Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/12247
Full metadata record
DC FieldValueLanguage
dc.creatorSilva, Aldir Carlos
dc.date.accessioned2023-11-19T22:51:47Z-
dc.date.available2023-11-19T22:51:47Z-
dc.date.issued2013-12-19
dc.identifier.citationSILVA, Aldir Carlos. Efeito da fonte de nitrogênio na liberação de OH-/H+ na rizosfera e a interação com toxidez de alumínio, estresse de salinidade e associação com Trichoderma sp. 2013. 130 f. Tese (Programa de Pós-Graduação em Fitotecnia) - Universidade Federal Rural do Rio de Janeiro, Seropédica.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/12247-
dc.description.abstractThe present study was conducted to evaluate if changes in rhizosphere pH of the growth media, controlled by the use of nitrogen sources could alleviate aluminum toxicity or effects caused by salinization. It is well documented that if a plant is absorbing and assimilating nitrate as a nitrogen source, it releases 0H - for growth substrate. If she is absorbing, assimilating, ammonia source releases H+. This occurs because the cells need to balance its electrochemical charge balance due to differential uptake of cations and anions. Despite being a general rule, scientific research directly use the nitrogen source in the growth medium, few have used other methods to add these sources, such as foliar application of nitrogen and its implications on load balancing. In this work, several alternative management of nitrogen application and its interactions with the toxicity caused by aluminum, excess salts and Trichoderma were studied. Sunflower (Helianthus annuus L.), Passionflower (Passiflora edulis f flavicarpa L.), Pineapple (Ananas comosus Merril), Coffee (Coffea arabica L), Almond (Terminalia catapa Linn) and Sombrero (Clitoria fairchildiana Howard). To conduct studies with plants Sunflower was initially performed a selection of more tolerant to acidity and salinity plants. The experiments were conducted on various substrates, soil and sand, simple and complete nutrient solution. The interaction between Trichoderma x nitrogen source for plants was conducted with Passion fruit and Sunflower. Were selected as moderately tolerant to aluminum to grow Sunflower Helium 360 , the other cultivars to toxicity occurred in contraction equal to or superior 160μM aluminum . Was selected as tolerant to salinity the Hélio 251 > 250 > 253, cultivars, with concentrations above 25 mM NaCl (1.90 dS.m¹) plants were stop grown. After this step prior experiments cultivars tolerant or sensitive were used in accordance with the experimental needs. The experiments were divided into the following steps: In the first step, we evaluated the release of OH - / H + with application of nitrogen sources directly in the growth medium, and found that the nitrogen sources were unable to minimize the toxic effects of aluminum and salinity. In the second experiment, the effects of the release OH- /H+ with application of nitrogen sources in the association of the fungus Trichoderma sp. This fungus grown in petri dishes only at pH values above 5.0. The release of OH- / H+ did not influence the association of the fungus with the roots of plants of sunflower and Passion fruit. In the third step, we assessed whether foliar application of nitrogen sources could produce the same effects on efflux of loads in the rhizosphere. It was found that the nitrogen sources applied foliar increased the pH of the solution was applied when 10 % of nitrate and reduced the pH when applied 5 % and 10 % ammonium sulfate in plants of Coffee and 10 % of nitrate in Sunflower . The foliar application of nitrogen sources did not alter the toxicity of aluminum and not the salt effect on plants and Sunflower Coffee.eng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectnitrogen sourceeng
dc.subjectaluminumeng
dc.subjectsalinityeng
dc.subjectTrichodermaeng
dc.subjectfontes de nitrogênio, ,por
dc.subjectalumíniopor
dc.subjectsalinidadepor
dc.subjectTrichodermapor
dc.titleEfeito da fonte de nitrogênio na liberação de OH-/H+ na rizosfera e a interação com toxidez de alumínio, estresse de salinidade e associação com Trichoderma sp.por
dc.title.alternativeEffect of nitrogen supply in release of OH-/ H+in the rhizosphere and interaction with aluminum toxicity, salinity stress and association with Trichoderma sppor
dc.typeTesepor
dc.contributor.advisor1Jacob Neto, Jorge
dc.contributor.advisor1ID8850585187por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6508017274417976por
dc.contributor.referee1Zonta, Everaldo
dc.contributor.referee2Goi, Silvia Regina
dc.contributor.referee3Silva, Eliane Maria Ribeiro da
dc.contributor.referee4Baldani, Vera Lucia D.
dc.creator.ID4166070711por
dc.creator.Latteshttp://lattes.cnpq.br/6832034287534111por
dc.description.resumoO presente trabalho foi realizado com o objetivo de estudar se variações do pH da rizosfera e do meio de crescimento, controladas pelo uso de fontes nitrogenadas, poderiam amenizar a toxidez de alumínio ou os efeitos provocados pela salinização. Na literatura cientifica é bem documentado que se uma planta esta absorvendo e assimilando nitrato como uma fonte nitrogenada, ela libera 0H- para o substrato de crescimento. Se ela esta absorvendo e assimilando uma fonte amoniacal libera H+. Isto ocorre devido às células necessitarem equilibrar o seu balanço eletroquímico de carga, devido à assimilação diferenciada de cátions e anions. Apesar de ser uma regra geral, os trabalhos científicos usam a fonte nitrogenada diretamente no meio de crescimento, poucos utilizaram outros métodos de adicionar estas fontes, como por exemplo, a aplicação foliar de nitrogênio e suas implicações no balanço de carga. Neste trabalho foram estudadas diversas alternativas de aplicação de nitrogênio e as suas interações com a toxidez provocada por alumínio, excesso de sais e com o fungo Trichoderma. Foram estudas diversas plantas: Girassol (Helianthus annuus L), Maracujá (Passiflora edulis f. flavicarpa L.), Abacaxi (Ananas comosus Merril), Café (Coffea arabica L), Amendoeira (Terminalia catapa Linn) e Sombreiro (Clitoria fairchildiana Howard). Para realizar os estudos com plantas de Girassol foi realizada inicialmente uma seleção de plantas mais tolerantes a acidez e a salinidade. Os experimentos foram realizados em diversos substratos, solo, areia, solução nutritiva simples e completa. A interação entre fungo Trichoderma