Please use this identifier to cite or link to this item: https://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/12245
Full metadata record
DC FieldValueLanguage
dc.creatorFernandes, Erika da Costa
dc.date.accessioned2023-11-19T22:51:45Z-
dc.date.available2023-11-19T22:51:45Z-
dc.date.issued2021-10-29
dc.identifier.citationFERNANDES, Erika da Costa. Caracterização de transportadores envolvidos na remobilização de nitrato armazenado no vacúolo em arroz. 2021. 102 f. Tese (Doutorado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/12245-
dc.description.abstractThe uptake and remobilization of nitrate (NO3-) in cells vacuoles is an extremely important strategy for nitrogen (N) supply to plant development due to variations in soil availability. The transport of this ion across the tonoplast is mediated by specific transport proteins still poorly understood. The identification of these proteins allows to elucidate NO3- accumulation process and outline strategies in order to increase the use efficiency of N. The aim of this study was to identify genes that encode transport proteins responsible for remobilization of NO3- accumulated in the vacuole in rice. Amino acid sequences potentially coding for NO3- transport proteins expressed in vacuole were selected from gene bank and a phylogenetic analysis performed. The relative expression response of these proteins against the NO3- flush was evaluated in an experiment with rice plants (var. Manteiga) in Hoagland nutrient solution with 5 mM N-NO3- for 30 days, the plants were subjected to N suppression for 72 hours, followed by resupply of N. The genes OsNPF7.8 and OsNPF5.13 were cloned, inserted into an overexpression vector and the genetic transformation of rice plants (var. Nipponbare) was performed via A. tumefaciens. Two more experiments were carried out similar to the initial with modification in cultivation time and harvest: OsNPF7.8 strains were cultivated in constant dose for 20 days and submitted to 72h of suppression followed by the resupply of the NO3- harvesting after the suppression and 24h after resupply. The strains OsNPF5.13 were cultivated at constant dose for 24 days and submitted to N suppression, performing sample collections 24 and 96h after suppression. A total of 71 genes were used in the phylogenetic tree that showed differentiation between the coding sequences of chloride channels (CLC), high affinity (NRT2) and low affinity (NPF) transporters with separation of 8 groups. Among the low affinity transporters, group III clustered sequences of the NPF5 family characterized as responsible of NO3- efflux from the vacuole in A. thaliana and group IV show NPF7 genes mostly characterized as acting in NO3- influx to vacuole in rice. The expression analysis showed that OsNPF5.12, OsNPF5.13, OsNPF5.15, OsNPF5.16sp1 and OsNF5.17 genes presented transcription induction in response to NO3- suppression associated with the increase of NO3-levels in plant and nitrate reductase (NR) activity, it indicates a relationship with nitrate efflux from the vacuole. On the other hand, the OsNPF7.8 gene showed greater response to resupply period, relating to ion influx. The overexpression of OsNPF5.13 gene had higher NR activity, increased ammonium, N-amino and soluble sugar contents, demonstrating an increase in the stability of N assimilation. While overexpression of OsNPF7.8 gene showed increased NO3- content in the root and NR activity, as well as increased ammonium and N-amino content in leaves, demonstrating changes in influx of NO3- in the roots.eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectproteínas de transporte de baixa afinidadepor
dc.subjectNPFpor
dc.subjectOryza sativapor
dc.subjecttransportadores tonoplastopor
dc.subjectLow affinity transportereng
dc.subjecttonoplast transporterseng
dc.titleCaracterização de transportadores envolvidos na remobilização de nitrato armazenado no vacúolo em arrozpor
dc.title.alternativeCharacterization of transport proteins involved in the remobilization of nitrate accumulated in vacuole of riceeng
dc.typeTesepor
dc.contributor.advisor1Fernandes, Manlio Silvestre
dc.contributor.advisor1ID002.180.573-37por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6269004387821466por
dc.contributor.advisor-co1Santos, Leandro Azevedo
dc.contributor.advisor-co1ID983.907.835-68por
dc.contributor.referee1Fernandes, Manlio Silvestre
dc.contributor.referee2Baldani, José Ivo
dc.contributor.referee3Rouws, Luc Felicianus Marie
