENORIO-SALGADO, S.; VOLGEL, J.; STROFFELS, M.; GUYON, S.; MAVINGUI, P.; BALDANI, V.L.D.; SCHMID, M.; BALDANI, J.I.; BALANDREAU.J.; HARTMANN A.; CABALLERO-MELLADO, J. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. International Journal of Systematic and Evolutionary Microbiology, v. 54, p. 2155-2162, 2004. REIS, V.M.; OLIVARES, F.L. Improved methodology for isolation and identification of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World Journal of Microbiology and Biotecnology,v.10, n.4, p.401-405, 1994. 131 REIS, V.M.; OLIVEIRA, A.L.M.; BALDANI, V.L.D.; OLIVARES, F.L.; BALDANI, J.I. Fixação biológica de nitrogênio simbiótica e associativa. In: FERNANDES, M.S. (Org.) Nutrição mineral de plantas. Viçosa: Sociedade Brasileira de Ciência do Solo. Cap. 6, p. 153-174, 2006. RENGEL, Z.; BATTEN, G.D.; CROWLEY, D.E.; The physiology of micronutrient homeostasis in field crop. Field Crop Research, v.60, p.27, 1999. RIBEIRO JÚNIOR, J.I. Análises estatísticas no SAEG. Viçosa: UFV, 2001. 301 p. RIBEIRO, V.H.; TONELLA, C.A Atividade Canavieira no Brasil: O Estado, a agro-indústria e os trabalhadores da cana-de-açúcar. Revista Geografar (UFPR), v.5, p.143-166, 2010. ROCHA. L., COSTA. P.H.A., MAGALHÃES, J.C.C., EVARISTO , R.G.S., VASCONCELOS, E.A.R., COUTINHO, M.V., PAES N.S., SILVA, M.C.M., GROSSI-DE-SÁ, M.F. Eletroforese bidimensional e análise de proteomas. Comunicado técnico, Embrapa, Brasília, p.1-12, 2005. RODRIGUES, E.P. Isolamento e Caracterização de Mutantes de Gluconacetobacter diazotrophicus defectivos na produção de auxinas. Tese de Doutorado em Biotecnologia Vegetal. Universidade Federal do Rio de Janeiro, Centro de ciências da Saúde, Rio de Janeiro, 2008. RODRIGUEZ, H.; FRAGA, R. Phosphate solubilizing bactéria and their role in plant growth promotion. Biotechnology advances, v.17, p.319-339, 1999. ROSENBLUETH, M.; MARTÍNEZROMERO, E. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, v.19, p.827-837, 2006. ROSS, C.M.; WINKLER, M.E. Structure of the Caulobacter crescentus trpFBA operon. Journal of Bacteriology. v.170, p.757-768, 1988. ROUWS, L.F.M.; MENESES, C.H.S.G.; GUEDES, H.V.; VIDAL, M.S.; BALDANI, J.I.; SCHWAB, S. Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Letters in Applied Microbiology. v.51, p.325-330, 2010. RUSCHEL, A.P.; VICTORIA, R.L.; SALATI, E.; HENIS, Y. Nitrogen fixation in sugar cane (Saccharum officinarum). In: GRANHALL, V. (Ed.) Environmental role of nitrogen-fixing blue-green algae and asymbiotic bacteria. Swedish Natural Science Research Council, p. 297-302, 1978. SAIER, M.H., JR. Enzymes in metabolic pathways: a comparative study of mechanism, structure, evolution, and control. New York: Harper and Row. 1987 SANTNER, A.; IRINA, L.; CALDERON-VILLALOBOS, A.; ESTELLE, M. Plant hormones are versatile chemical regulators of plant growth. Nature chemical biology. v.5, p.301-307, 2009. 132 SANTOS, P.M., TEIXEIRA, M.C., SÁ-CORREIA, I. A Análise Proteomica Quantitativa na Revelação de Mecanismos de Resposta a estresse químico em microrganismos. Métodos em Biotecnologia - Proteômica Quantitativa. Boletim de Biotecnologia n.7, 2004. SARAVANAN, V.S.; MADHAIYAN, M. Ecological Occurrence of Gluconacetobacter diazotrophicus and Nitrogen-fixing Acetobacteraceae Members: Their Possible Role in Plant Growth Promotion. Microbial Ecology, 1994. SARWAR, M.; KREMER, R.J. Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, v. 20, p. 282-285, 1995. SCHWECHHEIMER, C. Understanding gibberellic acid signaling—are we there yet? Current Opinion in Plant Biology, v.11, p.9–15, 2008. SEKINE, A.; FUJIWARA, M.; NARUMIYA, S. Asparagine residue in the rho gene product is the modification site for botulinum ADP ribosyltransferase. The Journal of Biological Chemistry., v.264, p.8602-8605, 1989. SENIOR, A.E., WEBER, J. Happy motoring with ATP synthase. Nature Structural & Molecular Biology. v.11, p.110-112, 2004. SEVILLA, M.; BURRIS, R.H.; GUNAPALA, N. KENNEDY, C. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif- mutants strains. Molecular Plant-Microbe Interactions. v. 14, n.3, p. 358-366, 2001. SHARMA, A.; JOHRI, B.N. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiological Research, v.158, p.243-248, 2003. SHARMA, A.; SAHGAL, M.; JOHRI, B.N. Microbial communication in the rhizosphere: Operation of quorum sensing. Current Science, v.85, n.8, 2003. SHEEHY, R. E.; HONMA, M.; YAMADA, M.; SASAKI, T.; MARTINEAU, B.; HIATT, W. R. Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase. Journal of Bacteriology, v.173, p.5260–5265, 1991. SHERMAN, M., GOLDBERG, A. Heat shock-induced phosphorylation of GroEL alters its binding and dissociation from unfolded proteins. The Journal of Biological Chemistry. V.269, p.31479–83, 1994. SHIN, R.; BERG, R.H.; SCHACHTMAN, D.P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant and Cell Physiology. v.46, p.1350–1357, 2005. SILVEIRA, G.L.L. Identificação de proteínas com expressão induzida por choque térmico em Herbaspirillum seropedicae. Tese de Doutorado em Biotecnologia Vegetal. Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, 2009. 133 SINGH, S.; KAPOOR, K.K. Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biology and Fertility of Soils, v.28, p.139-144, 1998. SOMERS, E.; VANDERLEYDEN, J.; SRINIVASAN, M. Rhizosphere bacterial signaling: A love parade beneath our feet. Critical Reviews in Microbiology, v.30, p.205-240, 2004. SPAEPEN, S.; DOBBELAERE, S.; CROONENBORGHS, A.; VANDERLEYDEN, J. Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant and Soil. v.312, p.15–23, 2008. SPAEPEN, S.; VAN DURME, J.; DAS, F.; MAURER-STROH, S.; ROUSSEAU, F.; SCHYMKOWITZ, J.; VANDERLEYDEN, J. Brominated phenols as auxin-like molecules. European Journal of Soil Biology, v.45, n.1, p.81-87, 2009. SPAEPEN, S.; VANDERLEYDEN, J.; REMANS, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, v.31, p.425–448, 2007. SPEICHER, D.W. Overview of proteome analysis. In: Proteome Analysis: Interpreting the Genome (D. Speicher, ed.). Elsevier, The Netherlands, pp. 1-18, 2004. STEENHOUDT, O.; VANDERLEYDEN, J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, v.24, p.487-506, 2000. STEPHAN, M.P.; OLIVEIRA, M. Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiology Letters, v.77, n.1, p.67-72, 1991. STEVENSON, F.J.; COLE, M.A. Cycles of soil: Carbon, Nitrogen, Phosphorous, Sulfur, Micronutrients, 2nd Edition. New York: Wiley, 1999. STRADER, L.C.; BARTEL, B. A new path to auxin. Nature Chemical Biology, v.4, p.337-339, 2008. STURZ, A. V.; NOWAK, J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied Soil Ecology, v. 15, p. 183-190, 2000. SUMAN, A.; GAUR, A.; SHRIVASTAVA, A. K.; YADAV, R. L.Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regulation, v.47, p.155–162, 2005. SZMRECSÁNYI, T. O Planejamento da Agroindústria Canavieira do Brasil. (1930: 1975). São Paulo: Hucitec, 1979. TAIZ, L.; ZEIGER, E. Fisiologia vegetal, 4.ed., Porto Alegre: ARTMED, p.820, 2009. TAPIA-HERNANDEZ, A. M. R. Bustillos-Cristales. Natural endophytic occurrence of Acetobacter diazotrophicus in Pineapple plants. Microbial Ecology, v.39, n.1, p.49-55, 2000. 