x fonte nitrogenada foi realizado para plantas de Girassol e Maracujá. Foram selecionadas como medianamente tolerantes ao alumínio a cultivar de Girassol Hélio 360, as demais cultivares a toxidez ocorreu em contração igual ou superiora 160μM de alumínio. Foi selecionada como tolerante a salinidade as cultivares Hélio 251>250>253, com concentrações acima 25mM de NaCl (1,90 dS.m¹) as plantas não cresceram.Após esta etapa foram implantados experimentos com as cultivares previamente selecionas como sensíveis ou tolerantes e estas foram utilizadas de acordo com a necessidade experimental. Os experimentos foram divididos nas seguintes etapas: Na primeira etapa, avaliou-se a liberação do OH-/H+ com aplicação das fontes nitrogenadas diretamente no meio de crescimento, sendo verificado que as fontes nitrogenadas não conseguiram minimizar os efeitos tóxicos do alumínio e da salinidade. Na segunda etapa, avaliou-se os efeitos liberação do OH-/H+ com aplicação das fontes nitrogenadas na associação do fungo Trichoderma. Este fungo cresceu em placas de petri somente em valores de pH acima de 5,0. A liberação de OH-/H+ não influenciou a associação do fungo com as raízes de plantas de Girassol e Maracujá. Na terceira etapa, foi avaliado se a aplicação foliar das fontes nitrogenadas poderia produzir os mesmos os efeitos nos efluxos de cargas na rizosfera. Foi verificado que as fontes nitrogenadas aplicadas via foliar aumentaram o pH da solução quando foi aplicado 10% de nitrato e reduziram o pH quando foi aplicado 5% e 10% de sulfato de amônia em plantas de Café e com 10% de nitrato em Girassol. A aplicação foliar de fontes nitrogenadas não alteraram a toxidez de alumínio e nem do efeito salino em plantas de Café e Girassol.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.references7 REFERÊNCIAS BIBLIOGRÁFICAS ABOGADALLAH, G. M.; SERAG, M. M.; QUICK, P. W. Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress. Physiologia Plantarum, v. 138, p. 60-73, 2010. AGARWAL, S.; PANDEY, V. Antioxidant enzyme responses to NaCl stress in Cassia angustifoli. Biologia Plantarum, v. 48, p. 555-560, 2004. AGRIOS, G.N. Plant Pathology. 4 ed. Academia Press: san Diego, 635 p. 1997 AKBARIMOGHADDAM, H.; GALAVI, M.; GHANBARI, A.; PANJEHKEH, N. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, v. 9, p. 43-50, 2011. AKINCI, I. E.; AKINCI, S. YILMAZ, K.; DIKICI, H. Response of eggplant varieties (Solanum melongena) to salinity in germination and seedling stages. New Zealan, Journal of Crop and Horticultural Science, v. 32, p. 193-200, 2004. ALAMGIR, A.N.M. AND AKHTER, S.; Effects of aluminium (Al3+) on seed germination and seedling growth of wheat (triticum aestivum l.). Bangladesh Journal Botany, vol.38(1) p.1-6, 2009 ALLEN, S. & SMITH, J.A.C. Ammonium Nutrition in Ricinus communis: Its Effect on Plant Growth and the Chemical Composition of the Whole Plant, Xylem and Phloem Saps. Journal of Experimental Botany, v.37, n.11, p.1599-1610, 1986. ALLEN, S.; RAVEN, J.A.; SPRENT, J.L. The role of long-distance transport in intracellular pH regulation in Phaseouls vulgaris grown with ammonium or nitrate as nitrogen source, or nodulated. Journal of Experimental Botany, v.39, p.513-528, 1988. ALSCHER, R. G.; DONAHUE, J. L.; CRAMER, C. L. Reactive oxygen species and antioxidants: Relationships in green cells. Plant Physiology, v. 100, p. 224-233, 2002. ALTOMARE C, NORVELL WA, BJÖRKMAN T, HARMAN GE. Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai strain 1295-22. Appl Environ Microbiol 65: 2926-2933. 1999. AMTMANN, A.; SANDERS, D. Mechanism of Na+ uptake by plant cells. Advances in Botanical Research, v. 29, p. 76-112, 1999. ANGELINI, J.; CASTRO, S.; FABRA, A. Alterations in root colonization and nodC gene induction in the peanut–rhizobia interaction under acidic conditions. Plant Physiology and Biochemistry, v.41 p.289-294, 2003. ANDRADE, L. F. D.; FRIGERI, R. B. C.. Aspectos germinativos e crescimento inicial de plântulas das espécies arbóreas tropicais Peltophorum dubium (SPRENG.) TAUB. E 113 Clitoria fairchildiana HOWARD, in: XVIII SEMINÁRIO DE INICIAÇÃO CIENTÍFICA, 2008. APEL, K.; HIRT, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review Plant Biotechnology, v. 55, p. 373-399, 2004. APSE, M. P.; AHARON, G. S.; SNEDDEN, W. A.; BLUMWALD, E. Salt tolerance conferred by overxpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, v. 285, p. 1656-1658, 1999. ARNON, D. I.; Copper enzymes in isolated chlroplast. Polyphenol oxidases in Beta vulgaris. Plant Phisiology, v. 24, p. 1-14, 1949. ASAI, N.; MATSUYAMA, T.; TAMAOKI, M.; NAKAJIMA, N.; KUBO, A.; AONO, M.; KATO, T.; TABATA, S.; SHIRANO, Y.; SHIBATA, D.; HAYASHI, H.; MULLINEAUS, P.M.; SAJI, H. Compensation for lack of a cytosolic ascorbate peroxidase in an Arabidopsis mutant by activation of multiple antioxidative systems. Plant Science, v. 166, p. 1547-1554, 2004. ASHRAF, M.; AHMAD, S. Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.) Field Crops Research, v. 66, p. 115-127, 2000. ASHRAF, M., ALI, Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environment Experimental Botany, v. 63, p. 266-273, 2008. ASHRAF, M.; HARRIS, P. J. C. Potential biochemical indicators of salinity tolerance in plants. Plant Science, London, v. 166, p.3-16, 2004. AZEVEDO-NETO, A. D.; PITSCO, J. T.; ENEAS-FILHO, J.; DE ABREU, C. E. B.; GOMES-FILHO, E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental Experimental Botany, v. 56, p. 87-94, 2006. AZEVEDO, R. A. et al. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum, v. 104, p.280-292, 1998. Ahmed, Ben Ch., Ben Rouina, B., Sensoy, S., Boukhriss, M.,. Saline water irrigation effects on fruit development, quality and phenolic composition of virgin olive oils, Cv Chemlali. J. Agric. Food Chem. 57 (7), 2803e2811. 2009 Barcelo J, Poschenrieder C. 2002. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Envrionmental and Experimental Botany 48, 75–92. BARKLA, B. J.; ZINGARELLI, L.; BLUMWALD, E.; SMITH, J. A. C. Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the 114 halophytic plant Mesembryanthemum crystallinum L. Plant Physiology, v. 109, p. 549-556, 1995. BARROSO, C. M.; FRANKE, L. B.; BARROSO, I. B. Substrato e luz na germinação das sementes de rainha-do-abismo. Horticultura Brasileira, v. 28, p.236-240, 2010. BARTELS, D.; SUNKAR, R. Drought and salt tolerance in plants. Plant Science, v.24: p.23-58, 2005. BAYUELO–JIMENEZ, J. S.; CRAIG, R.; LYNCH, J.P. Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Science, 42, p. 2184-2192, 2002. Benjamins R, Malenica N, Luschnig C. 2005. Regulating the regulator: the control of auxin transport. BioEssays 27, 1246–1255. BENITEZ, T.; LIMÓN, C.; DELGADO-JARANA, J.; REY, M. Glucanolytic and other enzymes and their genes. In: Trichoderma and Gliocladium – enzymes, 66 biological control and commercial applications (HARMAN, G.E.; KUBICEK, C.P., eds). London, Taylor & Francis, vol 2, pp. 101-27, 1998. BERTHOMIEU, P.; CONÉJÉRO, G.; NUBLAT, A.; BRACKENBURY, W. J.; LAMBERT, C.; SAVIO C.; UOZUMI, N.; OIKI, S.; YAMADA, K.; CELLIER, F.; GOSTI, F.; SIMONNEAU, T.; ESSAH, P. A.; TESTER, M.; VÉRY, A. A.; SENTENAC, H.; CASSE, F. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal, v. 22, p. 2004-2014, 2003. BETHKE, P. C.; DREW, M. C. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity. Plant Physiology, v. 99, p. 219-226, 1992. BETTIOL, W.; GHINI, R. Controle Biológico. In Manual de Fitopatologia, Princípios e conceitos(BERGAMIN FILHO, A; KIMATI, H; AMORIM, L., eds). 3ª ed. São Paulo, Agronômica Ceres, v. 1, p. 717-27, 1995. BOARETTO, A.E.; BOARETTO, R.M.; MURAOKA, T.; NASCIMENTO FILHO, V.F.; TIRITAN, C.S. & MOURÃO FILHO, F.A.A. Foliar micronutriente application effects on citrus fruit yield, soil and leaf Zn concentrations and 65Zn mobilization within the plant. Acta Horticulturae, v.594, p.203-209, 2002. BORTOLINI, E.; PAIAO, G. D. & D’ANDRÉA, M. S. C. Estudo da planta de girassol. IN: IN: GAZZOLA 2012. A cultura do girassol. Piracicaba, 2012. p. 13-21. BOUWMEESTER, H.J.; ROUX, C.; LOPEZ-RAEZ, J.A. BÉCARD, G. Rhizosphere communication of plants, parasitic plants and AM fungi. TRENDS in Plant Science, v.12 n.5, 2007. BRACCINI, M. C. L.; MARTINEZ, H. E. P.; PEREIRA, P. R. G.; SAMPAIO, N. F.; SILVA, E. A. M. Tolerânciade genótipos de cafeeiro em solução nutritiva: I. crescimento 115 e desenvolvimento da parte aérea e sistema radicular. Revista Brasileira de Ciência do Solo,Viçosa, v.22, n.3, p.435-442, 1998. CAMARGO, P.N. & SILVA, O. Manual de adubação foliar. São Paulo: Libreira e Editora Herba, 1975. 258p. CARNEIRO, P. T.; FERNANDES, P. D.; GHEYI, H. R.; SOARES, F. A. L. Germination and initial growth of precocious dwarf cashew genotypes under saline conditions. Revista Brasileira de Engenharia Agrícola, Campina Grande, v.6, p.199-206, 2002. CARVALHO, A. O.; JACOB-NETO, J.; DO CARMO, M. G. F. Colonização de raízes de tomateiro por Fusarium oxysporum f. sp. lycopersici em solução nutritiva com três fontes de nitrogênio. Fitopatol. bras. v.30. n.1 Brasília. 2005. CARVALHO, C. A. M. Condicionamento fisiológico em matriz sólida durante o armazenamento de sementes de café (Coffea arabica L.) com diferentes graus de umidade. 2009. 217p. Tese (doutorado) - Universidade Federal de Lavras, Lavras, 2009. CASTRO, C. & FARIAS, J. R. B. Ecofisiologia do girassol. In: LEITE, R.M.V.B.C.; BRIGHENTI, A. M. & CASTRO, C. Girassol no Brasil. Londrina, 2005. p.164-218. CASTIGLIONI, V. B. R. Cultivo do girassol. Londrina: Embrapa-CNPSo, 1992. 4 p. (Circular Técnica, 13). CHANG, Y. C., Y.-C. CHANG, R. BAKER, O. KLEIFELD & I. CHET. Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Dis., 70:145-8. 1986. CONAB. Sexto levantamento: safra 2004/2005. Disponível em: <http://www.conab.gov.br> Acesso em: 20 dez. de 2008. Corrales I, Poschenrieder C, Barcelo´ J. Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. Journal of Plant Physiology 165: 504–513. 2008. CUSTÓDIO, C. C.; BOMFIM, D. C.; SATURNINO, S. M.; MACHADO NETO, N. B. Estresse por alumino e pro acidez em cultivares de soja. Scientia Agrícola, v.59, n.1, p. 145-153, 2002. DARRAH, P.R. The rhizosphere and plant nutrition: a quantitative approach. Plant and Soil. 155/156. 1-20. 1993. DE MARCO, J.L.; LIMA, L.H.C; SOUZA, M.V.; FELIX, C.R. A Trichoderma harzianum chitinase destroys the cell wall of the phytopathogen Crinipellis perniciosa, the causal agent of witches' broom disease of cocoa. World Journal Microbiol Biotechnol, v.16, p.383-86, 2000. DE PAULA, Andréia Alves. Caracterização físico-química e avaliação do potencial antioxidante dos frutos da Terminalia catappa Linn./ Andréia Alves de Paula. – 116 Itapetinga: Universidade Estadual do Sudoeste da Bahia, Dissertação do Programa de Pós-Graduação em Engenharia de Alimentos. 2008. 91p. DECHEN, A. R.; NACHTIGALL, G. R. Elementos requeridos à nutrição de plantas. In: NOVAIS, Roberto Ferreira et al. (Ed.) Fertilidade do solo. 1.ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2007. Cap.03, p.91-132. DEGENHARDT J, LARSEN PB, HOWELL SH, KOCHIAN L.V. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol 117: 19–27. 1998. DELHAIZE E, CRAIG S, BEATON CD, BENNET RJ, JAGADISH VC, RANDALL PJ Aluminum tolerance in wheat (Triticum aestivum L.). I. Uptake and distribution of aluminum in root apices. Plant Physiol 103: 685–693. 1993. DONCHEVA S, AMENOS M, POSCHENRIEDER C, BARCELO J. Root cell patterning: a primary target for aluminium toxicity in maize. Journal of Experimental Botany 56, 1213–1220. 2005. EICHERT, T.; FERNÁNDEZ, V., 2012. Uptake and Release of Elements by Leaves and Other Aerial Plant Parts. In Marschner, H., Marschner’s Mineral Nutrition of Higher Plants, Austrália, Ed. Elsevier Chapter 4, p 71-78. ELAD, Y. Reasons for the delay in development of biological control of foliar pathogens. Phytoparasitica, v. 18, p. 99-105, 1990. ERGLE, D. R. AND F. M. EATON. 1949. Organic acids of the cotton plant. Plant Physiol. 24: 373-88. ESPOSITO, E.; SILVA, M. Systmatics and environmental application of the genus Trichoderma. Critic Rev Microbiol, v. 24, p. 89-98, 1998. FAQUIN, V. 05. 1 Nutrição Mineral de Plantas. Lavras: UFLA – FAEPE, 2083p. FERREIRA-SILVA, S. L.; VOIGT, E. L.; VIÉGAS, R. A.; PAIVA, J. R.; SILVEIRA, J. A. G. Influence of rootstocks on the resistance of cashew plantlets to salt stress. Pesquisa Agropecuária Brasileira, v. 44, p.361-367, 2009. FLOWERS, T. J.; TROKE, P. F.; YEO, A. R. The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, v. 28, p. 89-121, 1977. FLOWERS, T. J; COLMER, T. D. Salinity tolerance in halophytes. New Phytologist,Brighton, v. 179, p. 945-963, 2008. FYHRQUIST, P.; MWASUMBI, L.; HAEGGSRTOM, C. A.; VUORELA, HILTUNEN, R.; VUORELA, P.; 2002. Ethnobotanical and antimicrobial investigation on some species of Terminalia and Combretum (Combretaceae) growing in Tanzania. Journal of Ethnopharmacology 79, 169-177. 