dc.contributor.referee4Santos, Marilene Hilma dos
dc.contributor.referee5Alves, Rafaela Eloi de Almeida
dc.creator.ID123.2925.307-96por
dc.creator.IDhttps://orcid.org/0000-0003-2960-1881por
dc.creator.Latteshttp://lattes.cnpq.br/3351916397052664por
dc.description.resumoO acúmulo de nitrato (NO3-) nos vacúolos celulares é uma estratégia de extrema importância para suprir o nitrogênio (N) necessário ao desenvolvimento da planta devido as variações de disponibilidade no solo. O transporte desse íon pelo tonoplasto é mediado por proteínas transportadoras específicas, ainda pouco conhecidas. A identificação dessas proteínas permite esclarecer o processo de acúmulo e remobilização de NO3- e delinear estratégias visando aumentar a eficiência do uso de N. O objetivo deste trabalho foi a identificação de genes que codificam proteínas transportadoras responsáveis pela remobilização do NO3- acumulado no vacúolo em arroz. Inicialmente sequências de aminoácidos potencialmente codificantes de proteínas de transporte de NO3- expressas no vacúolo foram reunidas e realizada uma análise filogenética. Em seguida avaliou-se a resposta de expressão destas proteínas frente ao flush de NO3- em um experimento com plantas de arroz (var. Manteiga) em solução nutritiva de Hoagland com 5 mM de N-NO3- por 30 dias, sob um período de supressão de N por 72 horas, seguido do ressuprimento do fornecimento de N. Posteriormente, os genes OsNPF7.8 e OsNPF5.13 foram clonados inseridos em vetor de superexpressão e realizou-se a transformação genética de plantas de arroz (var. Nipponbare) via A. tumefaciens. Dois experimentos foram realizados semelhantes ao inicial com modificação no tempo de cultivo e nas coletas: as linhagens OsNPF7.8 foram cultivadas em dose constante por 20 dias e submetidas a 72h de supressão seguido pelo ressuprimento do fornecimento de NO3- realizando coletas após a supressão e 24h após o ressuprimento. As linhagens OsNPF5.13 foram cultivadas em dose constante por 24 dias e submetidas a supressão de N realizando coletas 24 e 96 h após a supressão. Um total de 71 genes foram utilizados na criação da árvore filogenética que evidenciou a diferenciação entre as sequências codificantes de canais de cloreto (CLC), transportadores de alta afinidade (NRT2) e de baixa afinidade (NPF) com a separação de 8 grupos. Dentre os transportadores de baixa afinidade o grupo III reuniu genes da família NPF5 caracterizadas como atuantes no efluxo de NO3- a partir do vacúolo em A. thaliana, e o grupo IV genes NPF7 com genes caracterizados como atuantes no influxo de NO3- para o vacúolo em arroz. A análise de expressão demonstrou que os genes OsNPF5.12, OsNPF5.13, OsNPF5.15, OsNPF5.16sp1 e OsNF5.17 apresentaram indução de transcrição em resposta a supressão do fornecimento de NO3- na solução associado ao aumento dos teores de NO3- na planta e da atividade da enzima nitrato redutase (NR), indicando relação com o efluxo de nitrato a partir do vacúolo. Por outro lado, o gene OsNPF7.8 apresentou maior resposta ao período de ressuprimento relacionando-o ao influxo do íon. A superexpressão do gene OsNPF5.13 resultou em maior atividade da NR, aumento dos teores de amônio, N-amino e açucares solúveis demonstrando um aumento da estabilidade da assimilação de N. Enquanto as linhagens superexpressando o gene OsNPF7.8 apresentaram aumento dos teores de NO3- na raiz e da atividade da NR, além de aumento dos teores de amônio e N-amino nas folhas, demonstrando alterações no influxo de NO3- nas raízes.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesARAÚJO, E. S.; SOUZA, S. R.; FERNANDES, M. S. Características morfológicas e moleculares e acúmulo de proteína em grãos de variedades de arroz do Maranhão. Pesq. agropec. bras., v. 38, n. 11, p. 1281-1288, 2003. ARAUJO, O. J.; PINTO, M. S.; SPERANDIO, M. V.; SANTOS, L. A.; STARK, M. E.; FERNANDES, M. S.; SANTOS, A. M.; SOUZA, S. R.; Expression of the genes OsNRT1. 1, OsNRT2. 1, OsNRT2. 2, and kinetics of nitrate uptake in genetically contrasting rice varieties. American Journal of Plant Sciences, v. 6, n. 2, p. 306–14, 2015. ARAYA, T.; KUBO, T.; von WIRÉN, N.; TAKAHASHI, H. Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana. Journal of Integrative Plant Biology, v. 58, p. 254-265, 2016. ARRUDA, L. N.; BUCHER, C. A.; RANGEL, R. P.; DE SOUZA, A. F. F.; FERNANDES, M. S.; DE SOUZA, S. R Superexpressão do transportador OsNPF4.11 (OsNRT1.2) afeta teor de nitrato, parâmetros radiculares e crescimento de arroz. Revista Brasileira de Ciências Agrárias, v. 13, n. 1, p. 5493, 2018. ASENSIO, J. S. R.; RACHMILEVITCH, S.; BLOOM, A. J. Responses of Arabidopsis and wheat to rising CO2 depend on nitrogen source and nighttime CO2 levels. Plant physiology, v. 168, n. 1, p. 156-163, 2015. BAO, A.; LIANG, Z.; ZHAO, Z.; CAI, H. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status. International journal of molecular sciences, v. 16, n. 5, p. 9037–9063, 2015. BANG, T. C.; HUSTED, S.; LAURSEN, K. H.; PERSSON, D. P.; SCHJOERRING, J. K. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, v. 229, n. 5, p. 2446-2469, 2021. BRADFORD, M. M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, v.72, p.248-254, 1976. BUCHER, C. A., SANTOS, L. A.; MATOS, N. E.; RANGEL, R. P.; SOUZA, S. R.; FERNANDES, M. S. The transcription of nitrate transporters in upland rice varieties with contrasting nitrate-uptake kinetics. Journal of Plant Nutrition and Soil Science, v. 177, n. 3, p. 395–403, 2014. CAPLAN, A.; DEKEYSER, R.; VAN MONTAGU, M. Selectable markers for rice transformation. Methods Enzymol. v. 216, p. 426–441, 1992. CATALDO, D.A.; HAROON, M.; SCHRADER, L.E.; YOUNGS, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, v.6, p.71-80, 1975 CHAKRABORTY, M.; SAIRAM REDDY, P.; LAXMI NARASU, M.; KRISHNA, G.; RANA, D. Agrobacterium-mediated genetic transformation of commercially elite rice restorer line using nptII gene as a plant selection marker. Physiol Mol Biol Plants., v. 22, n. 1, p. 51–60, 2016. CHAPETA, A. C. O.; PEREIRA, E. G.; DONATO, A. F.; FERNANDES, E. D. C.; SANTOS, L. A.; BUCHER, C. A.; BUCHER, C. P. C. Variedades de arroz locais como alternativas viáveis para uma agricultura mais sustentável. Revista Brasileira de Gestão Ambiental e Sustentabilidade, v. 7, n. 15, p. 225-232, 2020. CHENG, Y. L.; TU, S. L. Alternative Splicing and Cross-Talk with Light Signaling. Plant and Cell Physiology, v. 59, n. 6, p. 1104-1110, 2018. CHOPIN, F.; ORSEL, M.; DORBE, M.-F.; CHARDON, F.; TRUONG, H.-N.; MILLER, A. J.; KRAPP, A.; DANIEL-VEDELE, F. The Arabidopsis ATNRT2.7 Nitrate Transporter Controls Nitrate Content in Seeds. The Plant Cell Online, v. 19, n. 5, p. 1590–1602, 2007. COHEN, J. Fields of dreams. Science, v. 365, n. 6452, p. 422–425, 2019. CONAB - COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira de grãos. v.6, safra 2018/19 n.8. Oitavo levantamento, Brasília, p. 1-132, 2019. _ Acomp. da safra brasileira de grãos. v. 7, safra 2019/20, n.9. Nono levantamento, Brasília, p. 1-31, jun. 2020. _ Acomp. safra brasileira de grãos. v.8, safra 2020/21, n. 4. Quarto levantamento, Brasília, p. 1-85, jan. 2021. _ Evolução dos custos de produção de arroz no Brasil. Compêndio de Estudos Conab. v.4, Brasilia, p. 30, 2016. COSKUN, D.; BRITTO, D. T.; SHI, W.; KRONZUCKER, H. J. How Plant Root Exudates Shape the Nitrogen Cycle. Trends in Plant Science, v. 22, n. 8, p. 661–673, 2017. COUSINS, A. B.; BLOOM, A. J. Oxygen consumption during leaf nitrate assimilation in a C3 and C4 plant: the role of mitochondrial respiration. Plant, Cell & Environment, v. 27, n. 12, p. 1537-1545, 2004. CRAWFORD, N. M.; GLASS, A. D. M. Molecular and physiological aspects of nitrate uptake in plants. Trends in plant science, v. 3, n. 10, p. 389–395, 1998. DE ANGELI, A.; MONACHELLO, D.; EPHRITIKHINE, G.; FRACHISSE, J. M.; THOMINE, S.; GAMBALE, F.; BARBIER-BRYGOO, H. The Nitrate/proton Antiporter AtCLCa Mediates Nitrate Accumulation in Plant Vacuoles. Nature, v. 442, n. 7105, p. 939–942, 2006. DECHORGNAT, J.; NGUYEN, C. T.; ARMENGAUD, P.; JOSSIER, M.; DIATLOFF, E.; FILLEUR, S.; DANIEL-VEDELE, F. From the soil to the seeds: the long journey of nitrate in plants. J. Exp. Bot. v. 62, p. 1349–1359, 2011. DEBOUBA, M.; DGUIMI, H.; GHORBEL, M. Expression pattern of genes encoding nitrate and ammonium assimilating enzymes in Arabidopsis thaliana exposed to short term NaCl stress. Journal of Plant Physiology, v. 170, n. 2, p. 155-60, 2013. DU, S. T.; LI, L. L.; ZHANG, Y. S.; LIN, X. Y. Nitrate accumulation discrepancies and variety selection in different Chinese cabbage (Brassica chinensis L.) genotypes. J. Plant Nutr. v. 14, p. 969–975, 2008. DU, X.; FANG, T.; LIU, Y.; HUANG, L.; ZANG, M.; WANG, G.; LIU, Y.; FU, J. Transcriptome profiling predicts new genes to promote maize callus formation and transformation. Frontiers in plant science, v. 10, p. 1633, 2019. EMBRAPA. Visão 2030: o futuro da agricultura brasileira. Brasília, DF: Embrapa, p. 212, 2018. FAGERIA, N. K.; DOS SANTOS, A. B.; CUTRIM, V. D. A. Produtividade de arroz irrigado e eficiência de uso do nitrogênio influenciadas pela fertilização nitrogenada. Pesquisa Agropecuaria Brasileira, v. 42, n. 7, p. 1029–1034, 2007. FAO – Food and Agriculture Organization of the United Nations. Statistical databases. Disponível em: http://www.fao.org. Acesso em 11 mai. 2020. FAN, X. R.; XIE, D.; CHEN, J. G.; LU, H.; XU, Y.; MA, C.; XU, G. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Sci., v. 227, p. 1–11, 2014. FANG, Z.; BAI, G.; HUANG, W.; WANG, Z.; WANG, X.; ZHANG, M. The Rice Peptide Transporter OsNPF7.3 Is Induced by Organic Nitrogen, and Contributes to Nitrogen Allocation and Grain Yield. Front. Plant Sci, v. 8, n. 1338, p. 12, 2017. FANG, Z.; XIA, K.; YANG, X.; GROTEMEYER, M.S.; MEIER, S.; RENTSCH, D.; XU, X.; ZHANG, M. Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnol. J., v. 11, p. 446–458, 2012. FARNDEN, K. J. S.; ROBERTSON, J. G. Methods for studying enzyme involved in metabolism related to nitrogen. In: BERGSEN, F. J. ed. Methods for Evaluating Biological Nitrogen Fixation, Chichester: John Wiley, p.265-314, 1980. FELKER, P. Micro determination of nitrogen in seed protein extracts. Analytical Chemistry, v. 49, 1977. FELSENSTEIN J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution. v. 39, p. 783-791. FENG, Y.; ZHAI, R. R.; LIN, Z. C.; CAO, L. Y.; WEI, X. H.; CHENG, S. H. Quantitative trait locus analysis for rice yield traits under two nitrogen levels. Rice Science, v. 22, n. 3, p. 108–115, 2015. FERNANDES, M. S. Effects to light and temperature on the nitrogen metabolism of tropical rice. Michigan State University, 1974. Ph.D. Thesis. FERNANDES, M.S. N-carriers, light and temperature influences on uptake and assimilation of nitrogen by rice. Turrialba. San Jose, v. 34, p. 9-18, 1984. FERNANDES, M. S. Absorção e metabolismo de nitrogênio em plantas. Boletim Técnico, v. 1, 50 p., 1978. FERREIRA, D.F. Análises estatísticas por meio do Sisvar para Windows versão 4.0. In. Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria. Anais. São Carlos: UFSCar, p. 255-258, 2000. FERREIRA, L. M. Caracterização funcional do transportador de amônio OsAMT1. 3 e seu efeito sobre a nutrição nitrogenada em plantas de arroz. 2013. 71f. Dissertação (Mestrado em Ciência do Solo) Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2013. FERROL, N. Membrane Transporters, an Overview of the Arbuscular Mycorrhizal Fungal Transportome. Encyclopedia of Mycology, v. 1, p. 44-53, 2021. FREIRE, L. R.; BALIEIRO, F. de C.; ZONTA, E.; ANJOS, L. H. C. dos; PEREIRA, M. G.; LIMA, E.; GUERRA, J. G. M.; FERREIRA, M. B. C.; LEAL, M. A. de A.; CAMPOS, D. V. B. de. Manual de calagem e adubação do Estado do Rio de Janeiro. Embrapa, v. 1, p. 430, 2013. GAO, J.; LIU, J.; LI, B.; LI, Z. Isolation and purification of functional total RNA from blue-grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Molecular Biology Reporter, v. 19, p. 185–186, 2001. GUELFI, D. Fertilizantes nitrogenados estabilizados, de liberação lenta ou controlada. Informações Agronômicas, n. 157, p. 1–13, 2017. GRAVELEY, B. R. Alternative splicing: increasing diversity in the proteomic world. Trends in genetics, v. 17, n. 2, p. 100-107; 2001. HAN, M., OKAMOTO, M., BEATTY, P. H., ROTHSTEIN, S. J., AND GOOD, A. G. The genetics of nitrogen use efficiency in crop plants. Annu. Rev. Genet. V. 49, p. 269–289, 2015. HE, Y. N.; PENG, J. S.; CAI, Y.; LIU, D. F.; GUAN, Y.; YI, H. Y.; GONG, J. M. Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in Arabidopsis. Scientific Reports, v. 7, n. 1, 2017. HE, F.; CHEN, S.; NING, Y.; WANG, G.-L. Rice (Oryza sativa) Protoplast Isolation and Its Application for Transient Expression Analysis. Current Protocols in Plant Biology, v. 1, p. 373–383, 2016. HIEI, Y.; ISHIDA, Y.; KOMARI, T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Science, v. 5, n. 628, p. 1-11, 2014. HIEI, Y.; KOMARI, T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc, v. 3, p. 824–834, 2008. HIREL, B.; KRAPP, A. Nitrogen Utilization in Plants I Biological and Agronomic Importance. Encyclopedia of Biochemistry, ed. 3, p. 1-14, 2020. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Station Bull, v.347, p. 1-32, 1950. HO, C. H.; LIN, S. H.; HU, H. C.; TSAY, Y. F. CHL1 functions as a nitrate sensor in plants. Cell, v. 138, n. 6, p. 1184-1194, 2009. HOLZSCHUH, M. J.; BOHNEN, H.; ANGHINONI, I.; MEURER, E. J.; CARMONA, F. C.; COSTA, S. E. V. G. A. Resposta do arroz irrigado ao suprimento de amônio e nitrato. Rev. Bras. Ciênc. Solo, v. 33, n. 5, p. 1323-1331, 2009. HU, X.; ZHANG, J.; LIU, W.; WANG, Q.; WANG, T.; LI, X.; LU, X.; GAO, L.; ZHANG, W. CsNPF7.2 Has a Potential to Regulate Cucumber Seedling Growth in Early Nitrogen Deficiency Stress. Plant Molecular Biology Reporter, p. 1-17, 2020. HU, R.; QIU, D.; CHEN, Y.; MILLER, A. J.; FAN, X.; PAN, X.; ZHANG, M. Knock-Down of a Tonoplast Localized Low-Affinity Nitrate Transporter OsNPF7.2 Affects Rice Growth under High Nitrate Supply. Frontiers in Plant Science, v. 7, p. 1529, 2016. HU, B.; WANG, W.; OU, S.; TANG, J.; LI, H.; CHE, R.; ZHANG, Z.; CHAI, X.; WANG, H.; WANG, Y.; LIANG, C.; LIU, L.; PIAO, Z.; DENG, Q.; DENG, K.; XU, C.; LIANG, Y.; ZHANG, L.; LI, L.; CHU, C. Variation in NRT1. 1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, v. 47, n. 7, p. 834, 2015. HUANG, W.; NIE, H.; FENG, F.; WANG, J.; LU, K.; FANG, Z. Altered expression of OsNPF7. 1 and OsNPF7. 4 differentially regulates tillering and grain yield in rice. Plant science, v. 283, p. 23-31, 2019. HUANG, W.; BAI, G.; WANG, J.; ZHU, W.; ZENG, Q.; LU, K.; SUN, S.; FANG, Z. Two Splicing Variants of OsNPF7.7 Regulate Shoot Branching and Nitrogen Utilization Efficiency in Rice. Front. Plant Sci., v. 9, n.300, 2018. HUANG, N. C.; LIU, K. H.; LO, H. J.; TSAY, Y. F. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. The Plant Cell Online, v. 11, n. 8, p. 1381-1392, 1999. HUANG N.; CHIANG C.; CRAWFORD N.; TSAY Y. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type specific expression in roots. Plant Cell, v. 8, p. 2183–2191, 1996. IFAG. Custos de Produção. Disponível em: <http://ifag.org.br/custos-de-producao>. Acesso em: 17 fev. 2021. JAGANATHAN, D.; RAMASAMY, K.; SELLAMUTHU, G.; JAYABALAN, S.; VENKATARAMAN, G. CRISPR for Crop Improvement: An Update Review. Frontiers in Plant Science, v. 9, p. 985, 17 jul. 2018. JAIN, M.; NIJHAWAN, A.; TYAGI, A. K.; KHURANA, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, v. 345, p. 646-651, 2006. JAIN, R., JENKINS, J., SHU, S.; CHERN, M.; MARTIN, J. A.; COPETTI, D.; DUONG, P. Q.; PHAM, N. T.; KUDRNA, D. A.; TALAG, J.; SCHACKWITZ, W. S.; LIPZEN, A. M.; DILWORTH, D.; BAUER, D.; GRIMWOOD, J.; NELSON, C. R.; XING, F.; XIE, W.; BARRY, K. W.; WING, R. A.; SCHMUTZ, J.; LI G.; RONALD P. C. Genome sequence of the model rice variety KitaakeX. BMC Genomics, p. 20, n. 905, 2019. JAWORSKI, E. G. Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun. v. 43, n. 6, p. 1274-9, 1971. JEWEL, Z. A.; ALI, J.; MAHENDER, A.; HERNANDEZ, J.; PANG, Y.; LI, Z. Identification of Quantitative Trait Loci Associated with Nutrient Use Efficiency Traits, Using SNP Markers in an Early Backcross Population of Rice (Oryza sativa L.). International journal of molecular sciences, v. 20, n. 4, 2019. JUNIOR, A. S. L. F.; SOUZA, S. R.; FERNANDES, M. S.; ROSSIELLO, R. O. P. Eficiência do Uso de Nitrogénio para Produção de Grão e Proteina por Cultivares de Arroz. Pesq. agropec. bras., v. 32, n. 4, p. 435–442, 1997. KANNO, Y.; HANADA, A.; CHIBA, Y.; ICHIKAWA, T.; NAKAZAWA, M.; MATSUI, M.; KOSHIBA, T.; KAMIYA, Y.; SEO, M. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proceedings of the National Academy of Sciences U.S.A. v. 109, p. 9653–9658, 2012. KANT S.; BI Y. M.; ROTHSTEIN S. J.; Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of experimental botany, v. 62, n. 4, p. 1499-1509, 2011. KARIMI, M.; INZÉ, D.; DEPICKER, A., Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. v. 7, n. 5, p. 193-195, 2002 KAWAHARA, Y.; DE LA BASTIDE, M.; HAMILTON, J. P.; KANAMORI, H.; MCCOMBIE, W. R.; OUYANG, S.; SCHWARTZ, D. C.; TANAKA, T.; WU, J.; ZHOU, S.; CHILDS, K. L.; DAVIDSON, R. M.; LIN, H.; QUESADA-OCAMPO, L.; VAILLANCOURT, B.; SAKAI, H.; LEE, S. S.; KIM, J.; NUMA, H.; ITOH, T.; BUELL, C. R.; MATSUMOTO, T. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, v. 6, n. 1, p. 4, 2013. KRONZUCKER, H. J.; GLASS, A. D. M.; SIDDIQI, M. Y.; KIRK, G. J. D. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: Implications for rice cultivation and yield potential. New Phytol., 145:471-476, 2000. KROUK, G., LACOMBE, B., BIELACH, A., PERRINE-WALKER, F., MALINSKA, K., MOUNIER, E., HOYEROVA, K., TILLARD, P., LEON, S., LJUNG, K., ZAZIMALOVA, E., BENKOVA, E., NACRY, P., & GOJON, A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental cell, v. 18, n. 6, p. 927-937, 2010. KUMAR, S.; STECHER, G.; TAMURA, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution, v. msw054, 2016. LÉRAN, S.; VARALA, K.; BOYER, J. C.; CHIURAZZI, M.; CRAWFORD, N.; DANIEL-VEDELE, F.; DAVID, L.; DICKSTEIN, R.; FERNANDEZ, E.; FORDE, B.; GASSMANN, W.; GEIGER, D.; GOJON, A.; GONG, J. M.; HALKIER, B. A.; HARRIS, J. M.; HEDRICH, R.; LIMAMI, A. M.; RENTSCH, D.; SEO, M.; TSAY, Y. F.; ZHANG, M.; CORUZZI, G.; LACOMBE, B. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends in Plant Science, v. 19, n. 1, p. 5–9, 2014. LI, Y.; OUYANG, J.; WANG, Y. Y.; HU, R.; XIA, K.; DUAN, J.; WANG, Y.; TSAY, Y.-F.; ZHANG, M. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci. Rep. v. 5, p. 9635, 2015. LIANG, G; ZHANG, Z. Reducing the Nitrate Content in Vegetables Through Joint Regulation of Short Distance Distribution and Long-Distance Transport. Front. Plant Sci. v. 11, n. 1079, p. 8, 2020. LIN, C.-M.; KOH, S.; STACEY, G.; YU, S.-M.; LIN, T.-Y. & TSAY, Y.-F. Cloning and Functional Characterization of a Constitutively Expressed Nitrate Transporter Gene, OsNRT1, from Rice. Plant Physiology, v.122, n.2, p. 379–388, 2000. LIU, K. H.; TSAY, Y. F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO Journal, v. 22, n. 5, p. 1005–1013, 2003. LIVAK, K. J. & SCHMITTGEN, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCт Method. Methods, v. 25, p. 402-408, 2001. LU, K.; WU, B.; WANG, J.; ZHU, W.; NIE, H.; QIAN, J.; HUANG, W.; FANG, Z.; Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotech. J. v. 16, p. 1710–1722, 2018. LUU, T.; STIEBNER, M.; MALDONADO, P. E.; VALDÉS, S.; MARÍN, D.; DELGADO, G.; LALUZ, V.; WU, L.; CHAVARRIAGA, P.; TOHME, J.; SLAMET-LOEDIN, I. H. E.; FROMMER, W. B. Efficient Agrobacterium -mediated Transformation of the Elite– Indica Rice Variety Komboka. Bio-protocol, v. 10, n. 17, p. e3739, 2020. MA, J.; HE, Y. H.; WU, C. H.; LIU, H. P.; HU, Z. Y.; SUN, G. M. Effective Agrobacterium–mediated transformation of pineapple with CYP1A1 by kanamycin selection technique. African Journal of Biotechnology, v. 11, n. 10, p. 2555-2562, 2012. MAXIMINIANO, R. V. Estudos das propriedades da Inosina em DNA através do modelo Peyrard-Bishop e análise dos parâmetros termodinâmicos utilizados na predição de estruturas secundárias de RNA. 2017. 131f. Tese (Doutorado em Física). Instituto de Ciências Exatas. Universidade Federal de Minas Gerais, Belo Horizonte, MG, 2017. MIGOCKA, M.; WARZYBOK, A.; PAPIERNIAK, A.; KŁOBUS, G. NO3-/H+ Antiport in the Tonoplast of Cucumber Root Cells Is Stimulated by Nitrate Supply: Evidence for a Reversible Nitrate-Induced Phosphorylation of Vacuolar NO3-/H+ Antiport. PLoS ONE, v. 8, n. 9, p. e73972, 2013. MILLER, A. J.; FAN, X.; ORSEL, M.; SMITH, S. J.; WELLS, D. M. Nitrate transport and signalling. Journal of Experimental Botany, v. 58, n. 9, p. 2297–2306, 2007. MIRANDA, K. M.; ESPEY, M. G.; WINK, D. A. A rapid simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, v. 5, p. 62-71, 2001. NACRY, P.; BOUGUYON, E.; GOJON, A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil, v. 370, p. 1-29, 2013. NAKAMURA, A., FUKUDA, A., SAKAI, S., & TANAKA, Y. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant and Cell Physiology, v.47, n.1, p. 32-42, 2006. NISHIMURA, A.; AICHI, I.; MATSUOKA, M. A protocol for Agrobacterium-mediated transformation in rice. Nature Protocols, v. 1, n. 6, p. 2796–2802, 2007. ONU. Organização das Nações Unidas Brasil. Objetivo de Desenvolvimento Sustentável 2. Disponível em: https://brasil.un.org/pt-br/sdgs/2 Acesso em: 01 fev. 2021. OUYANG, J., CAI, Z., XIA, K., WANG, Y., DUAN, J., & ZHANG, M. Identification and analysis of eight peptide transporter homologs in rice. Plant science, v. 179, n.4, p. 374-382, 2010. QIU, W, WANG, Z, HUANG, C, CHEN, B, & YANG, R. Nitrate accumulation in leafy vegetables and its relationship with water. Journal of soil science and plant nutrition, p. 14, n.4, p. 761-768, 2014. RAZZAQ, A.; HAFIZ, I. A.; MAHMOOD, I.; HUSSAIN, A. Development of in planta transformation protocol for wheat. African Journal of Biotechnology, v. 10, n. 5, p. 740-750, 2011. REIS, V. M.; JESUS, E. C.; SCHWAB, S.; OLIVEIRA, A. L. M.; OLIVARES, F. L.; BALDANI, V. L. D.; BALDANI, J. I. VIII Fixação Biológica de Nitrogênio. In: Nutrição Mineral de Plantas. 2. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2018. p. RIBEIRO, F. W.; RODRIGUES, C. C.; PEIXOTO, S. A.; SILVA, A. C.; ARAÚJO, M. da S. Perspectiva econômica da implantação de arroz de terras altas no sudeste de Goiás. Agrarian Academy, v. 10, n. 5, p. 150–160, 2018. ROLÃO, K. P.; ROSA, R. D. O.; NETO, L. F. F. Análise de rentabilidade entre o cultivo de arroz irrigado e cultivo de arroz sequeiro. 