134 TAYLOR, I.B.; SONNEVELD, T.; BUGG, T.D.H.; THOMPSON, A.J. Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. Journal of Plant Growth Regulation, v.24, p.253–273, 2005. TEDESCO, M.J.; VOLKWEISS, S.J.; BOHNEN, H. Análise de solo , plantas e outros materiais. Porto alegre, UFRGS, Faculdade de Agronomia, Departamento de Solos, Boletim técnico n.05, 1985. TEIXEIRA, W.A. As Transformações no Espaço Agrário do Paraná, com a introdução da Agricultura Energética Canavieira. Mestrado, UNESP, Rio Claro, 1988, 281p. TEJERA, N.; ORTEGA, E.; GONZALES-LOPES, J.; LLUCH, C. Effect of some abiotic factors on the biological activity of Gluconacetobacter diazotrophicus. Journal of Applied Microbiology, v. 95, p. 528-535, 2003. THOMAS, J.H.; KELLEY, J.L.; ROBERTSON, H.M.; LY, K.; SWANSON, W.J. Adaptive evolution in the SRZ chemoreceptor families of Caenorhabditis elegans and Caenorhabditis briggsae. Proceedings of the National Academy of Sciences. v.102, p.4476-4481, 2005. URQUIAGA, S.; CRUZ, K.H.S. Contribution of Nitrogen Fixation to Sugar Cane: Nitrogen-15 and Nitrogen-Balance Estimates. Soil Science Society America Journal, v.56, n.1, p.105-114, 1992. VAN LOON, L.C.; GERAATS, B.P.J.; LINTHORST, H.J.M. Ethylene as a modulator of disease resistance in plants. Trends in Plant Science, v.11, p.184–191, 2006. VAN RHIJN, P.; VANDERLEYDEN, J., The Rhizobium plant symbiosis. Microbiology Reviews. v.58, p.124-142, 1995. VESSEY, J.K. Plant growth promoting rhizosphere as biofertilisers. Plant Soil, v.255, p.571- 586, 2003. VITAMVAS, P.; KOSOVA, K.; PRASIL, I.T. Proteome analysis in plant stress research. Czech Journal of Genetics and Plant Breeding. v.43, p.1-6, 2007. VOHARA, A.; SATYANARAYANA, T. Pitases: microbial sources, production, purification, and potential biotechnological applications. Critical Reviews in Biotechnology, v.23, n.1, p.29-60, 2003. WANG, Z.; WILSON, W.A.; FUJINO, M.A.; ROACH, P.J. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p, Molecular and Cellular Biology., v.21, p.5742–5752, 2001. WEHR T.A. Photoperiodism in humans and other primates: evidence and implications. Journal of Biological Rhythms. v.16, p.348–364, 2001. WEICKERT, M.J.; ADHYA, S. A family of bacterial regulators homologous to Gal and Lac repressors. The Journal of Biological Chemistry. v.267, p. 15869–74, 1992. 135 WEINGART, H.; ULLRICH, H.; GEIDER, K.; VÖLKSCH, B. The role of ethylene production in virulence of Pseudomonas syringae pvs. glycinea and phaseolicola. Phytopathology, v.91, p.511-518, 2001. WEINGART, H.; VOLKSCH, B. Ethylene Production by Pseudomonas syringae Pathovars In Vitro and In Planta. Applied and Environmental Microbiology., v.63, n.1, p.156–161, 1997. WENT, F.W.; THIMANN, K. V. Phytohormones (Macmillan: New York). 1997. WESTERMEIER, R.; NAVEN, T. Part III: Course Manual, Step 9: In-gel digestion. In: WESTERMEIER, R; NAVEN, T. (Ed.). Proteomics in Practice. A laboratory Manual of Proteome Analysis. Wiley-VCH, 2004. p.261. WEYENS, N.; VAN DER LELIE, D.; TAGHAVI, S.; NEWMAN, L.; VANGRONSVELD, J. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends in Biotechnology, v.27, n.10, p.591-598, 2009. WHIPPS, J. M. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Biology, v.52, p.487-511, 2001. WILKINS, M. R.; PASQUALI, C. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechonology (N Y), v.14, n.1, p.61-65, 1996. WILKINS, M.R.; SANCHEZ, J.C. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology & Genetic Engineering Reviews, v.13, p.19-50, 1996. WILSON, G.C.S. Analitical analyses and physical properties of horticultural substrates. Acta Horticulturae, n.150, p.19-32, 1984. WITTMANN-LIEBOLD, B.; GRAACK, H. R. Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics, v.6, p.4688–4703, 2006. WOODWARD, A.W.; BARTEL, B. Auxin: regulation, action, and interaction. Annals of Botany, v.95, p.707–735, 2005. XIE, H.; PASTERNAK, J.J.; GLICK, B.R. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida CR12-2 that overproduce indoleacetic acid. Current Microbiology v.32, p.67–71, 1996. XIE, P.; JANOWIAK, J. E.; ARKIN, P.A.; ADLER, R.; GRUBER, A.; FERRARO, R.; HUFFMAN, G.J.; CURTIS, S. GPCP pentad precipitation analyses: An experimental data set based on gauge observations and satellite estimates. Journal of Climate, v.16, n.2, p.197 – 2,214, 2003. YAMADA, Y.; HOSHINO, K.; ISHIKAWA, T. The phylogeny of acetic acid bacteria based on the partial sequences of 16s ribosomal RNA: the elevation of the subgenus 136 Gluconoacetobacterium to generic level. Bioscience, Biotechnology & Biochemistry, v.61, p.1244-1251, 1997. YAMADA, Y.; HOSHIRO, K.; ISHIKAWA, T. Gluconacetobacter nom. corrig. (Gluconacetobacter [sci]). In validation of publication of new names and new combinations previously effectively published outside the IJSB, List no. 64. International Journal of Systematic Bacteriology, v.48, p.327-328, 1998. YAMAGUCHI, S. Gibberellin metabolism and its regulation. Annual Review of Plant Biology. v.59, p.225–251, 2008. YANOFSKY, C.; CRAWFORD, I.P. The tryptophan operon. In: F.C. NEIDHARDT, J.L. INGRAHAM, K.B. LOW, B. MAGASANIK, M. SCHAECHTER,; H.E. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Umbarger, eds (Washington, DC: American Society for Microbiology), pp. 1453-1472, 1987. YOKOTA, E.; MCDONALD, A.R.; LIU, B.; SHIMMEN, T.; PALEVITZ, B.A. Localization of a 170 kDa myosin heavy chain in plant cells. Protoplasma v.185, p.178–187, 1995. ZALKIN, H. Anthranilate synthase: relationships between bifunctional and monofunctional enzymes. in H. BISWANGER; E. SCHMINCKE-OTT, eds. Multifunctional proteins. Wiley, New York, p.123-149, 1980.por
dc.subject.cnpqMicrobiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5135/2012%20-%20Patricia%20Gon%c3%a7alves%20Galv%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19834/2012%20-%20Patricia%20Gon%c3%a7alves%20Galv%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26103/2012%20-%20Patricia%20Gon%c3%a7alves%20Galv%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32518/2012%20-%20Patricia%20Gon%c3%a7alves%20Galv%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38942/2012%20-%20Patricia%20Gon%c3%a7alves%20Galv%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45302/2012%20-%20Patricia%20Gon%c3%a7alves%20Galv%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51716/2012%20-%20Patricia%20Gon%c3%a7alves%20Galv%c3%a3o.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58182/2012%20-%20Patricia%20Gon%c3%a7alves%20Galv%c3%a3o.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1557
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-04-26T14:05:04Z No. of bitstreams: 1 2012 - Patricia Gonçalves Galvão.pdf: 5289496 bytes, checksum: 8dcb41bc971793cc8b4cdf383401ade4 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-04-26T14:05:05Z (GMT). No. of bitstreams: 1 2012 - Patricia Gonçalves Galvão.pdf: 5289496 bytes, checksum: 8dcb41bc971793cc8b4cdf383401ade4 (MD5) Previous issue date: 2012-03-01eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2012 - Patricia Gonçalves Galvão.pdf2012 - Patricia Gonçalves Galvão5.17 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.