117 FOY, C. D.; CHANEY, R.L. & WHITE, M.C. The physiology of metal toxicity in plants.Annual Review Plant Physiology, vol.29 p.511-56, 1978. GAZZOLA 2012. A cultura do girassol. Piracicaba, 2012. GIANELLO, C.; BISSANI, C. A.; TEDESCO, M. J. Princípios de fertilidade do solo. Porto Alegre: UFRGS, 1995. 276 p. GÓMEZ, I.; CHET, I.; HERRERA-ESTRELLA, A. Genetic diversity and vegetative compatibility among Trichoderma harzianum isolates. Mol Gen Genet, v. 256, p.127-35, 1997. GUERREIRO-FILHO, O.; MENDES, A.N.G.; CARVALHO, G.R.; SILVAROLLA, M.B.; BOTELHO, C.E. Origem e classificação botânica do cafeeiro. In: Carvalho, C.H.S. (Org.). Cultivares de Café. Origem, características e recomendações. 1 ed. Brasília, DF: Embrapa Café, 2008, v. 1, p. 27-34. HANADA, E. H.; PIROVANI, C. P.; POMELLA, A. W. V.; PEREIRA, J. O. Produção de glucanase e celulase em meios de cultura por Trichoderma viride, potencial agente de biocontrole da podridão-parda do cacau. Brasília, Fitopatologia Brasileira, 31, 2006 HARMAN, G. E. Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis. 84:377-393. 2000. HARMAM, G.E.; HOWELL, C.R.; VITERBO, A.; CHET, I.; LORITO, M. Trichoderma species ‑ opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, v.2, p.43‑56, 2004. HARMAN, G. E. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96:190-4. 2006. HARMAN, G. E. & M. SHORESH. The mechanisms and applications of opportunistic plantsymbionts. In M. Vurro & J. Gressel (eds.), Novel Biotechnologies for Biocontrol Agent Enhancement and Management, pp. 131-53. Springer, Amsterdam, The Netherlands. 2007. HAYNES, R.J. Active ion uptake and maintenance of cation-anion balance: A critical examination of their role in regulating rhizosphere pH. Plant and Soil, v.120, p.247-264, 1990. HINSINGER, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, v.237, p.173–195, 2001. HINSINGER, P. & GILKES, R.J. Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alcaline soil. Australian Journal of Soil Research. 33, 477-489, 1995. HINSINGER, P.; PLASSARD, C.; TANG, C.; JAILLARD, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, v.248, p.43–59, 2003. 118 Horst WJ. The role of the apoplast in aluminium toxicity and resistance of higher plants: a review. Z Pflanzenerna¨hr Bodenk 158: 419–428. 1995. Horst WJ, Wang YX, Eticha D.. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Annals of Botany 106, 185–197. 2010. Howell, C. R.. Relevance of mycoparasitism in the biological control of Rhizoctonia solani by Gliocladium virens. Phytopathology 77:992-994. 1987. INSTITUTO PLANTARUM- Amendoeira. Página disponível na internet em: http://www.plantarum.com.br/amendoeira.html. Acesso em novembro de 2013. JACOB-NETO, J. The interactions of H+/OH- exchanges between roots and rhizosphere with plant nutrition and aluminium effects. University of Dundee. Scotland. Tese de PhD. 2003. JARVIS, S.C. & ROBSON, A.D. The effects of nitrogen nutrition of plants on the development of acidity in Western Australian soils. I. Effects with subterranean clover grown under leaching conditions. Aust. J. Agric. Res., v.34, p.341–353, 1983. KADER, M. A, LINDBERG, S. Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. Journal of Experimental Botany, v. 422, p. 3149-3158, 2005. Kennedy, A. C. Bacterial diversity in agroecosystems.Agriculture, Ecosystems and Environment, 74(1):65-76, 1999. Khan MSH, Tawaraya K, Sekimoto H, et al. 2009. Relative abundance of delta5-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice. Physiologia Plantarum 135: 73–83. KIRKBY, E.A. & MENGEL, K. Ionic balance in different tissues of the tomato plant in relation to nitrate, urea, or ammonium nutrition. Plant Physiology, v.42, p.6-14, 1967. KIRKBY, E.A. & KNIGHT, A.H. Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiology, v.60, p.349-353, 1977. KLEIFELD, O.; CHET, I. Trichoderma: plant interaction and its effects on increased growth response. Plant Soil. v. 144, n. 2, p. 267‐272, 1992. Kochian, L.V. Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Rev Plant Physiol Plant Mol Biol 46: 237–260. 1995 KOLLMEIER M, FELLE H.H., HORST, W. J. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transitionzone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum. Plant Physiology 122: 945–956. 2000. 119 KRONZUCKER, H. J; SZCZERBA, M. W.; MOAZAMI-GOUDARZI, M.; BRITTO, D. V. The cytosolic Na+ :K+ ratio does not explain salinity-induced growth impairment in 70 barley: a dual-tracer study using K+ and Na+ . Plant, Cell and Environment, v. 29, p. 2228-2237, 2006. LAZZAROTTO, J.J.; ROESSING, A.C. & MELLO, H.C. O agronegócio do girassol no mundo e no Brasil. In: LEITE, R.M.V.B.C.; BRIGHENTI, A.M. & CASTRO, C. Girassol no Brasil. Londrina, 2005. p.15-42. LEMOS, J. J. Influência de diferentes fontes de nitrogênio no processo de infecção de plantas de feijoeiro por Fusarium oxysporum f. sp. Phaseoli. Dissertação de Mestrado. 2010. p.99. Universidade Federal Rual do Rio de Janeiro, Seropedica. 2010 LEECE, D.R. Composition and ultraestructure of leaf cuticles from fruit trees, relative to differential foliar absorption. Aust. J. Plant Physiol., v.3, p.833-847, 1976. LEHNINGER, A.L. Princípios de bioquímica. São Paulo: Servier Editora de Livros Médicos, 1993. 725p. LIMA, J. E. O.Novas técnicas de produção de mudas cítricas. Revista Laranja, Cordeirópolis, v. 2, n. 7, p. 463-468, 1986. LIMA, M. L. & COPELAND, L. The effect of aluminum on the germination of wheat seeds. Journal of Plant Nutrition, vol.13(12), p. 1489 – 1497, 1990 LIMA NETO, E. M. & SOUZA, R. M. Comportamento e características das espécies arbóreas nas áreas verdes públicas de Aracaju, Sergipe. SCIENTIA PLENA vol. 7, num. 1, 2011. LITLLE, R. Plant soil interactions at the low pH problem solving – the genetic approach. Communications in Soil Science and Plant Analysis, v. 19, n. 7/12, p. 1239-1257, 1988. LOPOES BUCIO, J. L. NIETO JACOBO, M. F. & HERRERA ESTRELLA, L. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci., 160: 1-13, 2000. LORENZI, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. Nova Odessa: Plantarum, p 352, 1998. LORITO, M.; HARMAN, G.E; HAYES, C.K; BRODWAY, R.M; TROSMO, A.; WOO, S.L; PIETRO, A. Chitinolytic enzymes produced by Trichoderma harzianum, antifungal activity of purified endochitinase and chitobiosidase. Phytopathology, v. 83, p. 302-07, 1994. LUMSDEN, R.D; LOCKE, J.C. Biological control of damping-off caused by Phytium ultimun and Rhizoctonia solani in soiless mix. Phytopathology, v. 79, p. 361-66, 1989. LUNA, J. V. U. Instruções para a cultura do maracujá. Salvador: EBAPA, 1984. 