2019, São Paulo - SP: XX ENGEMA, 2019. p. 17. Disponível em: http://engemausp.submissao.com.br/20/anais/arquivos/153.pdf RUIZ, H. A.; FERNANDES FILHO, E. I. Cinética: software para estimar as constantes Vmáx e KM da equação de Michaelis-Menten. In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas, n.10, 1992, Piracicaba. Anais. Piracicaba: Sociedade Brasileira de Ciência do Solo, p.124-125. 1992. SABU, S.; KHANAM, S; SUBITSHA, A. H. Agrobacterium-Mediated Transformation in Oryza Sativa (Rice) to Improve Crop Yield: A Review. International Journal of Scientific Research and Engineering Development, v. 3, n. 6, p. 762-770, 2020. SAIKA, H., TOKI, S. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep, v. 29, p. 1351–1364, 2010. SAITOU N.; NEI M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution v.4, p. 406-425, 1987. SANTI, S.; LOCCI, G.; MONTE, R.; PINTON, R.; VARANINI, Z. Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+ -ATPase isoforms. J Exp Bot, v. 54, p. 1851–1864, 2003. SANTOS, A. M.; STARK, E. M. L. M.; FERNANDES, M. S.; SOUZA, S. R. Teores de nitrogênio, fósforo e frações solúveis em duas Variedades de arroz cultivadas em solução nutritiva sob dois níveis de nitrato. Agronomia, v. 37, n. 1, p. 76 - 81, 2003. SANTOS, L. A., BUCHER C. A., SOUZA S. R.; FERNANDES M. S. Nitrogen metabolism of rice under low nitrate availability. Agronomia, v. 39, p. 28–33, 2005. SANTOS, A. M., STARK, E. M. L. M.; FERNANDES, M. S.; SOUZA, S. R. Effects of seasonal nitrate flush on nitrogen metabolism and soluble fractions accumulation in two rice varieties. Journal of Plant Nutrition, v. 30, n. 9, p. 1371–1384, 2007. SANTOS, A. M. D.; BUCHER, C. A.; STARK, E. M. L. M.; FERNANDES, M. S., Souza, S. R. Efeito da disponibilidade de nitrato em solução nutritiva sobre a absorção de nitrogênio e atividade enzimática de duas cultivares de arroz. Bragantia, v. 68, n. 1, p. 215–220, 2009. SANTOS, L. A.; SANTOS, W. A.; SPERANDIO, M. V. L.; BUCHER, C. A.; DE SOUZA, S. R.; FERNANDES, M. S. Nitrate uptake kinetics and metabolic parameters in two rice varieties grown in high and low nitrate. Journal of Plant Nutrition, v. 34, n. 7, p. 988-1002, 2011. SCHROEDER, J. I.; DELHAIZE, E.; FROMMER, W. B.; GUERINOT, M. L.; HARRISON, M. J.; HERRERA-ESTRELLA, L.; HORIE, T.; KOCHIAN, L. V.; MUNNS, R.; NISHIZAWA, N. K.; TSAY, Y. F.; SANDERS, D.; Using membrane transporters to improve crops for sustainable food production, Nature, v. 497 p. 60–66, 2013. SILVA, O. F. d.; WANDER, A. E. Viabilidade econômica da cultivar de arroz de terras altas BRS Sertaneja. 52º Congresso da SOBER - Sociedade Brasileira de Economia, Administração e Sociologia Rural, Goiânia – GO, p. 1–13, 2014. SHAN, X.; LI, Y.; ZHOU, L.; TONG, L.; WEI, C.; QIU, L.; GAO, X.; WANG, L. Efficient isolation of protoplasts from freesia callus and its application in transient expression assays. Plant Cell, Tissue and Organ Culture (PCTOC), v. 138, n. 3, p. 529-541, 2019. SOUZA, S. R.; STARK, E. M. L. M. & FERNANDES, M. S. Nitrogen Remobilization During the Reproductive Period in Two Brazilian Rice Varieties. Journal of Plant Nutrition, v. 21, n. 10, p. 2049-2063, 1998. SOUZA, S. R.; FERNANDES, M. S.; IX - Nitrogênio. In: FERNANDES, M. S.; SOUZA, S. R.; SANTOS, L. A. Nutrição Mineral de Plantas. 2. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2018. p. 309-376. SPERANDIO, M. V. L.; SANTOS, L. A.; BUCHER, C. A.; FERNANDES, M. S.; DE SOUZA, S. R. Isoforms of plasma membrane H+-ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3− or NH4+. Plant Science, v. 180, n. 2, p. 251-258, 2011. TEDESCO, M. J. Extração simultânea de N, P, K, Ca e Mg em tecido de plantas por digestão com H2O2-H2SO4, UFRGS, p. 23, 1982. TILMAN, D.; BALZER, C.; HILL, J.; BEFORT, B. L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, v. 108, n. 50, p. 20260–20264, 2011. TOKI, S.; HARA, N.; ONO, K.; ONODERA, H.; TAGIRI, A.; OKA, S.; TANAKA, H. Early infection of scutellum tissue with Agrobacterium allows high‐speed transformation of rice. The Plant Journal, v. 47, p. 969-976, 2006. TSAY, Y. F.; CHIU, C. C.; TSAI, C. B.; HO, C. H.; HSU, P. K. Nitrate transporters and peptide transporters. FEBS Letters, v. 581, n. 12, p. 2290–2300, 2007. TWYMAN, R. M.; STOGER, E.; KOHLI, A.; CAPELL, T.; CHRISTOU, P. Selectable and screenable markers for rice transformation. In: JACKSON, J. F.; LINSKENS, H. F.; INMAN, R. B. (eds) Molecular methods of plant analysis, v. 22, Testing for genetic manipulation in plants. Springer, Berlin, p. 1–18, 2002. VITOUSEK, P. M.; MENGE, D. N.; REED, S. C.; CLEVELAND, C. C. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond B Biol Sci, v. 368, n. 1621, p. 20130119, 2013. VON WITTGENSTEIN, N. J., LE, C. H., HAWKINS, B. J., EHLTING, J. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC evolutionary biology, v. 14, p. 11, 2014. VON DER FECHT-BARTENBACH, J.; BOGNER, M.; DYNOWSKI, M.; LUDEWIG, U. CLC-b-mediated no3 -/H+ exchange across the tonoplast of arabidopsis vacuoles. Plant and Cell Physiology, v. 51, n. 6, p. 960–968, 2010. WAMSER, A. F.; MUNDSTOCK, C. M. Adubação nitrogenada em estádios fenológicos em cevada, cultivar “MN 698”. Ciência Rural, v. 37, n. 4, p. 942–948, 2007. WANG, H.; WAN, Y.; BUCHNER, P.; KING, R.; MA, H.; HAWKESFORD, M. J. (2020). Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Triticum aestivum. Journal of experimental botany, v. 71, n. 15, p. 4531-4546, 2020. WANG, J.; LU, K.; NIE, H.; ZENG, Q.; WU, B.; QIAN, J.; FANG, Z. Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. Rice, v. 11, n. 1, p. 12, 2018. WANG, L.; XUE, C.; PAN, X.; CHEN, F.; LIU, Y. Application of controlled-release urea enhances grain yield and Nitrogen Use Efficiency in irrigated rice in the Yangtze River Basin, China. Frontiers in Plant Science, v. 9, p. 999, 19 jul. 2018. WEI, D.; CUI, K.; YE, G.; PAN, J.; XIANG, J.; HUANG, J.; NIE, L. QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice. Plant and Soil, v. 359, n. 1–2, p. 281–295, 2012. WEN, Z.; KAISER B. N. Unraveling the Functional Role of NPF6 Transporters. Front. Plant Sci, v. 9, n. 973, p. 8, 2018. WEN, Z.; TYERMAN, S. D.; DECHORGNAT, J.; OVCHINNIKOVA, E.; DHUGGA, K. S.; KAISER, B. N. Maize NPF6 Proteins Are Homologs of Arabidopsis CHL1 That Are Selective for Both Nitrate and Chloride. The Plant cell, v. 29, n. 10, p. 2581–2596, 2017. WU, T.; QIN, Z.; FAN, L.; XUE, C.; ZHOU, X.; XIN, M.; DU, Y. Involvement of CsNRT1.7 in nitrate recycling during senescence in cucumber. J. Plant Nutr. Soil Sci., 177: p. 714-721, 2014. YEMM, E. W.; COCKING, E. C.; RICKETTS, R. E. The determination of amino-acids with ninhydrin. Analyst, v. 80, n. 948, p. 209–214, 1955. YEMM, E. W.; WILLIS, A. J. The estimation of Carbohydrates Plant Extracts by Anthrone. Biochemical Journal, v. 57, p.508-514, 1954. YOO, S., CHO, Y. & SHEEN, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, v. 2, p. 1565–1572, 2007. YUNFENG, C.; SHUANGLAI, L.; DONGHAI, L.; JUN, F.; YAN, Q.; CHENG, H.; XIANGE, X. Yield, nitrogen use efficiency and balance response to thirty-five years of fertilization in paddy rice-upland wheat cropping system. Plant, Soil and Environment, v. 65, n. 2, p. 55–62, 2019. XIA, X.; FAN, X.; WEI, J.; FENG, H.; QU, H.; XIE, D.; MILLER, A. J.,; XU, G. Rice nitrate transporter OsNPF2.4 functions in low affinity acquisition and long distance transport. J. Exp. Bot., v. 66, p. 317–331, 2015. ZHANG, Z. H.; HUANG, H. T.; SONG, H. X.; LIU, Q.; RONG, X. M.; PENG, J. W.; XIE, G.X.; ZHANG, Y.P.; GUAN, C. Y. Research advances on nitrate nitrogen reutilization by proton pump of tonoplast and its relation to nitrogen use efficiency. Australian Journal of Crop Science, v. 6, n. 9, p. 1377-1382, 2012. ZHAO, F. L.; LI, Y. J.; HU, Y.; GAO, Y. R.; ZANG, X. W.; DING, Q.; WANG, Y. J.; WEN, Y. Q. A highly efficient grapevine mesophyll protoplast system for transient gene expression and the study of disease resistance proteins. Plant Cell, Tissue and Organ Culture (PCTOC), v. 125, n. 1, p. 43-57, 2016. ZHAO, X., HUANG, J., YU, H., WANG, L. & XIE, W. Genomic survey, characterization and expression profile analysis of the peptide transporter family in rice (Oryza sativa L.). BMC Plant Biol. v. 10, p. 92, 2010.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72780/2021%20-%20Erika%20da%20Costa%20Fernandes.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6475
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-03-27T17:37:35Z No. of bitstreams: 1 2021 - Erika da Costa Fernandes.pdf: 2776620 bytes, checksum: a693535b0856202d81471679658f5363 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-03-27T17:37:38Z (GMT). No. of bitstreams: 1 2021 - Erika da Costa Fernandes.pdf: 2776620 bytes, checksum: a693535b0856202d81471679658f5363 (MD5) Previous issue date: 2021-10-29eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Erika da Costa Fernandes.pdf2.71 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.