25 p. (Circular técnica, 7). 120 LYNCH, J. Root architecture and plant productivity. Plant Physiol., 109: 7 – 13, 1995 Ma, J. F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H. 1997. Internal detoxification mechanism of Al in hydrangea (identification of Al form in the leaves). Plant Physiology 113: 1033–1039. MÄSSER, P.; GIERTH, M.; SCHROEDER, J.I. Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil, v. 247, p. 43-54, 2002. MACEDO, R. A. T. Efeitos da Extrusão de H+/OH- em Plantas de Feijão Devido ao Metabolismo de Diferentes Fontes de Nitrogênio Sobre o Início da Formação de Nódulos Radiculares. Tese de Doutorado. 2010. 160p. Universidade Federal Rual do Rio de Janeiro, Seropedica. 2010. MACEDO, C. M. P. & LOPES, J. C. Qualidade fisiológica de sementes de café arábica na presença de alumínio. Revista Brasileira de Sementes, vol. 30, n.1, p. 66-73. 2008 MALAVOLTA, E. Manual de nutrição mineral de plantas. São Paulo: Editora Agronômica Ceres, 2006. 638p. Malavolta, E. Manual de química agrícola: adubos e adubação, 1981. 596p. MARCELIN, H. Lavigne dans les sols acides du Roussilon. Bolletin Technique des Pyrenées-Orientales, Montpellier, n.82, p.53-55, 1977. MARCOS-FILHO, J. 2005. Fisiologia de sementes de plantas cultivadas. FEALQ, Piracicaba. MANICA, I. Fruticultura tropical: Maracujá. São Paulo, Ed. Agronômica Ceres. 1981. 160p. MANICA, I. Fruticultura tropical: 3. Mamão. Ed. Agronômica Ceres Ltda. São Paulo- SP, Brasil. 1982. 255p MANTELIN, S & TOURAINE, B. Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. Journal of Experimental Botany, v.55, n.394, p.27-34, 2004. MARIN, A.; SANTOS, D. M. M.; BANZATTO, D. A.; FERRAUDO, A. S. Germinação de sementes de guandu sob efeito da disponibilidade hídrica e doses subletais de alumínio. Bragantia, v. 63, n.1, p. 13-24, 2004. MASSOT, N.; POSCHENRIEDER, CH. & BARCELÓ, J Aluminium tolerance assessment in bush bean cultivars by root growth analysis and hematoxylin staining. Separata de Suelo Planta, 1991, p. 25-32. MASSOT N, NICANDER B, BARCELO J, POSCHENRIEDER CH, TILLBERG E. A rapid increase in cytokinin levels and enhanced ethylene evolution precede Al3+-induced inhibition of root growth in bean seedlings (Phaseolus vulgaris L.). Plant Growth Regulation 37, 105–112. 2002 121 MELO, B. de. Estudos sobre produção de mudas de caffeiro (Caffea arabica L.) em tubetes. 1999. 119f. Tese (Doutourado) - Universidade Federal de Lavras, Mossoró, 1999. MELO, I.S., Agentes microbianos de controle de fungos fitopatogênicos. In: MELO,I.S. de .; AZEVEDO, J. L. Controle Biológico. Jaguariúna: EMBRAPA, 1998. MELETTI, L.M. M.; MAIA, M. L. Maracujá: Produção e comercialização. Campinas: Instituto Agronômico, 1999. 62 p. ( Boletim técnico, 1981). MELETTI, L. M. M.; FURLANI, P. R.; ÁLVARES, V.; SOARES-SCOTT, M. D.; BERNACCI, L. C.; AZEVEDO FILHO, J. A. Novas tecnologias melhoram a produção de mudas de maracujá. O Agronômico, Campinas, v. 54, n. 1, p. 30-32, 2002. MENDONÇA, R.M.N.; COELHO, A.F. da S.; MARTINEZ, H.E.P.; FONTES, P.C.R.,; PEREIRA, P.R.G. Respostas de maracujá amarelo ( Passiflora edulis Sims. f. flavicarpa Deg.) cultivadas em solução nutritiva, a diferentes níveis de alumínio. Revista Ceres, Viçosa, v.46, n.266, p.357-370, 1999. MENCH. M; MOREL, J.L.; GUCKERT, A.; GUILLET, B. Metal binding with root exudates of low molecular weight. Journal of Soil Science, v. 39, p. 521-527, 1988. MIAN, A. A.; SENADHEERA, P.; MAATHUIS, F. J. Improving Crop Salt Tolerance: Anion and Cation Transporters as Genetic Engineering Targets. Plant Stress, v.1, p. 64-72, 2011. MINAMI, K. Vermiculita. In: VII SEMANA DE CIÊNCIA E TECNOLOGIA AGROPECUÁRIA DE JABOTICABAL, 7., Jaboticabal, 1982. 5p. MINAMI, K.; TESSARIOLI NETO, J.; PENTEADO, S. R. & ESCARPARI FILHO, J. A. Produção de mudas hortícolas de alta qualidade. Piracicaba: ESALQ/SEBRAE, 1994.155p. MIYAZAWA, M.; CHIERICE, G.O.; PAVAN, M.A. Amenização da toxidez de alumínio às raízes do trigo pela complexação com ácidos orgânicos. Revista Brasileira de Ciência do Solo, v. 16, p. 209-215, 1992 MUNNS, R. Comparative physiology of salt and water stress. Plant, Cell and Environment, v. 25, p. 239-250, 2002. MUNNS, R.; REBETZKE, G.; HUSAIN, S.; JAMES, R. A.; HARE, R. A. Genetic control of sodium exclusion in durum wheat. Australian journal of Agricultural Research, v. 54, p. 627-635, 2003. MUNNS, R.; TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, v. 59, p. 651-681, 2008. NETONDO, G. W.; ONYANGO, J. C.; BECK, E. Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science, v.44, p.797-805, 2004. 122 NEUMANN, G. & RÖMHELD, V. The Rhizosphere: Contributions of the Soil–Root Interface to Sustainable Soil Systems. In.: Biological Approaches to Sustainable Soil Systems, Cap.7, p.91-107, 2006. NEUMANN, P. M.; AZAIZEH, H.; LEON, D. Hardening of root cell walls: A growth inhibitory response to salinity stress. Plant, Cell and Environment, v. 16, p. 15-24, 1994. NIELSEN, K.L.; MILLER, C. R.., BECK, D. & LYNCH, J. P. Fractual geometry of root systems: Field observasions of contrastin genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes. Plant Soil, 2006: 181 – 190, 1999. NOGUEIRA, F. T. P. Integração dos mercados internos e externos de café. 120p. Tese (Doutorado) - Universidade Federal de Viçosa, Viçosa, 2005. NOSKO, P.; BRASSARD, P.; KRAMER, J. R.; KERSHAW, K. A. The effect of aluminum on seed germination and early seedling establishment, growth, and resperation of white spruce (Picea glauca). Canadian Journal Botany, vol. 66, p. 2305-2310, 1988. NORMAN, M. J. T. , PEARSON, C. J. & SEARLE, P. G. E. 1995. The ecology of tropical food crops. Cambridge University Press. Cambridge Ousley, M.A., Lynch, J.M. and Whipps, J.M., Effect of Trichoderma on plant growth: a balance between inhibition and growth promotion. Microb. Ecol. 26:277-285. 1993 ORCUTT, D. M.; NILSEN, E. T. Physiology of plants under stress. New York, John Willey & Sons, 2000. PAIAO, G. D., NUTRIÇÃO MINERAL E ADUBAÇÃO DE GIRASSOL. IN: GAZZOLA 2012. A cultura do girassol. Piracicaba, 2012. P. 37-43. PARDO, J. M.; QUINTERO, F. J. Plants and sodium ions: keeping company with the enemy. Genome Biology, v. 3, 1017-1017, 2002. PARIDA, A. K.; DAS, A. B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Saafey, v. 60, p. 324-349, 2005. PARVAIZ, A.; SATYAWATI, S. Salt stress and phytobiochemical responses of plants – a review. Plant Soil Environmental, v. 54, p. 89-99, 2008. PARKER, D. R.; KINRAIDE, T. B. & ZELAZNY, L. W. Aluminium speciation and phytotoxicity in dilute hydroxyl-aluminium solutions. Soil Science Society of Americam Journal, v. 52, p. 438-444, 1988. PATEL, A. D.; PANDEY, A. N. Growth, water status and nutrient accumulation of seedlings of Holoptelea integrifolia (Roxb.) Planch in response to soil salinity. Plant, Soil and Environment, v. 54, p. 367-373, 2008. PEIXOTO, A. M. Enciclopédia Agrícola Brasileira – Girassol. Volume 5. Editora EDUSP. 2004 123 PEREZ, S. C. J. G.A.; & PRADO, C. H. B. A. Efeitos de diferentes tratamentos pré-germinativo e da concentração de alumínio no processo germinativo de sementes de Copaifera langsdorffii DESF. Revista Brasileira de Sementes, vol. 15, n. 1, p. 115-118, 1993. PEREIRA, W. E.; SIQUEIRA, D. L. de; PUIATTI, M.; MARTÍNEZ, C.A.; SALOMÃO, L. C. C. CECON, P. R. Growth of citrus rootstocks under aluminium stress in hydroponics. Scientia Agricola, Piracicaba, v. 60, n. 1, p. 31-41, jan./mar. 2003. PIMENTEL, C. Metabolismo de carbono na agricultura tropical. Seropédica: Edur, 1998. 150 p. PIZA Jr, C. T. A cultura do maracujá. Campinas: SAA/CATI, 1991, 71 p. PINTO, L. F. E.; LAUS, J. A.; PAULETTO, E. A. Solos de várzea no sul do Brasil no sul do Brasil. In: GOMES, A. S.; MAGALHÃES JUNIOR, A. M. Arroz irrigado no sul do Brasil. Brasília, DF: Embrapa Informação Tecnológica. 2004. p. 75-95. PITMAN, M. G. Ion transport into the xylem. Annual Review of Plant Physiology, v. 28, p. 71-88, 1977. POLLE, E.; KONZAC, C. F. & KITTRICK, J. A. Visual detection of aluminium tolerance levels in wheat by hematoxylim staining of seedling roots. Crop Science, v. 18, p. 823- 827, 1978. POMPEU, G. B.; GRATÃO, P. L.; VITORELLO, V. A.; AZEVEDO, R. A. Antioxidant isoenzyme responses to nickel-induced stress in tobacco cell suspension culture. Scientia Agrícola, v. 65, p.548-552, 2008. PUGNAIRE, F. I., ENDOLZL. S. & PARDOS, J. 1994. Constrains by water stress on plant growth. In: Handbook of plant and crop stress. PESSARAKLI, M. (ed.) Marcel Dekker Inc. New York. Pp. 247 -260. PRAXEDES, S. C.; LACERDA, C. F. de; DAMATTA, F. M.; PRISCO, J. T.; GOMES-FILHO, E. Salt tolerance is associated with differences in ion accumulation, biomass allocation and photosynthesis in cowpea cultivars. Journal of Agronomy and Crop Science, v.196, p.193-204, 2010. QIN J.; DONG W.Y.; HE K.N.; YU Y.; TAN G. D.; HAN, L.; DONG, M.; ZHANG Y. Y.; ZHANG, D.; LI, Z. A.; WANG, Z. L. NaCl salinity-induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea (Pursh) Nutt. seedlings. Plant, Soil and Environment, v. 56, p. 325-332, 2010. QIU, Q. S.; BARKLA, B. J.; VERA-ESTRELLA, R.; ZHU, J. K.; SCHUMAKER, K. S. Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiology, v. 132, p. 1041-1052, 2003. 124 Rangel AF, Rao IM, Horst WJ. 2007. Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. Journal of Experimental Botany 58, 3895–3904. Rangel AF, Rao IM, Horst WJ. 2009. Intracellular distribution and binding state of aluminum in root apices of two common bean (Phaseolus vulgaris) genotypes in relation to Al toxicity. Physiologia Plantarum 135, 162–173 RAVEN, P.H.; EVERT, R.F. & CURTS, H. Biologia Vegetal. 2.ed. Rio de Janeiro, Guanabara Dois, 1996. 728p. RAVEN, J.A. Acquisition of nitrogen by the shoots of land plants: its occurrence and implications for acid-base regulation, New Phytologist, v.109, n.1, p.1-20, 1988. RAVEN, J.A. & SMITH, F.A. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol., v.76, p.415-431, 1976. RAVEN, J.A.; FRANCO, A.A.; JESUS, E.L.; JACOB-NETO, J. H+ extrusion and organic-acid synthesis in N2-fixing symbioses involving vascular plants. New Phytologist. 114. 369-389. 1990. REDDY, A. S. N. Calcium: silver bullet in signaling. Plant Science, v. 160, p. 381-404, 2001. REDDY, M. P.; VORA, A. B. Changes in pigment composition. Hill reaction activity and saccharides metabolism in bajra (Penisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica, v. 20, p. 50-55, 1986. REDDY, V. S.; REDDY, A. S. N. Proteomics of calcium-signaling components in plants. Phytochemistry, v. 65, p. 1745-1776, 2004. REGO, G. M.; POSSAMAI, E. Efeito do sombreamento sobre o teor de clorofila e crescimento inicial do Jequitibá-rosa. Boletim de Pesquisa Florestal, Embrapa Florestas, p. 179-194, 2006. RENAULT, S.; CROSER, C.; FRANKLIN, J. A.; ZWIAZEK, J. J. Effect of NaCl and Na2SO4 on redosier dogwood (Cornus stolonifera Michx). Plant Soil, v. 233, p. 261-268, 2001. RENGASAMY, P. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Australian Journal of Experimental Agriculture, v. 42, p. 351-61, 2002. RENGEL, Z. The role of calcium in salt toxicity. Plant Cell Environment, v. 15, p. 625-632, 1992. RIBEIRO, J. S.; LIMA, A. B.; CUNHA, P. C.; WILLADINO, L.; CAMARA, T. R. Estresse Abiótico em Regiões Semi-Áridas: Respostas Metabólicas das Plantas. In: MOURA, A. N.; ARAUJO, E. L.; ALBUQUERQUE, U. P. (orgs.) 125 Biodiversidade,potencial econômico e processos eco-fisiológicos em ecossistemas nordestinos, Recife, Comunigraf, 2007, 361p. RICARD, J.L. Commercialization of Trichoderma-based mycofungicide, some problems and solutions. Biocontrol News Inform, v. 2, p.95-98, 1981. RODRIGUEZ, M.B.; GODEAS, A.; LAVADO, R.S.. Soil Acidity Changes in Bulk Soil and in Response to Nitrogen Fertilization. Communications in Soil Science and Plant Analysis, v.39, n.17, p.2597-2607, 2008. Maize Rhizosphere. ROIGER, T. C.; JEFFERS S. N.; CALDWELL, R.W. Occurrence of Trichoderma species in apple orchard and woodland soil. Soil Biology and Biochemistry, Britain, v. 43, n4, p. 353-359, 1991. ROMEIRO, R. S. Indução de resistência em plantas a patógenos. Vicosa: Ed. UFV, (Caderno Didatico no 56), 45p, 1999. ROSSI, R.O. Girassol. Curitiba: Tecnagro. Curitiba, 1998. 333p. ROSSIELLO, R. O. P. & JACOB-NETO, J. Toxidez de alumínio em plantas: Novos enfoques para um velho problema. In: Fernandes, M. S. Nutrição mineral de plantas. Viçosa, MG: Sociedade Brasileira de Ciência de Solos, 2006. 432 p. ROSOLEM, C. A. Recomendação e aplicação de nutrientes via foliar, 2002. Lavras- MG. 98p. RUGGIERO, C. Propagação do mamoeiro. In: SIMPÓSIO BRASILEIRO SOBRE A CULTURA DO MAMOEIRO, 1, 1980, Jaboticabal. Anais. Piracicaba, 1980. p.79-87. SALISBURY, F. B. & ROSS. C. W. plant Physiology. Belmont, California, Wadsnorth Publisching Company, 1991. 682 p Ryan PR, DiTomaso JM, Kochian LV. 1993. Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. Journal of Experimental Botany 44, 437–446. SAIRAM, R. K.; TYAGI, A. Physiology and molecular biology of salinity stress tolerance in plants. Current Science, v. 86, p. 407-421, 2004. SALVADOR, J. O.; MOREIRA, A., MALAVOLTA, E.; CABRAL, C. P. Influência do alumínio no crescimento e na acumulação de nutrientes em mudas de goiabeira. R. Bras. Ci. Solo, 24:787-796, 2000 SAMUELS, G.J. Trichoderma, a review of biology and sistematics of the genus. Mycol Res, v. 100, p. 923-35, 1996. SAMUELS, G.J.; PARDO-SCHULTHEISS, R.; HEBBAR, K.P.; LUMSDEN, R.D.; BASTOS, C.N.; COSTA, J.C.; BEZERRA, J.L. Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res, v.104, p. 760-64, 2000. 126 SÃO JOSÉ, A.R. Maracujá o Brasil já é grande produtor mundial. São Paulo, Toda Fruta, 7: 22-23, 1986. SANTOS, L.S. Efeito integrado de fatores meteorológicos na esporulação de Trichoderma stromaticum, micoparasita do agente causal da doença vassoura-de-bruxa em cacau. (Dissertação de Mestrado). Ilhéus-BA, Universidade Estadual de Santa Cruz, 72 p., 2005. SANTOS, C. A. C. et al. Rúcula em cultivo hidropônico submetida a diferentes concentrações de alumínio. Bioscience Journal, Uberlândia, v. 26, n. 6, p. 905-912, 2010. SÃO JOSÉ, A.R.; MARIN, S.L.D. Propagação do mamoeiro. In: SIMPÓSIO BRASILEIRO SOBRE A CULTURA DO MAMOEIRO, 2, 1980, Jaboticabal. Anais... Jaboticabal: Funep, 1988. p. 177-194 SCHRADER, L. E. 1985. Selection for metabolic in maize In: Exploitation of physiological and genetic variability to enhance crop productivity. HARPER, J. E., SCHRADER, L. E. & HOWELL, R.W.(eds.) American Society of Plant Physiology publ. pp. 79 – 89 SCHROEDER, J. I.; UOZUMI, N. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, v. 44, p. 928-938, 2005. SCOTT, B. J.; FISCHER, J. A. & SPHOR, L. J. Tolerance of australiam wheat varieties to aluminum toxicity. Communications in Soil Science and Plant Analusis, v. 23, n. 5/6, p. 509-526, 1992 SHARMA, P. K.; HALL, D. O. Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghun. Journal of Plant Physiology, v.138, p.614-619, 1991. SHEREEN, A.; ANSARI, R.; RAZA, S.; MUMTAZ, S. KHAN; M. A. ALI KHAN, M. Salinity induced metabolic changes in rice (Oryza sativa L.) seeds during germination. Pakistan Journal of Botany, v. 43, p. 1659-1661, 2011. SHI, H.; ISHITANI, M.; KIM, C.; ZHU, J. K. The Arabidopsis thaliana salt tolerance gene SOS 1 encodes a putative Na+/H+ antiporter. Proceeding of the National Academy of Science USA, v. 97, p. 6896-6901, 2000. SHI, H.; QUINTERO, F. J.; PARDO, J. M.; ZHU, J. K. Role of SOS 1 as a plasma membrane Na+ /H+ antiporter that controls long distance Na+ transport in plant. Plant Cell, v. 14, p. 465-477, 2002. SHI, H.; WU, S. J.; ZHU, J. K. Overexpression of a Plasma membrane Na+/H+ antiporter improves salt tolerance in Arabidopsis. Nature Biotechnology, v. 21, p. 81-85, 2003. 127 SHIOGA, P. S. 1990 Controle da hidratação e desempenho das sementes de feijão (Phaseolus vulgaris L.) .Dissertação de Mestrado, Escola Superior de Agricultura Luis de Queiroz, universidade São Paulo, Piracicaba. SILVA, A. C. Avaliação da tolerancia ao aluminio em plantas de maracujazeiro e mamoeiro. Dissertação de Mestrado. UFRRJ. Seropedica-RJ. 2009 SILVA, V. N., GUZZO, S. D., LUCON, C. M. M., HARAKAVA, R.; Promoção de crescimento e indução de resistência à antracnose por Trichoderma spp. em pepineiro. Pesquisa Agropecuária Brasileira, Brasília, v.46, n.12, p.1609-1618, dez. 2011 SILVA, R. N.; LOPES, N. F.; MORAES, D. M; PEREIRA, A. L.; DUARTE, G. L. Physiological quality of barley seeds submitted to saline stress. Revista Brasileira de Sementes, v. 29, p. 40-44, 2007. SILVEIRA, J. A. G.; SILVA, S. L. F.; SILVA, E. N.; VIEGAS, R. A. Mecanismos biomoleculares envolvidos com a resistência ao estresse salino em plantas. In: SIRINGAM. K.; JUNTAWONG, N.; CHA-UM, S.; KIRDMANEE, C. Relationships between sodium ion accumulation and physiological characteristics in rice (Oryza sativa L. spp. indica) seedlings grown under iso-osmotic salinity stress. Pakistan Journal of Botany, v. 41, p. 1837-1850, 2009. SIMONOVICOVA, M.; HUTTOVA, J.; MISTRIK, I.; SIROKA, B.; & TAMAS, L. Root growth inhibition by aluminium is probably caused by cell death due to peroxidase-mediated hydrogen peroxide producuin. Protoplasma, 224: 91-98, 2004. SIVAGURU, M. & HORST, W. J. The distal parto of the transition zone is the most aluminium sensitive apical root zone of maize. Plant Physiol., 116: 155 – 163, 1998. SOCIEDADE SUL-BRASILEIRA DE ARROZ IRRIGADO (SOSBAI) Arroz irrigado: Recomendações técnicas da pesquisa para o sul do Brasil / Sociedade Sul- Brasileira de Arroz Irrigado; V Congresso Brasileiro de Arroz Irrigado, XXVII Reunião da Cultura do Arroz Irrigado. – Pelotas: SOSBAI, 2007. 161 p. STAAL, M.; MAATHUIS, F. J. M.; ELZENG, T.M.; OBERBEEK, J. H. M.; PRINS, H. B. A. Na+/H+ antiport activity of the salt-tolerant Plantago maritima and the salt-sensitive Plantago media. Physiologia Plantarum, v. 82, p. 179-184, 1991. STEINBERG, F. Maracujá: Guia prático para um manejo equilibrado. São Paulo, Nobel, 1988. 64p. SUN P, TIAN QY, ZHAO MG, DAI XY, HUANG JH, LI LH, ZHANG W.H. Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant and Cell Physiology 48, 1229–1335.2007. SUZUKI, O.Y. Considerações econômicas brasileiras. In: RUGGIERO, C. ed. Maracujá. Ribeirão Preto: Legis Suma, 1987. p.8-20. SWARUP R, KRAMER EM, PERRY P, KNOX K, LEYSER HMO, HASELOFF J, BEEMSTER GTS, BHALERAO R, BENNETT M.J. Root gravitropism requires lateral 128 root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology 7, 1057–1065. 2005. SZABOLCS, I. Salt-Affected Soils. Boca Raton, FL: CRC Press, 1989. TANG VAN HAI; NGA, T. T. & LAUBELUOT, H. Effect of aluminium on the mineral nutrition of rice. Plant and Soil, v. 114, p. 173-185, 1995. TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 4.ed. Porto Alegre: Artmed, 2009. 819p. TAMAS, L.; BUDIKOVA, S.; SIMINOVICOVA, M.; HUTTOVA, J.; SIROKA, B.; MISTRIK, I. Rapid and simple method for Al-toxicity anaysis in emerging barley roots during germination. Biologia Plantarum, vol. 50 (1), p. 87-93, 2006 TESTER, M.; DAVENPORT, R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, v. 91, p. 503-527, 2003. TIMM, F. C. Aspectos fisiológicos e bioquímicos de genótipos de aveia branca em resposta à salinidade. 2012. 85 f. Tese (Doutorado) -. Universidade Federal de Pelotas, Pelotas/RS. TOCAFUNDO, F. Avaliação de isolados de Trichoderma spp. no controle de Phytophthora palmivora em mamoeiro. 2008. 54p. Dissertação (Mestrado). Universidade Estadual do Sudoeste da Bahia, Itabuna. THOMAS, H. Cytogenetics of avena. In: MARSHALL, H.G.; SORRELLS, M.E. Oat science and technology. Madson: American Society of Agronomy, 1992. p. 473-507. THOMSON, L. A. J.; EVANS, B. Terminalia catappa (tropical almond), ver. 2.2. In: Elevitch, C.R. (ed.). Species Profiles for Pacific Island Agroforestry. Permanent Agriculture Resources(PAR), Hōlualoa, Hawai„i, 2006. Disponível em http://www.traditionaltree.org. Acessado em outubro de 2013. TOENISSEN, G. H. The Rockefeller foundation’s international program on rice biotechnology. In: ALTMAN, D. W.; WATANABE, K. N. (Eds). Plant Biotechnology - in Developing Countries, R. G. Lands Company, 1995. p.193-212. TOLRÁ, R. P..; POSCHENRIEDER, C..; LUPPI, B & BARCELÓ, J. Aluminium-induced changes in the profiles of both organic acids nad phenolic substances underlie Al tolerance in Rumex acetosa L. Environ. Exper . Bot, 54: 231-238, 2005. TOPPA, E. V. B.; BRAMBILLA, W. P. Melhoramento de plantas e a salinidade dos solos. Revista Verde, Mossoró, v.6, p. 21-25, 2011. TURKAN, I.; DEMIRAL, T. Recent developments in understanding salinity tolerance Environmental and Experimental Botany, v. 67, p. 2-9, 2009. VALE, F. R.; RENÓ, N. B.; CURI. N.; SIQUIERA, J. O. & CARVALHO, J. C. B. Sensibilidade de quinze espécies arbóreas à acidez do solo: efeito no crescimento de raízes. In: Congresso Brasileiro de Ciência do Solo, 24, Goiânia, 1993. Resumos 2° vol 259-260 p. 129 VALDEBENITO-SANHUENZA, R. M. Uso de formaldeído e Trichoderma para prevenir a recolonização de solo por Phytophthora em pomares de macieira). Anais, II Reunião de Controle Biológico de Doenças de Plantas. Campinas, Fundação Cargil, p.55, 1987 VANDERPLANK, J. Passionflowers. Massachusetts: MIT Press, 196. 224 p. VASCONCELOS, S. S. Metodos de avaliação da tolerãcia à toxidade de alumínio em cultuvares da arroz (Oryza sativa L.). Seropédica: UFRRJ, 1997, 137p. Tese de Mestrado. VASCONCELOS, S. S.; ROSSIELLO, R. O. P. & JACOB-NETO, J. Parâmetros morfológicos para estabelecer tolerância diferencial à toxicidade de alumínio em cultivares de arroz. Pesq. Agropec. Bras., 37:357-363, 2002. VERDIAL, M. F.; LIMA, M. S.; TESSAIROLI NETO, J.; DIAS, C. T. S. & BARBANO, M. T. Métodos de formação de mudas de maracujazeiro amarelo. Scientia Agrícola, Piracicaba, v. 57, n. 4, p.795-798, 2000. Villela FA (1998) Water relations in seed biology. Scientia Agricola, 5:98-101. VOGEL J.P., WOESTE K.E., THEOLOGIS A. AND KIEBER J.J. 1998. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. USA 95: 4766–4771. WAGATSUMA, T.; KAWASHIMA, T. & TAWARYA, K. Comparative stainability of plant root cells with basic dye ( methylene blue) in association with aluminium tolerance. Comm. Soil Sci. Plant Anal., 19: 1207-1215, 1998. WENZL, P,; MANCILLA, L. I.; MAYER, J. E.; ALBERT, R. & RAO, I. M. Simulating infertile acid soils with nutrient solutions: the efects on Brachiarria species. Soil Sci. Soc. J. , 67: 1457-1469, 2003 WILLADINO, L.; CAMARA, T. R. Tolerância das plantas à salinidade: aspectos fisiológicos e bioquímicos. Enciclopédia Biosfera, v. 6, p. 1-23, 2010. WINNAAR, W. Clonal propagation of papaya in vitro. Plant Cell Tissue and Organ Culture, Dordrecht, 12:305-310, 1988. YU M, SHEN R, XIAO H. Boron alleviates aluminum toxicity in peã (Pisum sativum). Plant and Soil 314: 87–98. 2009. ZHANG, G & TAYLOR, G. J. Effect of aluminum on growth and distribution of aluminum in tolerant and sensive cultivars of Triticum aestivum L.. Communications in Soil Science and Plant Analysis, v. 19, n. 7 – 12, p. 1195-1205, 1998. ZHANG, H. X.; BLUMWALD, E. Transgenic salt tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, v. 19, p 765-768, 2001. 130 ZHANG, H.; IRVING, L. J.; McGILL, C.; MATTHEW, C.; ZHOU, D.; KEMP, P. The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Annals of Botany, v. 106, p. 1027-1035, 2010. ZHAO, J.; GUO, S.; CHEN, S.; ZHANG, H.; ZHAO, Y. Expression of yeast YAP1 in transgenic arabidopsis results in increased salt tolerance. Journal Plant Biology, v. 52, p. 56-64, 2009. ZHENG, S.J., MA J.F., MATSUMOTO, H. Continuous secretion of organic acids is related to aluminium resistance during relatively long-term exposure to aluminium stress. Physiol Plant 103: 209–214.(1998) ZHU, J. K. Plant salt tolerance. Trends Plant Science, v. 6, p. 66-71, 2001. ZHU, J. K. Regulation of ion homeostasis under salt stress. Current opinion in Plant Biology, v. 6, p. 441-445, 2003. ZHU, J. K. Salt and drought stress signal transduction in plants. Annual Review Plant Biology, v. 53, p. 247-273, 2002. ZONTA, E. Estudos da tolerancia ao aluminio em arroz de sequeiro e seus efeitos sobre a interface solo-planta. Seropédica, Universidade Federal Rural do Rio de Janeiro, 2003. 139p.por
dc.subject.cnpqCiências Agráriaspor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/4929/2013%20-%20Aldir%20Carlos%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19610/2013%20-%20Aldir%20Carlos%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/25923/2013%20-%20Aldir%20Carlos%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32294/2013%20-%20Aldir%20Carlos%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38692/2013%20-%20Aldir%20Carlos%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45076/2013%20-%20Aldir%20Carlos%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51464/2013%20-%20Aldir%20Carlos%20da%20Silva.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/57956/2013%20-%20Aldir%20Carlos%20da%20Silva.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1633
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-12T11:45:17Z No. of bitstreams: 1 2013 - Aldir Carlos da Silva.pdf: 2147745 bytes, checksum: 9bf6569c9f3905b19282cebf10a5b003 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-05-12T11:45:17Z (GMT). No. of bitstreams: 1 2013 - Aldir Carlos da Silva.pdf: 2147745 bytes, checksum: 9bf6569c9f3905b19282cebf10a5b003 (MD5) Previous issue date: 2013-12-19eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2013 - Aldir Carlos da Silva.pdf2013 - Aldir Carlos da Silva2.1 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.